| Metamath
Proof Explorer Theorem List (p. 496 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30853) |
(30854-32376) |
(32377-49784) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | eufunc 49501* | If there exists a unique functor from a non-empty category, then the base of the target category is a singleton. (Contributed by Zhi Wang, 19-Oct-2025.) |
| ⊢ (𝜑 → ∃!𝑓 𝑓 ∈ (𝐶 Func 𝐷)) & ⊢ 𝐴 = (Base‘𝐶) & ⊢ (𝜑 → 𝐴 ≠ ∅) & ⊢ 𝐵 = (Base‘𝐷) ⇒ ⊢ (𝜑 → ∃!𝑥 𝑥 ∈ 𝐵) | ||
| Theorem | idfudiag1lem 49502 | Lemma for idfudiag1bas 49503 and idfudiag1 49504. (Contributed by Zhi Wang, 19-Oct-2025.) |
| ⊢ (𝜑 → ( I ↾ 𝐴) = (𝐴 × {𝐵})) & ⊢ (𝜑 → 𝐴 ≠ ∅) ⇒ ⊢ (𝜑 → 𝐴 = {𝐵}) | ||
| Theorem | idfudiag1bas 49503 | If the identity functor of a category is the same as a constant functor to the category, then the base is a singleton. (Contributed by Zhi Wang, 19-Oct-2025.) |
| ⊢ 𝐼 = (idfunc‘𝐶) & ⊢ 𝐿 = (𝐶Δfunc𝐶) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ 𝐾 = ((1st ‘𝐿)‘𝑋) & ⊢ (𝜑 → 𝐼 = 𝐾) ⇒ ⊢ (𝜑 → 𝐵 = {𝑋}) | ||
| Theorem | idfudiag1 49504 | If the identity functor of a category is the same as a constant functor to the category, then the category is terminal. (Contributed by Zhi Wang, 19-Oct-2025.) |
| ⊢ 𝐼 = (idfunc‘𝐶) & ⊢ 𝐿 = (𝐶Δfunc𝐶) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ 𝐾 = ((1st ‘𝐿)‘𝑋) & ⊢ (𝜑 → 𝐼 = 𝐾) ⇒ ⊢ (𝜑 → 𝐶 ∈ TermCat) | ||
| Theorem | euendfunc 49505* | If there exists a unique endofunctor (a functor from a category to itself) for a non-empty category, then the category is terminal. This partially explains why two categories are sufficient in termc2 49497. (Contributed by Zhi Wang, 20-Oct-2025.) |
| ⊢ (𝜑 → ∃!𝑓 𝑓 ∈ (𝐶 Func 𝐶)) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝐵 ≠ ∅) ⇒ ⊢ (𝜑 → 𝐶 ∈ TermCat) | ||
| Theorem | euendfunc2 49506 | If there exists a unique endofunctor (a functor from a category to itself) for a category, then it is either initial (empty) or terminal. (Contributed by Zhi Wang, 20-Oct-2025.) |
| ⊢ ((𝐶 Func 𝐶) ≈ 1o → ((Base‘𝐶) = ∅ ∨ 𝐶 ∈ TermCat)) | ||
| Theorem | termcarweu 49507* | There exists a unique disjointified arrow in a terminal category. (Contributed by Zhi Wang, 20-Oct-2025.) |
| ⊢ (𝐶 ∈ TermCat → ∃!𝑎 𝑎 ∈ (Arrow‘𝐶)) | ||
| Theorem | arweuthinc 49508* | If a structure has a unique disjointified arrow, then the structure is a thin category. (Contributed by Zhi Wang, 20-Oct-2025.) |
| ⊢ (∃!𝑎 𝑎 ∈ (Arrow‘𝐶) → 𝐶 ∈ ThinCat) | ||
| Theorem | arweutermc 49509* | If a structure has a unique disjointified arrow, then the structure is a terminal category. (Contributed by Zhi Wang, 20-Oct-2025.) |
| ⊢ (∃!𝑎 𝑎 ∈ (Arrow‘𝐶) → 𝐶 ∈ TermCat) | ||
| Theorem | dftermc3 49510 | Alternate definition of TermCat. See also df-termc 49452, dftermc2 49499. (Contributed by Zhi Wang, 20-Oct-2025.) |
| ⊢ TermCat = {𝑐 ∣ (Arrow‘𝑐) ≈ 1o} | ||
| Theorem | termcfuncval 49511 | The value of a functor from a terminal category. (Contributed by Zhi Wang, 20-Oct-2025.) |
| ⊢ 𝐴 = (Base‘𝐶) & ⊢ (𝜑 → 𝐷 ∈ TermCat) & ⊢ (𝜑 → 𝐾 ∈ (𝐷 Func 𝐶)) & ⊢ 𝐵 = (Base‘𝐷) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ 𝑋 = ((1st ‘𝐾)‘𝑌) & ⊢ 1 = (Id‘𝐶) & ⊢ 𝐼 = (Id‘𝐷) ⇒ ⊢ (𝜑 → (𝑋 ∈ 𝐴 ∧ 𝐾 = 〈{〈𝑌, 𝑋〉}, {〈〈𝑌, 𝑌〉, {〈(𝐼‘𝑌), ( 1 ‘𝑋)〉}〉}〉)) | ||
| Theorem | diag1f1olem 49512 | To any functor from a terminal category can an object in the target base be assigned. (Contributed by Zhi Wang, 21-Oct-2025.) |
| ⊢ 𝐴 = (Base‘𝐶) & ⊢ (𝜑 → 𝐷 ∈ TermCat) & ⊢ (𝜑 → 𝐾 ∈ (𝐷 Func 𝐶)) & ⊢ 𝐵 = (Base‘𝐷) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ 𝑋 = ((1st ‘𝐾)‘𝑌) & ⊢ 𝐿 = (𝐶Δfunc𝐷) ⇒ ⊢ (𝜑 → (𝑋 ∈ 𝐴 ∧ 𝐾 = ((1st ‘𝐿)‘𝑋))) | ||
| Theorem | diag1f1o 49513 | The object part of the diagonal functor is a bijection if 𝐷 is terminal. So any functor from a terminal category is one-to-one correspondent to an object of the target base. (Contributed by Zhi Wang, 21-Oct-2025.) |
| ⊢ 𝐴 = (Base‘𝐶) & ⊢ (𝜑 → 𝐷 ∈ TermCat) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ 𝐿 = (𝐶Δfunc𝐷) ⇒ ⊢ (𝜑 → (1st ‘𝐿):𝐴–1-1-onto→(𝐷 Func 𝐶)) | ||
| Theorem | termcnatval 49514 | Value of natural transformations for a terminal category. (Contributed by Zhi Wang, 21-Oct-2025.) |
| ⊢ (𝜑 → 𝐶 ∈ TermCat) & ⊢ 𝑁 = (𝐶 Nat 𝐷) & ⊢ (𝜑 → 𝐴 ∈ (𝐹𝑁𝐺)) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ 𝑅 = (𝐴‘𝑋) ⇒ ⊢ (𝜑 → 𝐴 = {〈𝑋, 𝑅〉}) | ||
| Theorem | diag2f1olem 49515 | Lemma for diag2f1o 49516. (Contributed by Zhi Wang, 21-Oct-2025.) |
| ⊢ 𝐿 = (𝐶Δfunc𝐷) & ⊢ 𝐴 = (Base‘𝐶) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ (𝜑 → 𝑋 ∈ 𝐴) & ⊢ (𝜑 → 𝑌 ∈ 𝐴) & ⊢ 𝑁 = (𝐷 Nat 𝐶) & ⊢ (𝜑 → 𝐷 ∈ TermCat) & ⊢ (𝜑 → 𝑀 ∈ (((1st ‘𝐿)‘𝑋)𝑁((1st ‘𝐿)‘𝑌))) & ⊢ 𝐵 = (Base‘𝐷) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) & ⊢ 𝐹 = (𝑀‘𝑍) ⇒ ⊢ (𝜑 → (𝐹 ∈ (𝑋𝐻𝑌) ∧ 𝑀 = ((𝑋(2nd ‘𝐿)𝑌)‘𝐹))) | ||
| Theorem | diag2f1o 49516 | If 𝐷 is terminal, the morphism part of a diagonal functor is bijective functions from hom-sets into sets of natural transformations. (Contributed by Zhi Wang, 21-Oct-2025.) |
| ⊢ 𝐿 = (𝐶Δfunc𝐷) & ⊢ 𝐴 = (Base‘𝐶) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ (𝜑 → 𝑋 ∈ 𝐴) & ⊢ (𝜑 → 𝑌 ∈ 𝐴) & ⊢ 𝑁 = (𝐷 Nat 𝐶) & ⊢ (𝜑 → 𝐷 ∈ TermCat) & ⊢ (𝜑 → 𝐶 ∈ Cat) ⇒ ⊢ (𝜑 → (𝑋(2nd ‘𝐿)𝑌):(𝑋𝐻𝑌)–1-1-onto→(((1st ‘𝐿)‘𝑋)𝑁((1st ‘𝐿)‘𝑌))) | ||
| Theorem | diagffth 49517 | The diagonal functor is a fully faithful functor from a category 𝐶 to the category of functors from a terminal category to 𝐶. (Contributed by Zhi Wang, 21-Oct-2025.) |
| ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝐷 ∈ TermCat) & ⊢ 𝑄 = (𝐷 FuncCat 𝐶) & ⊢ 𝐿 = (𝐶Δfunc𝐷) ⇒ ⊢ (𝜑 → 𝐿 ∈ ((𝐶 Full 𝑄) ∩ (𝐶 Faith 𝑄))) | ||
| Theorem | diagciso 49518 |
The diagonal functor is an isomorphism from a category 𝐶 to the
category of functors from a terminal category to 𝐶.
