MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ist1 Structured version   Visualization version   GIF version

Theorem ist1 22825
Description: The predicate "is a T1 space". (Contributed by FL, 18-Jun-2007.)
Hypothesis
Ref Expression
ist0.1 𝑋 = βˆͺ 𝐽
Assertion
Ref Expression
ist1 (𝐽 ∈ Fre ↔ (𝐽 ∈ Top ∧ βˆ€π‘Ž ∈ 𝑋 {π‘Ž} ∈ (Clsdβ€˜π½)))
Distinct variable group:   𝐽,π‘Ž
Allowed substitution hint:   𝑋(π‘Ž)

Proof of Theorem ist1
Dummy variable π‘₯ is distinct from all other variables.
StepHypRef Expression
1 unieq 4920 . . . 4 (π‘₯ = 𝐽 β†’ βˆͺ π‘₯ = βˆͺ 𝐽)
2 ist0.1 . . . 4 𝑋 = βˆͺ 𝐽
31, 2eqtr4di 2791 . . 3 (π‘₯ = 𝐽 β†’ βˆͺ π‘₯ = 𝑋)
4 fveq2 6892 . . . 4 (π‘₯ = 𝐽 β†’ (Clsdβ€˜π‘₯) = (Clsdβ€˜π½))
54eleq2d 2820 . . 3 (π‘₯ = 𝐽 β†’ ({π‘Ž} ∈ (Clsdβ€˜π‘₯) ↔ {π‘Ž} ∈ (Clsdβ€˜π½)))
63, 5raleqbidv 3343 . 2 (π‘₯ = 𝐽 β†’ (βˆ€π‘Ž ∈ βˆͺ π‘₯{π‘Ž} ∈ (Clsdβ€˜π‘₯) ↔ βˆ€π‘Ž ∈ 𝑋 {π‘Ž} ∈ (Clsdβ€˜π½)))
7 df-t1 22818 . 2 Fre = {π‘₯ ∈ Top ∣ βˆ€π‘Ž ∈ βˆͺ π‘₯{π‘Ž} ∈ (Clsdβ€˜π‘₯)}
86, 7elrab2 3687 1 (𝐽 ∈ Fre ↔ (𝐽 ∈ Top ∧ βˆ€π‘Ž ∈ 𝑋 {π‘Ž} ∈ (Clsdβ€˜π½)))
Colors of variables: wff setvar class
Syntax hints:   ↔ wb 205   ∧ wa 397   = wceq 1542   ∈ wcel 2107  βˆ€wral 3062  {csn 4629  βˆͺ cuni 4909  β€˜cfv 6544  Topctop 22395  Clsdccld 22520  Frect1 22811
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-ral 3063  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-iota 6496  df-fv 6552  df-t1 22818
This theorem is referenced by:  t1sncld  22830  t1ficld  22831  t1top  22834  ist1-2  22851  cnt1  22854  ordtt1  22883  qtopt1  32815  zarmxt1  32860  onint1  35334
  Copyright terms: Public domain W3C validator