![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ist1 | Structured version Visualization version GIF version |
Description: The predicate "is a T1 space". (Contributed by FL, 18-Jun-2007.) |
Ref | Expression |
---|---|
ist0.1 | β’ π = βͺ π½ |
Ref | Expression |
---|---|
ist1 | β’ (π½ β Fre β (π½ β Top β§ βπ β π {π} β (Clsdβπ½))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unieq 4920 | . . . 4 β’ (π₯ = π½ β βͺ π₯ = βͺ π½) | |
2 | ist0.1 | . . . 4 β’ π = βͺ π½ | |
3 | 1, 2 | eqtr4di 2791 | . . 3 β’ (π₯ = π½ β βͺ π₯ = π) |
4 | fveq2 6892 | . . . 4 β’ (π₯ = π½ β (Clsdβπ₯) = (Clsdβπ½)) | |
5 | 4 | eleq2d 2820 | . . 3 β’ (π₯ = π½ β ({π} β (Clsdβπ₯) β {π} β (Clsdβπ½))) |
6 | 3, 5 | raleqbidv 3343 | . 2 β’ (π₯ = π½ β (βπ β βͺ π₯{π} β (Clsdβπ₯) β βπ β π {π} β (Clsdβπ½))) |
7 | df-t1 22818 | . 2 β’ Fre = {π₯ β Top β£ βπ β βͺ π₯{π} β (Clsdβπ₯)} | |
8 | 6, 7 | elrab2 3687 | 1 β’ (π½ β Fre β (π½ β Top β§ βπ β π {π} β (Clsdβπ½))) |
Colors of variables: wff setvar class |
Syntax hints: β wb 205 β§ wa 397 = wceq 1542 β wcel 2107 βwral 3062 {csn 4629 βͺ cuni 4909 βcfv 6544 Topctop 22395 Clsdccld 22520 Frect1 22811 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-ral 3063 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-iota 6496 df-fv 6552 df-t1 22818 |
This theorem is referenced by: t1sncld 22830 t1ficld 22831 t1top 22834 ist1-2 22851 cnt1 22854 ordtt1 22883 qtopt1 32815 zarmxt1 32860 onint1 35334 |
Copyright terms: Public domain | W3C validator |