It is provable that the inverse of the diagonal functor is the mapped object by the transposed curry of (𝐷 evalF 𝐶), i.e., ∪ ran (1st ‘(〈𝐷, 𝑄〉 curryF ((𝐷 evalF 𝐶) ∘func (𝐷 swapF 𝑄)))). (Contributed by Zhi Wang, 21-Oct-2025.) |
| ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝐷 ∈ TermCat) & ⊢ 𝑄 = (𝐷 FuncCat 𝐶) & ⊢ 𝐸 = (CatCat‘𝑈) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ (𝜑 → 𝐶 ∈ 𝑈) & ⊢ (𝜑 → 𝑄 ∈ 𝑈) & ⊢ 𝐼 = (Iso‘𝐸) & ⊢ 𝐿 = (𝐶Δfunc𝐷) ⇒ ⊢ (𝜑 → 𝐿 ∈ (𝐶𝐼𝑄)) | ||
| Theorem | diagcic 49519 | Any category 𝐶 is isomorphic to the category of functors from a terminal category to 𝐶. See also the "Properties" section of https://ncatlab.org/nlab/show/terminal+category. Therefore the number of categories isomorphic to a non-empty category is at least the number of singletons, so large (snnex 7736) that these isomorphic categories form a proper class. (Contributed by Zhi Wang, 21-Oct-2025.) |
| ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝐷 ∈ TermCat) & ⊢ 𝑄 = (𝐷 FuncCat 𝐶) & ⊢ 𝐸 = (CatCat‘𝑈) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ (𝜑 → 𝐶 ∈ 𝑈) & ⊢ (𝜑 → 𝑄 ∈ 𝑈) ⇒ ⊢ (𝜑 → 𝐶( ≃𝑐 ‘𝐸)𝑄) | ||
| Theorem | funcsn 49520 | The category of one functor to a thin category is terminal. (Contributed by Zhi Wang, 17-Nov-2025.) |
| ⊢ 𝑄 = (𝐶 FuncCat 𝐷) & ⊢ (𝜑 → 𝐹 ∈ 𝑉) & ⊢ (𝜑 → (𝐶 Func 𝐷) = {𝐹}) & ⊢ (𝜑 → 𝐷 ∈ ThinCat) ⇒ ⊢ (𝜑 → 𝑄 ∈ TermCat) | ||
| Theorem | fucterm 49521 | The category of functors to a terminal category is terminal. (Contributed by Zhi Wang, 17-Nov-2025.) |
| ⊢ 𝑄 = (𝐶 FuncCat 𝐷) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝐷 ∈ TermCat) ⇒ ⊢ (𝜑 → 𝑄 ∈ TermCat) | ||
| Theorem | 0fucterm 49522 | The category of functors from an initial category is terminal. (Contributed by Zhi Wang, 17-Nov-2025.) |
| ⊢ (𝜑 → 𝐶 ∈ 𝑉) & ⊢ (𝜑 → ∅ = (Base‘𝐶)) & ⊢ (𝜑 → 𝐷 ∈ Cat) & ⊢ 𝑄 = (𝐶 FuncCat 𝐷) ⇒ ⊢ (𝜑 → 𝑄 ∈ TermCat) | ||
| Theorem | termfucterm 49523 | All functors between two terminal categories are isomorphisms. (Contributed by Zhi Wang, 17-Nov-2025.) |
| ⊢ 𝐶 = (CatCat‘𝑈) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐼 = (Iso‘𝐶) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑋 ∈ TermCat) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ TermCat) ⇒ ⊢ (𝜑 → (𝑋 Func 𝑌) = (𝑋𝐼𝑌)) | ||
| Theorem | cofuterm 49524 | Post-compose with a functor to a terminal category. (Contributed by Zhi Wang, 17-Nov-2025.) |
| ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) & ⊢ (𝜑 → 𝐺 ∈ (𝐷 Func 𝐸)) & ⊢ (𝜑 → 𝐾 ∈ (𝐶 Func 𝐸)) & ⊢ (𝜑 → 𝐸 ∈ TermCat) ⇒ ⊢ (𝜑 → (𝐺 ∘func 𝐹) = 𝐾) | ||
| Theorem | uobeqterm 49525 | Universal objects and terminal categories. (Contributed by Zhi Wang, 17-Nov-2025.) |
| ⊢ 𝐴 = (Base‘𝐷) & ⊢ 𝐵 = (Base‘𝐸) & ⊢ (𝜑 → 𝑋 ∈ 𝐴) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) & ⊢ (𝜑 → 𝐺 ∈ (𝐶 Func 𝐸)) & ⊢ (𝜑 → 𝐷 ∈ TermCat) & ⊢ (𝜑 → 𝐸 ∈ TermCat) ⇒ ⊢ (𝜑 → dom (𝐹(𝐶 UP 𝐷)𝑋) = dom (𝐺(𝐶 UP 𝐸)𝑌)) | ||
| Theorem | isinito4 49526 | The predicate "is an initial object" of a category, using universal property. (Contributed by Zhi Wang, 17-Nov-2025.) |
| ⊢ (𝜑 → 1 ∈ TermCat) & ⊢ (𝜑 → 𝑋 ∈ (Base‘ 1 )) & ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 1 )) ⇒ ⊢ (𝜑 → (𝐼 ∈ (InitO‘𝐶) ↔ 𝐼 ∈ dom (𝐹(𝐶 UP 1 )𝑋))) | ||
| Theorem | isinito4a 49527 | The predicate "is an initial object" of a category, using universal property. (Contributed by Zhi Wang, 17-Nov-2025.) |
| ⊢ (𝜑 → 1 ∈ TermCat) & ⊢ (𝜑 → 𝑋 ∈ (Base‘ 1 )) & ⊢ 𝐹 = ((1st ‘( 1 Δfunc𝐶))‘𝑋) ⇒ ⊢ (𝜑 → (𝐼 ∈ (InitO‘𝐶) ↔ 𝐼 ∈ dom (𝐹(𝐶 UP 1 )𝑋))) | ||
| Syntax | cprstc 49528 | Class function defining preordered sets as categories. |
| class ProsetToCat | ||
| Definition | df-prstc 49529 |
Definition of the function converting a preordered set to a category.
Justified by prsthinc 49443.
