| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ist1 | Structured version Visualization version GIF version | ||
| Description: The predicate "is a T1 space". (Contributed by FL, 18-Jun-2007.) |
| Ref | Expression |
|---|---|
| ist0.1 | ⊢ 𝑋 = ∪ 𝐽 |
| Ref | Expression |
|---|---|
| ist1 | ⊢ (𝐽 ∈ Fre ↔ (𝐽 ∈ Top ∧ ∀𝑎 ∈ 𝑋 {𝑎} ∈ (Clsd‘𝐽))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unieq 4872 | . . . 4 ⊢ (𝑥 = 𝐽 → ∪ 𝑥 = ∪ 𝐽) | |
| 2 | ist0.1 | . . . 4 ⊢ 𝑋 = ∪ 𝐽 | |
| 3 | 1, 2 | eqtr4di 2782 | . . 3 ⊢ (𝑥 = 𝐽 → ∪ 𝑥 = 𝑋) |
| 4 | fveq2 6826 | . . . 4 ⊢ (𝑥 = 𝐽 → (Clsd‘𝑥) = (Clsd‘𝐽)) | |
| 5 | 4 | eleq2d 2814 | . . 3 ⊢ (𝑥 = 𝐽 → ({𝑎} ∈ (Clsd‘𝑥) ↔ {𝑎} ∈ (Clsd‘𝐽))) |
| 6 | 3, 5 | raleqbidv 3310 | . 2 ⊢ (𝑥 = 𝐽 → (∀𝑎 ∈ ∪ 𝑥{𝑎} ∈ (Clsd‘𝑥) ↔ ∀𝑎 ∈ 𝑋 {𝑎} ∈ (Clsd‘𝐽))) |
| 7 | df-t1 23217 | . 2 ⊢ Fre = {𝑥 ∈ Top ∣ ∀𝑎 ∈ ∪ 𝑥{𝑎} ∈ (Clsd‘𝑥)} | |
| 8 | 6, 7 | elrab2 3653 | 1 ⊢ (𝐽 ∈ Fre ↔ (𝐽 ∈ Top ∧ ∀𝑎 ∈ 𝑋 {𝑎} ∈ (Clsd‘𝐽))) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 {csn 4579 ∪ cuni 4861 ‘cfv 6486 Topctop 22796 Clsdccld 22919 Frect1 23210 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-iota 6442 df-fv 6494 df-t1 23217 |
| This theorem is referenced by: t1sncld 23229 t1ficld 23230 t1top 23233 ist1-2 23250 cnt1 23253 ordtt1 23282 qtopt1 33804 zarmxt1 33849 onint1 36425 |
| Copyright terms: Public domain | W3C validator |