MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ist1 Structured version   Visualization version   GIF version

Theorem ist1 23215
Description: The predicate "is a T1 space". (Contributed by FL, 18-Jun-2007.)
Hypothesis
Ref Expression
ist0.1 𝑋 = 𝐽
Assertion
Ref Expression
ist1 (𝐽 ∈ Fre ↔ (𝐽 ∈ Top ∧ ∀𝑎𝑋 {𝑎} ∈ (Clsd‘𝐽)))
Distinct variable group:   𝐽,𝑎
Allowed substitution hint:   𝑋(𝑎)

Proof of Theorem ist1
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 unieq 4885 . . . 4 (𝑥 = 𝐽 𝑥 = 𝐽)
2 ist0.1 . . . 4 𝑋 = 𝐽
31, 2eqtr4di 2783 . . 3 (𝑥 = 𝐽 𝑥 = 𝑋)
4 fveq2 6861 . . . 4 (𝑥 = 𝐽 → (Clsd‘𝑥) = (Clsd‘𝐽))
54eleq2d 2815 . . 3 (𝑥 = 𝐽 → ({𝑎} ∈ (Clsd‘𝑥) ↔ {𝑎} ∈ (Clsd‘𝐽)))
63, 5raleqbidv 3321 . 2 (𝑥 = 𝐽 → (∀𝑎 𝑥{𝑎} ∈ (Clsd‘𝑥) ↔ ∀𝑎𝑋 {𝑎} ∈ (Clsd‘𝐽)))
7 df-t1 23208 . 2 Fre = {𝑥 ∈ Top ∣ ∀𝑎 𝑥{𝑎} ∈ (Clsd‘𝑥)}
86, 7elrab2 3665 1 (𝐽 ∈ Fre ↔ (𝐽 ∈ Top ∧ ∀𝑎𝑋 {𝑎} ∈ (Clsd‘𝐽)))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3045  {csn 4592   cuni 4874  cfv 6514  Topctop 22787  Clsdccld 22910  Frect1 23201
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-iota 6467  df-fv 6522  df-t1 23208
This theorem is referenced by:  t1sncld  23220  t1ficld  23221  t1top  23224  ist1-2  23241  cnt1  23244  ordtt1  23273  qtopt1  33832  zarmxt1  33877  onint1  36444
  Copyright terms: Public domain W3C validator