This definition is somewhat arbitrary. Example 3.3(4.d) of [Adamek] p. 24 demonstrates an alternate definition with pairwise disjoint hom-sets. The behavior of the function is defined entirely, up to isomorphism (thincciso 49432), by prstcnid 49532, prstchom 49541, and prstcthin 49540. Other important properties include prstcbas 49533, prstcleval 49534, prstcle 49535, prstcocval 49536, prstcoc 49537, prstchom2 49542, and prstcprs 49539. Use those instead. Note that the defining property prstchom 49541 is equivalent to prstchom2 49542 given prstcthin 49540. See thincn0eu 49410 for justification. "ProsetToCat" was taken instead of "ProsetCat" because the latter might mean the category of preordered sets (classes). However, "ProsetToCat" seems too long. (Contributed by Zhi Wang, 20-Sep-2024.) (New usage is discouraged.) |
| ⊢ ProsetToCat = (𝑘 ∈ Proset ↦ ((𝑘 sSet 〈(Hom ‘ndx), ((le‘𝑘) × {1o})〉) sSet 〈(comp‘ndx), ∅〉)) | ||
| Theorem | prstcval 49530 | Lemma for prstcnidlem 49531 and prstcthin 49540. (Contributed by Zhi Wang, 20-Sep-2024.) (New usage is discouraged.) |
| ⊢ (𝜑 → 𝐶 = (ProsetToCat‘𝐾)) & ⊢ (𝜑 → 𝐾 ∈ Proset ) ⇒ ⊢ (𝜑 → 𝐶 = ((𝐾 sSet 〈(Hom ‘ndx), ((le‘𝐾) × {1o})〉) sSet 〈(comp‘ndx), ∅〉)) | ||
| Theorem | prstcnidlem 49531 | Lemma for prstcnid 49532 and prstchomval 49538. (Contributed by Zhi Wang, 20-Sep-2024.) (New usage is discouraged.) |
| ⊢ (𝜑 → 𝐶 = (ProsetToCat‘𝐾)) & ⊢ (𝜑 → 𝐾 ∈ Proset ) & ⊢ 𝐸 = Slot (𝐸‘ndx) & ⊢ (𝐸‘ndx) ≠ (comp‘ndx) ⇒ ⊢ (𝜑 → (𝐸‘𝐶) = (𝐸‘(𝐾 sSet 〈(Hom ‘ndx), ((le‘𝐾) × {1o})〉))) | ||
| Theorem | prstcnid 49532 | Components other than Hom and comp are unchanged. (Contributed by Zhi Wang, 20-Sep-2024.) |
| ⊢ (𝜑 → 𝐶 = (ProsetToCat‘𝐾)) & ⊢ (𝜑 → 𝐾 ∈ Proset ) & ⊢ 𝐸 = Slot (𝐸‘ndx) & ⊢ (𝐸‘ndx) ≠ (comp‘ndx) & ⊢ (𝐸‘ndx) ≠ (Hom ‘ndx) ⇒ ⊢ (𝜑 → (𝐸‘𝐾) = (𝐸‘𝐶)) | ||
| Theorem | prstcbas 49533 | The base set is unchanged. (Contributed by Zhi Wang, 20-Sep-2024.) |
| ⊢ (𝜑 → 𝐶 = (ProsetToCat‘𝐾)) & ⊢ (𝜑 → 𝐾 ∈ Proset ) & ⊢ (𝜑 → 𝐵 = (Base‘𝐾)) ⇒ ⊢ (𝜑 → 𝐵 = (Base‘𝐶)) | ||
| Theorem | prstcleval 49534 | Value of the less-than-or-equal-to relation is unchanged. (Contributed by Zhi Wang, 20-Sep-2024.) (Proof shortened by AV, 12-Nov-2024.) |
| ⊢ (𝜑 → 𝐶 = (ProsetToCat‘𝐾)) & ⊢ (𝜑 → 𝐾 ∈ Proset ) & ⊢ (𝜑 → ≤ = (le‘𝐾)) ⇒ ⊢ (𝜑 → ≤ = (le‘𝐶)) | ||
| Theorem | prstcle 49535 | Value of the less-than-or-equal-to relation is unchanged. (Contributed by Zhi Wang, 20-Sep-2024.) |
| ⊢ (𝜑 → 𝐶 = (ProsetToCat‘𝐾)) & ⊢ (𝜑 → 𝐾 ∈ Proset ) & ⊢ (𝜑 → ≤ = (le‘𝐾)) ⇒ ⊢ (𝜑 → (𝑋 ≤ 𝑌 ↔ 𝑋(le‘𝐶)𝑌)) | ||
| Theorem | prstcocval 49536 | Orthocomplementation is unchanged. (Contributed by Zhi Wang, 20-Sep-2024.) (Proof shortened by AV, 12-Nov-2024.) |
| ⊢ (𝜑 → 𝐶 = (ProsetToCat‘𝐾)) & ⊢ (𝜑 → 𝐾 ∈ Proset ) & ⊢ (𝜑 → ⊥ = (oc‘𝐾)) ⇒ ⊢ (𝜑 → ⊥ = (oc‘𝐶)) | ||
| Theorem | prstcoc 49537 | Orthocomplementation is unchanged. (Contributed by Zhi Wang, 20-Sep-2024.) |
| ⊢ (𝜑 → 𝐶 = (ProsetToCat‘𝐾)) & ⊢ (𝜑 → 𝐾 ∈ Proset ) & ⊢ (𝜑 → ⊥ = (oc‘𝐾)) ⇒ ⊢ (𝜑 → ( ⊥ ‘𝑋) = ((oc‘𝐶)‘𝑋)) | ||
| Theorem | prstchomval 49538 | Hom-sets of the constructed category which depend on an arbitrary definition. (Contributed by Zhi Wang, 20-Sep-2024.) (New usage is discouraged.) |
| ⊢ (𝜑 → 𝐶 = (ProsetToCat‘𝐾)) & ⊢ (𝜑 → 𝐾 ∈ Proset ) & ⊢ (𝜑 → ≤ = (le‘𝐶)) ⇒ ⊢ (𝜑 → ( ≤ × {1o}) = (Hom ‘𝐶)) | ||
| Theorem | prstcprs 49539 | The category is a preordered set. (Contributed by Zhi Wang, 20-Sep-2024.) |
| ⊢ (𝜑 → 𝐶 = (ProsetToCat‘𝐾)) & ⊢ (𝜑 → 𝐾 ∈ Proset ) ⇒ ⊢ (𝜑 → 𝐶 ∈ Proset ) | ||
| Theorem | prstcthin 49540 | The preordered set is equipped with a thin category. (Contributed by Zhi Wang, 20-Sep-2024.) |
| ⊢ (𝜑 → 𝐶 = (ProsetToCat‘𝐾)) & ⊢ (𝜑 → 𝐾 ∈ Proset ) ⇒ ⊢ (𝜑 → 𝐶 ∈ ThinCat) | ||
| Theorem | prstchom 49541 |
Hom-sets of the constructed category are dependent on the preorder.
Note that prstchom.x and prstchom.y are redundant here due to our definition of ProsetToCat. However, this should not be assumed as it is definition-dependent. Therefore, the two hypotheses are added for explicitness. (Contributed by Zhi Wang, 20-Sep-2024.) |
| ⊢ (𝜑 → 𝐶 = (ProsetToCat‘𝐾)) & ⊢ (𝜑 → 𝐾 ∈ Proset ) & ⊢ (𝜑 → ≤ = (le‘𝐶)) & ⊢ (𝜑 → 𝐻 = (Hom ‘𝐶)) & ⊢ (𝜑 → 𝑋 ∈ (Base‘𝐶)) & ⊢ (𝜑 → 𝑌 ∈ (Base‘𝐶)) ⇒ ⊢ (𝜑 → (𝑋 ≤ 𝑌 ↔ (𝑋𝐻𝑌) ≠ ∅)) | ||
| Theorem | prstchom2 49542* |
Hom-sets of the constructed category are dependent on the preorder.
