![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ist1 | Structured version Visualization version GIF version |
Description: The predicate "is a T1 space". (Contributed by FL, 18-Jun-2007.) |
Ref | Expression |
---|---|
ist0.1 | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
ist1 | ⊢ (𝐽 ∈ Fre ↔ (𝐽 ∈ Top ∧ ∀𝑎 ∈ 𝑋 {𝑎} ∈ (Clsd‘𝐽))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unieq 4942 | . . . 4 ⊢ (𝑥 = 𝐽 → ∪ 𝑥 = ∪ 𝐽) | |
2 | ist0.1 | . . . 4 ⊢ 𝑋 = ∪ 𝐽 | |
3 | 1, 2 | eqtr4di 2798 | . . 3 ⊢ (𝑥 = 𝐽 → ∪ 𝑥 = 𝑋) |
4 | fveq2 6920 | . . . 4 ⊢ (𝑥 = 𝐽 → (Clsd‘𝑥) = (Clsd‘𝐽)) | |
5 | 4 | eleq2d 2830 | . . 3 ⊢ (𝑥 = 𝐽 → ({𝑎} ∈ (Clsd‘𝑥) ↔ {𝑎} ∈ (Clsd‘𝐽))) |
6 | 3, 5 | raleqbidv 3354 | . 2 ⊢ (𝑥 = 𝐽 → (∀𝑎 ∈ ∪ 𝑥{𝑎} ∈ (Clsd‘𝑥) ↔ ∀𝑎 ∈ 𝑋 {𝑎} ∈ (Clsd‘𝐽))) |
7 | df-t1 23343 | . 2 ⊢ Fre = {𝑥 ∈ Top ∣ ∀𝑎 ∈ ∪ 𝑥{𝑎} ∈ (Clsd‘𝑥)} | |
8 | 6, 7 | elrab2 3711 | 1 ⊢ (𝐽 ∈ Fre ↔ (𝐽 ∈ Top ∧ ∀𝑎 ∈ 𝑋 {𝑎} ∈ (Clsd‘𝐽))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∀wral 3067 {csn 4648 ∪ cuni 4931 ‘cfv 6573 Topctop 22920 Clsdccld 23045 Frect1 23336 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-iota 6525 df-fv 6581 df-t1 23343 |
This theorem is referenced by: t1sncld 23355 t1ficld 23356 t1top 23359 ist1-2 23376 cnt1 23379 ordtt1 23408 qtopt1 33781 zarmxt1 33826 onint1 36415 |
Copyright terms: Public domain | W3C validator |