Note that prstchom.x and prstchom.y are redundant here due to our definition of ProsetToCat ( see prstchom2ALT 49543). However, this should not be assumed as it is definition-dependent. Therefore, the two hypotheses are added for explicitness. (Contributed by Zhi Wang, 21-Sep-2024.) |
| ⊢ (𝜑 → 𝐶 = (ProsetToCat‘𝐾)) & ⊢ (𝜑 → 𝐾 ∈ Proset ) & ⊢ (𝜑 → ≤ = (le‘𝐶)) & ⊢ (𝜑 → 𝐻 = (Hom ‘𝐶)) & ⊢ (𝜑 → 𝑋 ∈ (Base‘𝐶)) & ⊢ (𝜑 → 𝑌 ∈ (Base‘𝐶)) ⇒ ⊢ (𝜑 → (𝑋 ≤ 𝑌 ↔ ∃!𝑓 𝑓 ∈ (𝑋𝐻𝑌))) | ||
| Theorem | prstchom2ALT 49543* | Hom-sets of the constructed category are dependent on the preorder. This proof depends on the definition df-prstc 49529. See prstchom2 49542 for a version that does not depend on the definition. (Contributed by Zhi Wang, 20-Sep-2024.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (𝜑 → 𝐶 = (ProsetToCat‘𝐾)) & ⊢ (𝜑 → 𝐾 ∈ Proset ) & ⊢ (𝜑 → ≤ = (le‘𝐶)) & ⊢ (𝜑 → 𝐻 = (Hom ‘𝐶)) ⇒ ⊢ (𝜑 → (𝑋 ≤ 𝑌 ↔ ∃!𝑓 𝑓 ∈ (𝑋𝐻𝑌))) | ||
| Theorem | oduoppcbas 49544 | The dual of a preordered set and the opposite category have the same set of objects. (Contributed by Zhi Wang, 22-Sep-2025.) |
| ⊢ (𝜑 → 𝐶 = (ProsetToCat‘𝐾)) & ⊢ (𝜑 → 𝐾 ∈ Proset ) & ⊢ (𝜑 → 𝐷 = (ProsetToCat‘(ODual‘𝐾))) & ⊢ 𝑂 = (oppCat‘𝐶) ⇒ ⊢ (𝜑 → (Base‘𝐷) = (Base‘𝑂)) | ||
| Theorem | oduoppcciso 49545 | The dual of a preordered set and the opposite category are category-isomorphic. Example 3.6(1) of [Adamek] p. 25. (Contributed by Zhi Wang, 22-Sep-2025.) |
| ⊢ (𝜑 → 𝐶 = (ProsetToCat‘𝐾)) & ⊢ (𝜑 → 𝐾 ∈ Proset ) & ⊢ (𝜑 → 𝐷 = (ProsetToCat‘(ODual‘𝐾))) & ⊢ 𝑂 = (oppCat‘𝐶) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ (𝜑 → 𝐷 ∈ 𝑈) & ⊢ (𝜑 → 𝑂 ∈ 𝑈) ⇒ ⊢ (𝜑 → 𝐷( ≃𝑐 ‘(CatCat‘𝑈))𝑂) | ||
| Theorem | postcpos 49546 | The converted category is a poset iff the original proset is a poset. (Contributed by Zhi Wang, 26-Sep-2024.) |
| ⊢ (𝜑 → 𝐶 = (ProsetToCat‘𝐾)) & ⊢ (𝜑 → 𝐾 ∈ Proset ) ⇒ ⊢ (𝜑 → (𝐾 ∈ Poset ↔ 𝐶 ∈ Poset)) | ||
| Theorem | postcposALT 49547 | Alternate proof of postcpos 49546. (Contributed by Zhi Wang, 25-Sep-2024.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (𝜑 → 𝐶 = (ProsetToCat‘𝐾)) & ⊢ (𝜑 → 𝐾 ∈ Proset ) ⇒ ⊢ (𝜑 → (𝐾 ∈ Poset ↔ 𝐶 ∈ Poset)) | ||
| Theorem | postc 49548* | The converted category is a poset iff no distinct objects are isomorphic. (Contributed by Zhi Wang, 25-Sep-2024.) |
| ⊢ (𝜑 → 𝐶 = (ProsetToCat‘𝐾)) & ⊢ (𝜑 → 𝐾 ∈ Proset ) & ⊢ 𝐵 = (Base‘𝐶) ⇒ ⊢ (𝜑 → (𝐶 ∈ Poset ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥( ≃𝑐 ‘𝐶)𝑦 → 𝑥 = 𝑦))) | ||
| Theorem | discsntermlem 49549* | A singlegon is an element of the class of singlegons. The converse (basrestermcfolem 49550) also holds. This is trivial if 𝐵 is 𝑏 (abid 2712). (Contributed by Zhi Wang, 20-Oct-2025.) |
| ⊢ (∃𝑥 𝐵 = {𝑥} → 𝐵 ∈ {𝑏 ∣ ∃𝑥 𝑏 = {𝑥}}) | ||
| Theorem | basrestermcfolem 49550* | An element of the class of singlegons is a singlegon. The converse (discsntermlem 49549) also holds. This is trivial if 𝐵 is 𝑏 (abid 2712). (Contributed by Zhi Wang, 20-Oct-2025.) |
| ⊢ (𝐵 ∈ {𝑏 ∣ ∃𝑥 𝑏 = {𝑥}} → ∃𝑥 𝐵 = {𝑥}) | ||
| Theorem | discbas 49551 | A discrete category (a category whose only morphisms are the identity morphisms) can be constructed for any base set. (Contributed by Zhi Wang, 20-Oct-2025.) |
| ⊢ 𝐾 = {〈(Base‘ndx), 𝐵〉, 〈(le‘ndx), ( I ↾ 𝐵)〉} & ⊢ 𝐶 = (ProsetToCat‘𝐾) ⇒ ⊢ (𝐵 ∈ 𝑉 → 𝐵 = (Base‘𝐶)) | ||
| Theorem | discthin 49552 | A discrete category (a category whose only morphisms are the identity morphisms) is thin. (Contributed by Zhi Wang, 20-Oct-2025.) |
| ⊢ 𝐾 = {〈(Base‘ndx), 𝐵〉, 〈(le‘ndx), ( I ↾ 𝐵)〉} & ⊢ 𝐶 = (ProsetToCat‘𝐾) ⇒ ⊢ (𝐵 ∈ 𝑉 → 𝐶 ∈ ThinCat) | ||
| Theorem | discsnterm 49553* | A discrete category (a category whose only morphisms are the identity morphisms) with a singlegon base is terminal. Corollary of example 3.3(4)(c) of [Adamek] p. 24 and example 3.26(1) of [Adamek] p. 33. (Contributed by Zhi Wang, 20-Oct-2025.) |
| ⊢ 𝐾 = {〈(Base‘ndx), 𝐵〉, 〈(le‘ndx), ( I ↾ 𝐵)〉} & ⊢ 𝐶 = (ProsetToCat‘𝐾) ⇒ ⊢ (∃𝑥 𝐵 = {𝑥} → 𝐶 ∈ TermCat) | ||
| Theorem | basrestermcfo 49554* | The base function restricted to the class of terminal categories maps the class of terminal categories onto the class of singletons. (Contributed by Zhi Wang, 20-Oct-2025.) |
| ⊢ (Base ↾ TermCat):TermCat–onto→{𝑏 ∣ ∃𝑥 𝑏 = {𝑥}} | ||
| Theorem | termcnex 49555 | The class of all terminal categories is a proper class. Therefore both the class of all thin categories and the class of all categories are proper classes. Note that snnex 7736 is equivalent to sngl V ∉ V. (Contributed by Zhi Wang, 20-Oct-2025.) |
| ⊢ TermCat ∉ V | ||
| Syntax | cmndtc 49556 | Class function defining monoids as categories. |
| class MndToCat | ||
| Definition | df-mndtc 49557 |
Definition of the function converting a monoid to a category. Example
3.3(4.e) of [Adamek] p. 24.
The definition of the base set is arbitrary. The whole extensible structure becomes the object here (see mndtcbasval 49559), instead of just the base set, as is the case in Example 3.3(4.e) of [Adamek] p. 24. The resulting category is defined entirely, up to isomorphism, by mndtcbas 49560, mndtchom 49563, mndtcco 49564. Use those instead. See example 3.26(3) of [Adamek] p. 33 for more on isomorphism. "MndToCat" was taken instead of "MndCat" because the latter might mean the category of monoids. (Contributed by Zhi Wang, 22-Sep-2024.) (New usage is discouraged.) |
| ⊢ MndToCat = (𝑚 ∈ Mnd ↦ {〈(Base‘ndx), {𝑚}〉, 〈(Hom ‘ndx), {〈𝑚, 𝑚, (Base‘𝑚)〉}〉, 〈(comp‘ndx), {〈〈𝑚, 𝑚, 𝑚〉, (+g‘𝑚)〉}〉}) | ||
| Theorem | mndtcval 49558 | Value of the category built from a monoid. (Contributed by Zhi Wang, 22-Sep-2024.) (New usage is discouraged.) |
| ⊢ (𝜑 → 𝐶 = (MndToCat‘𝑀)) & ⊢ (𝜑 → 𝑀 ∈ Mnd) ⇒ ⊢ (𝜑 → 𝐶 = {〈(Base‘ndx), {𝑀}〉, 〈(Hom ‘ndx), {〈𝑀, 𝑀, (Base‘𝑀)〉}〉, 〈(comp‘ndx), {〈〈𝑀, 𝑀, 𝑀〉, (+g‘𝑀)〉}〉}) | ||
| Theorem | mndtcbasval 49559 | The base set of the category built from a monoid. (Contributed by Zhi Wang, 22-Sep-2024.) (New usage is discouraged.) |
| ⊢ (𝜑 → 𝐶 = (MndToCat‘𝑀)) & ⊢ (𝜑 → 𝑀 ∈ Mnd) & ⊢ (𝜑 → 𝐵 = (Base‘𝐶)) ⇒ ⊢ (𝜑 → 𝐵 = {𝑀}) | ||
| Theorem | mndtcbas 49560* | The category built from a monoid contains precisely one object. (Contributed by Zhi Wang, 22-Sep-2024.) |
| ⊢ (𝜑 → 𝐶 = (MndToCat‘𝑀)) & ⊢ (𝜑 → 𝑀 ∈ Mnd) & ⊢ (𝜑 → 𝐵 = (Base‘𝐶)) ⇒ ⊢ (𝜑 → ∃!𝑥 𝑥 ∈ 𝐵) | ||
| Theorem | mndtcob 49561 | Lemma for mndtchom 49563 and mndtcco 49564. (Contributed by Zhi Wang, 22-Sep-2024.) (New usage is discouraged.) |
| ⊢ (𝜑 → 𝐶 = (MndToCat‘𝑀)) & ⊢ (𝜑 → 𝑀 ∈ Mnd) & ⊢ (𝜑 → 𝐵 = (Base‘𝐶)) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → 𝑋 = 𝑀) | ||
| Theorem | mndtcbas2 49562 | Two objects in a category built from a monoid are identical. (Contributed by Zhi Wang, 24-Sep-2024.) |
| ⊢ (𝜑 → 𝐶 = (MndToCat‘𝑀)) & ⊢ (𝜑 → 𝑀 ∈ Mnd) & ⊢ (𝜑 → 𝐵 = (Base‘𝐶)) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → 𝑋 = 𝑌) | ||
| Theorem | mndtchom 49563 | The only hom-set of the category built from a monoid is the base set of the monoid. (Contributed by Zhi Wang, 22-Sep-2024.) (Proof shortened by Zhi Wang, 22-Oct-2025.) |
| ⊢ (𝜑 → 𝐶 = (MndToCat‘𝑀)) & ⊢ (𝜑 → 𝑀 ∈ Mnd) & ⊢ (𝜑 → 𝐵 = (Base‘𝐶)) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝐻 = (Hom ‘𝐶)) ⇒ ⊢ (𝜑 → (𝑋𝐻𝑌) = (Base‘𝑀)) | ||
| Theorem | mndtcco 49564 | The composition of the category built from a monoid is the monoid operation. (Contributed by Zhi Wang, 22-Sep-2024.) |
| ⊢ (𝜑 → 𝐶 = (MndToCat‘𝑀)) & ⊢ (𝜑 → 𝑀 ∈ Mnd) & ⊢ (𝜑 → 𝐵 = (Base‘𝐶)) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) & ⊢ (𝜑 → · = (comp‘𝐶)) ⇒ ⊢ (𝜑 → (〈𝑋, 𝑌〉 · 𝑍) = (+g‘𝑀)) | ||
| Theorem | mndtcco2 49565 | The composition of the category built from a monoid is the monoid operation. (Contributed by Zhi Wang, 22-Sep-2024.) |
| ⊢ (𝜑 → 𝐶 = (MndToCat‘𝑀)) & ⊢ (𝜑 → 𝑀 ∈ Mnd) & ⊢ (𝜑 → 𝐵 = (Base‘𝐶)) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) & ⊢ (𝜑 → · = (comp‘𝐶)) & ⊢ (𝜑 → ⚬ = (〈𝑋, 𝑌〉 · 𝑍)) ⇒ ⊢ (𝜑 → (𝐺 ⚬ 𝐹) = (𝐺(+g‘𝑀)𝐹)) | ||
| Theorem | mndtccatid 49566* | Lemma for mndtccat 49567 and mndtcid 49568. (Contributed by Zhi Wang, 22-Sep-2024.) |
| ⊢ (𝜑 → 𝐶 = (MndToCat‘𝑀)) & ⊢ (𝜑 → 𝑀 ∈ Mnd) ⇒ ⊢ (𝜑 → (𝐶 ∈ Cat ∧ (Id‘𝐶) = (𝑦 ∈ (Base‘𝐶) ↦ (0g‘𝑀)))) | ||
| Theorem | mndtccat 49567 | The function value is a category. (Contributed by Zhi Wang, 22-Sep-2024.) |
| ⊢ (𝜑 → 𝐶 = (MndToCat‘𝑀)) & ⊢ (𝜑 → 𝑀 ∈ Mnd) ⇒ ⊢ (𝜑 → 𝐶 ∈ Cat) | ||
| Theorem | mndtcid 49568 | The identity morphism, or identity arrow, of the category built from a monoid is the identity element of the monoid. (Contributed by Zhi Wang, 22-Sep-2024.) |
| ⊢ (𝜑 → 𝐶 = (MndToCat‘𝑀)) & ⊢ (𝜑 → 𝑀 ∈ Mnd) & ⊢ (𝜑 → 𝐵 = (Base‘𝐶)) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 1 = (Id‘𝐶)) ⇒ ⊢ (𝜑 → ( 1 ‘𝑋) = (0g‘𝑀)) | ||
| Theorem | oppgoppchom 49569 | The converted opposite monoid has the same hom-set as that of the opposite category. Example 3.6(2) of [Adamek] p. 25. (Contributed by Zhi Wang, 21-Sep-2025.) |
| ⊢ (𝜑 → 𝐶 = (MndToCat‘𝑀)) & ⊢ (𝜑 → 𝑀 ∈ Mnd) & ⊢ (𝜑 → 𝐷 = (MndToCat‘(oppg‘𝑀))) & ⊢ 𝑂 = (oppCat‘𝐶) & ⊢ (𝜑 → 𝑋 ∈ (Base‘𝐷)) & ⊢ (𝜑 → 𝑌 ∈ (Base‘𝑂)) & ⊢ (𝜑 → 𝐻 = (Hom ‘𝐷)) & ⊢ (𝜑 → 𝐽 = (Hom ‘𝑂)) ⇒ ⊢ (𝜑 → (𝑋𝐻𝑋) = (𝑌𝐽𝑌)) | ||
| Theorem | oppgoppcco 49570 | The converted opposite monoid has the same composition as that of the opposite category. Example 3.6(2) of [Adamek] p. 25. (Contributed by Zhi Wang, 22-Sep-2025.) |
| ⊢ (𝜑 → 𝐶 = (MndToCat‘𝑀)) & ⊢ (𝜑 → 𝑀 ∈ Mnd) & ⊢ (𝜑 → 𝐷 = (MndToCat‘(oppg‘𝑀))) & ⊢ 𝑂 = (oppCat‘𝐶) & ⊢ (𝜑 → 𝑋 ∈ (Base‘𝐷)) & ⊢ (𝜑 → 𝑌 ∈ (Base‘𝑂)) & ⊢ (𝜑 → · = (comp‘𝐷)) & ⊢ (𝜑 → ∙ = (comp‘𝑂)) ⇒ ⊢ (𝜑 → (〈𝑋, 𝑋〉 · 𝑋) = (〈𝑌, 𝑌〉 ∙ 𝑌)) | ||
| Theorem | oppgoppcid 49571 | The converted opposite monoid has the same identity morphism as that of the opposite category. Example 3.6(2) of [Adamek] p. 25. (Contributed by Zhi Wang, 22-Sep-2025.) |
| ⊢ (𝜑 → 𝐶 = (MndToCat‘𝑀)) & ⊢ (𝜑 → 𝑀 ∈ Mnd) & ⊢ (𝜑 → 𝐷 = (MndToCat‘(oppg‘𝑀))) & ⊢ 𝑂 = (oppCat‘𝐶) & ⊢ (𝜑 → 𝑋 ∈ (Base‘𝐷)) & ⊢ (𝜑 → 𝑌 ∈ (Base‘𝑂)) ⇒ ⊢ (𝜑 → ((Id‘𝐷)‘𝑋) = ((Id‘𝑂)‘𝑌)) | ||
| Theorem | grptcmon 49572 | All morphisms in a category converted from a group are monomorphisms. (Contributed by Zhi Wang, 23-Sep-2024.) |
| ⊢ (𝜑 → 𝐶 = (MndToCat‘𝐺)) & ⊢ (𝜑 → 𝐺 ∈ Grp) & ⊢ (𝜑 → 𝐵 = (Base‘𝐶)) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝐻 = (Hom ‘𝐶)) & ⊢ (𝜑 → 𝑀 = (Mono‘𝐶)) ⇒ ⊢ (𝜑 → (𝑋𝑀𝑌) = (𝑋𝐻𝑌)) | ||
| Theorem | grptcepi 49573 | All morphisms in a category converted from a group are epimorphisms. (Contributed by Zhi Wang, 23-Sep-2024.) |
| ⊢ (𝜑 → 𝐶 = (MndToCat‘𝐺)) & ⊢ (𝜑 → 𝐺 ∈ Grp) & ⊢ (𝜑 → 𝐵 = (Base‘𝐶)) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝐻 = (Hom ‘𝐶)) & ⊢ (𝜑 → 𝐸 = (Epi‘𝐶)) ⇒ ⊢ (𝜑 → (𝑋𝐸𝑌) = (𝑋𝐻𝑌)) | ||
| Theorem | 2arwcatlem1 49574 | Lemma for 2arwcat 49579. (Contributed by Zhi Wang, 5-Nov-2025.) |
| ⊢ (𝑋𝐻𝑋) = { 0 , 1 } ⇒ ⊢ ((((𝑥 = 𝑋 ∧ 𝑦 = 𝑋) ∧ (𝑧 = 𝑋 ∧ 𝑤 = 𝑋)) ∧ ((𝑓 = 0 ∨ 𝑓 = 1 ) ∧ (𝑔 = 0 ∨ 𝑔 = 1 ) ∧ (𝑘 = 0 ∨ 𝑘 = 1 ))) ↔ ((𝑥 ∈ {𝑋} ∧ 𝑦 ∈ {𝑋}) ∧ (𝑧 ∈ {𝑋} ∧ 𝑤 ∈ {𝑋}) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧) ∧ 𝑘 ∈ (𝑧𝐻𝑤)))) | ||
| Theorem | 2arwcatlem2 49575 | Lemma for 2arwcat 49579. (Contributed by Zhi Wang, 5-Nov-2025.) |
| ⊢ (𝜑 → 𝐴 = 𝑋) & ⊢ (𝜑 → 𝐵 = 𝑌) & ⊢ (𝜑 → 𝐶 = 𝑍) & ⊢ (𝜑 → (𝐹 = 0 ∨ 𝐹 = 1 )) & ⊢ (𝜑 → ( 1 (〈𝑋, 𝑌〉 · 𝑍) 1 ) = 1 ) & ⊢ (𝜑 → ( 1 (〈𝑋, 𝑌〉 · 𝑍) 0 ) = 0 ) ⇒ ⊢ (𝜑 → ( 1 (〈𝐴, 𝐵〉 · 𝐶)𝐹) = 𝐹) | ||
| Theorem | 2arwcatlem3 49576 | Lemma for 2arwcat 49579. (Contributed by Zhi Wang, 5-Nov-2025.) |
| ⊢ (𝜑 → 𝐴 = 𝑋) & ⊢ (𝜑 → 𝐵 = 𝑌) & ⊢ (𝜑 → 𝐶 = 𝑍) & ⊢ (𝜑 → (𝐹 = 0 ∨ 𝐹 = 1 )) & ⊢ (𝜑 → ( 1 (〈𝑋, 𝑌〉 · 𝑍) 1 ) = 1 ) & ⊢ (𝜑 → ( 0 (〈𝑋, 𝑌〉 · 𝑍) 1 ) = 0 ) ⇒ ⊢ (𝜑 → (𝐹(〈𝐴, 𝐵〉 · 𝐶) 1 ) = 𝐹) | ||
| Theorem | 2arwcatlem4 49577 | Lemma for 2arwcat 49579. (Contributed by Zhi Wang, 5-Nov-2025.) |
| ⊢ (𝜑 → 𝐴 = 𝑋) & ⊢ (𝜑 → 𝐵 = 𝑌) & ⊢ (𝜑 → 𝐶 = 𝑍) & ⊢ (𝜑 → (𝐹 = 0 ∨ 𝐹 = 1 )) & ⊢ (𝜑 → ( 1 (〈𝑋, 𝑌〉 · 𝑍) 1 ) = 1 ) & ⊢ (𝜑 → ( 0 (〈𝑋, 𝑌〉 · 𝑍) 1 ) = 0 ) & ⊢ (𝜑 → ( 1 (〈𝑋, 𝑌〉 · 𝑍) 0 ) = 0 ) & ⊢ (𝜑 → ( 0 (〈𝑋, 𝑌〉 · 𝑍) 0 ) ∈ { 0 , 1 }) & ⊢ (𝜑 → (𝐺 = 0 ∨ 𝐺 = 1 )) ⇒ ⊢ (𝜑 → (𝐺(〈𝐴, 𝐵〉 · 𝐶)𝐹) ∈ { 0 , 1 }) | ||
| Theorem | 2arwcatlem5 49578 | Lemma for 2arwcat 49579. (Contributed by Zhi Wang, 5-Nov-2025.) |
| ⊢ (𝜑 → ( 1 · 0 ) = 0 ) & ⊢ (𝜑 → ( 0 · 1 ) = 0 ) & ⊢ (𝜑 → ( 0 · 0 ) ∈ { 0 , 1 }) ⇒ ⊢ (𝜑 → (( 0 · 0 ) · 0 ) = ( 0 · ( 0 · 0 ))) | ||
| Theorem | 2arwcat 49579* | The condition for a structure with at most one object and at most two morphisms being a category. "2arwcat.2" to "2arwcat.5" are also necessary conditions if 𝑋, 0, and 1 are all sets, due to catlid 17650, catrid 17651, and catcocl 17652. (Contributed by Zhi Wang, 5-Nov-2025.) |
| ⊢ (𝜑 → {𝑋} = (Base‘𝐶)) & ⊢ (𝜑 → 𝐻 = (Hom ‘𝐶)) & ⊢ (𝜑 → · = (comp‘𝐶)) & ⊢ (𝑋𝐻𝑋) = { 0 , 1 } & ⊢ (𝜑 → ( 1 (〈𝑋, 𝑋〉 · 𝑋) 1 ) = 1 ) & ⊢ (𝜑 → ( 1 (〈𝑋, 𝑋〉 · 𝑋) 0 ) = 0 ) & ⊢ (𝜑 → ( 0 (〈𝑋, 𝑋〉 · 𝑋) 1 ) = 0 ) & ⊢ (𝜑 → ( 0 (〈𝑋, 𝑋〉 · 𝑋) 0 ) ∈ { 0 , 1 }) ⇒ ⊢ (𝜑 → (𝐶 ∈ Cat ∧ (Id‘𝐶) = (𝑦 ∈ {𝑋} ↦ 1 ))) | ||
| Theorem | incat 49580* | Constructing a category with at most one object and at most two morphisms. If 𝑋 is a set then 𝐶 is the category 𝐴 in Exercise 3G of [Adamek] p. 45. (Contributed by Zhi Wang, 5-Nov-2025.) |
| ⊢ 𝐶 = {〈(Base‘ndx), {𝑋}〉, 〈(Hom ‘ndx), {〈𝑋, 𝑋, 𝐻〉}〉, 〈(comp‘ndx), {〈〈𝑋, 𝑋〉, 𝑋, · 〉}〉} & ⊢ 𝐻 = {𝐹, 𝐺} & ⊢ · = (𝑓 ∈ 𝐻, 𝑔 ∈ 𝐻 ↦ (𝑓 ∩ 𝑔)) ⇒ ⊢ ((𝐹 ⊆ 𝐺 ∧ 𝐺 ∈ 𝑉) → (𝐶 ∈ Cat ∧ (Id‘𝐶) = (𝑦 ∈ {𝑋} ↦ 𝐺))) | ||
| Theorem | setc1onsubc 49581* | Construct a category with one object and two morphisms and prove that category (SetCat‘1o) satisfies all conditions for a subcategory but the compatibility of identity morphisms, showing the necessity of the latter condition in defining a subcategory. Exercise 4A of [Adamek] p. 58. (Contributed by Zhi Wang, 6-Nov-2025.) |
| ⊢ 𝐶 = {〈(Base‘ndx), {∅}〉, 〈(Hom ‘ndx), {〈∅, ∅, 2o〉}〉, 〈(comp‘ndx), {〈〈∅, ∅〉, ∅, · 〉}〉} & ⊢ · = (𝑓 ∈ 2o, 𝑔 ∈ 2o ↦ (𝑓 ∩ 𝑔)) & ⊢ 𝐸 = (SetCat‘1o) & ⊢ 𝐽 = (Homf ‘𝐸) & ⊢ 𝑆 = 1o & ⊢ 𝐻 = (Homf ‘𝐶) & ⊢ 1 = (Id‘𝐶) & ⊢ 𝐷 = (𝐶 ↾cat 𝐽) ⇒ ⊢ (𝐶 ∈ Cat ∧ 𝐽 Fn (𝑆 × 𝑆) ∧ (𝐽 ⊆cat 𝐻 ∧ ¬ ∀𝑥 ∈ 𝑆 ( 1 ‘𝑥) ∈ (𝑥𝐽𝑥) ∧ 𝐷 ∈ Cat)) | ||
| Theorem | cnelsubclem 49582* | Lemma for cnelsubc 49583. (Contributed by Zhi Wang, 6-Nov-2025.) |
| ⊢ 𝐽 ∈ V & ⊢ 𝑆 ∈ V & ⊢ (𝐶 ∈ Cat ∧ 𝐽 Fn (𝑆 × 𝑆) ∧ (𝐽 ⊆cat (Homf ‘𝐶) ∧ ¬ ∀𝑥 ∈ 𝑆 ((Id‘𝐶)‘𝑥) ∈ (𝑥𝐽𝑥) ∧ (𝐶 ↾cat 𝐽) ∈ Cat)) ⇒ ⊢ ∃𝑐 ∈ Cat ∃𝑗∃𝑠(𝑗 Fn (𝑠 × 𝑠) ∧ (𝑗 ⊆cat (Homf ‘𝑐) ∧ ¬ ∀𝑥 ∈ 𝑠 ((Id‘𝑐)‘𝑥) ∈ (𝑥𝑗𝑥) ∧ (𝑐 ↾cat 𝑗) ∈ Cat)) | ||
| Theorem | cnelsubc 49583* | Remark 4.2(2) of [Adamek] p. 48. There exists a category satisfying all conditions for a subcategory but the compatibility of identity morphisms. Therefore such condition in df-subc 17780 is necessary. A stronger statement than nelsubc3 49050. (Contributed by Zhi Wang, 6-Nov-2025.) |
| ⊢ ∃𝑐 ∈ Cat ∃𝑗∃𝑠(𝑗 Fn (𝑠 × 𝑠) ∧ (𝑗 ⊆cat (Homf ‘𝑐) ∧ ¬ ∀𝑥 ∈ 𝑠 ((Id‘𝑐)‘𝑥) ∈ (𝑥𝑗𝑥) ∧ (𝑐 ↾cat 𝑗) ∈ Cat)) | ||
| Syntax | clan 49584 | Class function defining the (local) left Kan extension. |
| class Lan | ||
| Syntax | cran 49585 | Class function defining the (local) right Kan extension. |
| class Ran | ||
| Definition | df-lan 49586* |
Definition of the (local) left Kan extension. Given a functor
𝐹:𝐶⟶𝐷 and a functor 𝑋:𝐶⟶𝐸, the set
(𝐹(〈𝐶, 𝐷〉 Lan 𝐸)𝑋) consists of left Kan extensions of
𝑋 along 𝐹, which are universal pairs from 𝑋 to the
pre-composition functor given by 𝐹 (lanval2 49606). See also
§
3 of Chapter X in p. 240 of Mac Lane, Saunders,
Categories for the Working Mathematician, 2nd Edition, Springer
Science+Business Media, New York, (1998) [QA169.M33 1998]; available at
https://math.mit.edu/~hrm/palestine/maclane-categories.pdf 49606 (retrieved
3 Nov 2025).
A left Kan extension is in the form of 〈𝐿, 𝐴〉 where the first component is a functor 𝐿:𝐷⟶𝐸 (lanrcl4 49613) and the second component is a natural transformation 𝐴:𝑋⟶𝐿𝐹 (lanrcl5 49614) where 𝐿𝐹 is the composed functor. Intuitively, the first component 𝐿 can be regarded as the result of an "inverse" of pre-composition; the source category of 𝑋:𝐶⟶𝐸 is "extended" along 𝐹:𝐶⟶𝐷. The left Kan extension is a generalization of many categorical concepts such as colimit. In § 7 of Chapter X of Categories for the Working Mathematician, it is concluded that "the notion of Kan extensions subsumes all the other fundamental concepts of category theory". This definition was chosen over the other version in the commented out section due to its better reverse closure property. See df-ran 49587 for the dual concept. (Contributed by Zhi Wang, 3-Nov-2025.) |
| ⊢ Lan = (𝑝 ∈ (V × V), 𝑒 ∈ V ↦ ⦋(1st ‘𝑝) / 𝑐⦌⦋(2nd ‘𝑝) / 𝑑⦌(𝑓 ∈ (𝑐 Func 𝑑), 𝑥 ∈ (𝑐 Func 𝑒) ↦ ((〈𝑑, 𝑒〉 −∘F 𝑓)((𝑑 FuncCat 𝑒) UP (𝑐 FuncCat 𝑒))𝑥))) | ||
| Definition | df-ran 49587* |
Definition of the (local) right Kan extension. Given a functor
𝐹:𝐶⟶𝐷 and a functor 𝑋:𝐶⟶𝐸, the set
(𝐹(〈𝐶, 𝐷〉 Ran 𝐸)𝑋) consists of right Kan extensions of
𝑋 along 𝐹, which are universal pairs from the pre-composition
functor given by 𝐹 to 𝑋 (ranval2 49609). The definition in
§
3 of Chapter X in p. 236 of Mac Lane, Saunders,
Categories for the Working Mathematician, 2nd Edition, Springer
Science+Business Media, New York, (1998) [QA169.M33 1998]; available at
https://math.mit.edu/~hrm/palestine/maclane-categories.pdf 49609 (retrieved
3 Nov 2025).
A right Kan extension is in the form of 〈𝐿, 𝐴〉 where the first component is a functor 𝐿:𝐷⟶𝐸 (ranrcl4 49618) and the second component is a natural transformation 𝐴:𝐿𝐹⟶𝑋 (ranrcl5 49619) where 𝐿𝐹 is the composed functor. Intuitively, the first component 𝐿 can be regarded as the result of an "inverse" of pre-composition; the source category of 𝑋:𝐶⟶𝐸 is "extended" along 𝐹:𝐶⟶𝐷. The right Kan extension is a generalization of many categorical concepts such as limit. In § 7 of Chapter X of Categories for the Working Mathematician, it is concluded that "the notion of Kan extensions subsumes all the other fundamental concepts of category theory". This definition was chosen over the other version in the commented out section due to its better reverse closure property. See df-lan 49586 for the dual concept. (Contributed by Zhi Wang, 4-Nov-2025.) |
| ⊢ Ran = (𝑝 ∈ (V × V), 𝑒 ∈ V ↦ ⦋(1st ‘𝑝) / 𝑐⦌⦋(2nd ‘𝑝) / 𝑑⦌(𝑓 ∈ (𝑐 Func 𝑑), 𝑥 ∈ (𝑐 Func 𝑒) ↦ (( oppFunc ‘(〈𝑑, 𝑒〉 −∘F 𝑓))((oppCat‘(𝑑 FuncCat 𝑒)) UP (oppCat‘(𝑐 FuncCat 𝑒)))𝑥))) | ||
| Theorem | lanfn 49588 | Lan is a function on ((V × V) × V). (Contributed by Zhi Wang, 3-Nov-2025.) |
| ⊢ Lan Fn ((V × V) × V) | ||
| Theorem | ranfn 49589 | Ran is a function on ((V × V) × V). (Contributed by Zhi Wang, 4-Nov-2025.) |
| ⊢ Ran Fn ((V × V) × V) | ||
| Theorem | reldmlan 49590 | The domain of Lan is a relation. (Contributed by Zhi Wang, 3-Nov-2025.) |
| ⊢ Rel dom Lan | ||
| Theorem | reldmran 49591 | The domain of Ran is a relation. (Contributed by Zhi Wang, 4-Nov-2025.) |
| ⊢ Rel dom Ran | ||
| Theorem | lanfval 49592* | Value of the function generating the set of left Kan extensions. (Contributed by Zhi Wang, 3-Nov-2025.) |
| ⊢ 𝑅 = (𝐷 FuncCat 𝐸) & ⊢ 𝑆 = (𝐶 FuncCat 𝐸) & ⊢ (𝜑 → 𝐶 ∈ 𝑈) & ⊢ (𝜑 → 𝐷 ∈ 𝑉) & ⊢ (𝜑 → 𝐸 ∈ 𝑊) ⇒ ⊢ (𝜑 → (〈𝐶, 𝐷〉 Lan 𝐸) = (𝑓 ∈ (𝐶 Func 𝐷), 𝑥 ∈ (𝐶 Func 𝐸) ↦ ((〈𝐷, 𝐸〉 −∘F 𝑓)(𝑅 UP 𝑆)𝑥))) | ||
| Theorem | ranfval 49593* | Value of the function generating the set of right Kan extensions. (Contributed by Zhi Wang, 4-Nov-2025.) |
| ⊢ 𝑅 = (𝐷 FuncCat 𝐸) & ⊢ 𝑆 = (𝐶 FuncCat 𝐸) & ⊢ (𝜑 → 𝐶 ∈ 𝑈) & ⊢ (𝜑 → 𝐷 ∈ 𝑉) & ⊢ (𝜑 → 𝐸 ∈ 𝑊) & ⊢ 𝑂 = (oppCat‘𝑅) & ⊢ 𝑃 = (oppCat‘𝑆) ⇒ ⊢ (𝜑 → (〈𝐶, 𝐷〉 Ran 𝐸) = (𝑓 ∈ (𝐶 Func 𝐷), 𝑥 ∈ (𝐶 Func 𝐸) ↦ (( oppFunc ‘(〈𝐷, 𝐸〉 −∘F 𝑓))(𝑂 UP 𝑃)𝑥))) | ||
| Theorem | lanpropd 49594 | If the categories have the same set of objects, morphisms, and compositions, then they have the same left Kan extensions. (Contributed by Zhi Wang, 21-Nov-2025.) |
| ⊢ (𝜑 → (Homf ‘𝐴) = (Homf ‘𝐵)) & ⊢ (𝜑 → (compf‘𝐴) = (compf‘𝐵)) & ⊢ (𝜑 → (Homf ‘𝐶) = (Homf ‘𝐷)) & ⊢ (𝜑 → (compf‘𝐶) = (compf‘𝐷)) & ⊢ (𝜑 → (Homf ‘𝐸) = (Homf ‘𝐹)) & ⊢ (𝜑 → (compf‘𝐸) = (compf‘𝐹)) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → 𝐶 ∈ 𝑉) & ⊢ (𝜑 → 𝐷 ∈ 𝑉) & ⊢ (𝜑 → 𝐸 ∈ 𝑉) & ⊢ (𝜑 → 𝐹 ∈ 𝑉) ⇒ ⊢ (𝜑 → (〈𝐴, 𝐶〉 Lan 𝐸) = (〈𝐵, 𝐷〉 Lan 𝐹)) | ||
| Theorem | ranpropd 49595 | If the categories have the same set of objects, morphisms, and compositions, then they have the same right Kan extensions. (Contributed by Zhi Wang, 21-Nov-2025.) |
| ⊢ (𝜑 → (Homf ‘𝐴) = (Homf ‘𝐵)) & ⊢ (𝜑 → (compf‘𝐴) = (compf‘𝐵)) & ⊢ (𝜑 → (Homf ‘𝐶) = (Homf ‘𝐷)) & ⊢ (𝜑 → (compf‘𝐶) = (compf‘𝐷)) & ⊢ (𝜑 → (Homf ‘𝐸) = (Homf ‘𝐹)) & ⊢ (𝜑 → (compf‘𝐸) = (compf‘𝐹)) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → 𝐶 ∈ 𝑉) & ⊢ (𝜑 → 𝐷 ∈ 𝑉) & ⊢ (𝜑 → 𝐸 ∈ 𝑉) & ⊢ (𝜑 → 𝐹 ∈ 𝑉) ⇒ ⊢ (𝜑 → (〈𝐴, 𝐶〉 Ran 𝐸) = (〈𝐵, 𝐷〉 Ran 𝐹)) | ||
| Theorem | reldmlan2 49596 | The domain of (𝑃 Lan 𝐸) is a relation. (Contributed by Zhi Wang, 3-Nov-2025.) |
| ⊢ Rel dom (𝑃 Lan 𝐸) | ||
| Theorem | reldmran2 49597 | The domain of (𝑃 Ran 𝐸) is a relation. (Contributed by Zhi Wang, 4-Nov-2025.) |
| ⊢ Rel dom (𝑃 Ran 𝐸) | ||
| Theorem | lanval 49598 | Value of the set of left Kan extensions. (Contributed by Zhi Wang, 3-Nov-2025.) |
| ⊢ 𝑅 = (𝐷 FuncCat 𝐸) & ⊢ 𝑆 = (𝐶 FuncCat 𝐸) & ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) & ⊢ (𝜑 → 𝑋 ∈ (𝐶 Func 𝐸)) & ⊢ (𝜑 → (〈𝐷, 𝐸〉 −∘F 𝐹) = 𝐾) ⇒ ⊢ (𝜑 → (𝐹(〈𝐶, 𝐷〉 Lan 𝐸)𝑋) = (𝐾(𝑅 UP 𝑆)𝑋)) | ||
| Theorem | ranval 49599 | Value of the set of right Kan extensions. (Contributed by Zhi Wang, 4-Nov-2025.) |
| ⊢ 𝑅 = (𝐷 FuncCat 𝐸) & ⊢ 𝑆 = (𝐶 FuncCat 𝐸) & ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) & ⊢ (𝜑 → 𝑋 ∈ (𝐶 Func 𝐸)) & ⊢ (𝜑 → (〈𝐷, 𝐸〉 −∘F 𝐹) = 〈𝐽, 𝐾〉) & ⊢ 𝑂 = (oppCat‘𝑅) & ⊢ 𝑃 = (oppCat‘𝑆) ⇒ ⊢ (𝜑 → (𝐹(〈𝐶, 𝐷〉 Ran 𝐸)𝑋) = (〈𝐽, tpos 𝐾〉(𝑂 UP 𝑃)𝑋)) | ||
| Theorem | lanrcl 49600 | Reverse closure for left Kan extensions. (Contributed by Zhi Wang, 3-Nov-2025.) |
| ⊢ (𝐿 ∈ (𝐹(〈𝐶, 𝐷〉 Lan 𝐸)𝑋) → (𝐹 ∈ (𝐶 Func 𝐷) ∧ 𝑋 ∈ (𝐶 Func 𝐸))) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |