MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ist1 Structured version   Visualization version   GIF version

Theorem ist1 23224
Description: The predicate "is a T1 space". (Contributed by FL, 18-Jun-2007.)
Hypothesis
Ref Expression
ist0.1 𝑋 = 𝐽
Assertion
Ref Expression
ist1 (𝐽 ∈ Fre ↔ (𝐽 ∈ Top ∧ ∀𝑎𝑋 {𝑎} ∈ (Clsd‘𝐽)))
Distinct variable group:   𝐽,𝑎
Allowed substitution hint:   𝑋(𝑎)

Proof of Theorem ist1
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 unieq 4872 . . . 4 (𝑥 = 𝐽 𝑥 = 𝐽)
2 ist0.1 . . . 4 𝑋 = 𝐽
31, 2eqtr4di 2782 . . 3 (𝑥 = 𝐽 𝑥 = 𝑋)
4 fveq2 6826 . . . 4 (𝑥 = 𝐽 → (Clsd‘𝑥) = (Clsd‘𝐽))
54eleq2d 2814 . . 3 (𝑥 = 𝐽 → ({𝑎} ∈ (Clsd‘𝑥) ↔ {𝑎} ∈ (Clsd‘𝐽)))
63, 5raleqbidv 3310 . 2 (𝑥 = 𝐽 → (∀𝑎 𝑥{𝑎} ∈ (Clsd‘𝑥) ↔ ∀𝑎𝑋 {𝑎} ∈ (Clsd‘𝐽)))
7 df-t1 23217 . 2 Fre = {𝑥 ∈ Top ∣ ∀𝑎 𝑥{𝑎} ∈ (Clsd‘𝑥)}
86, 7elrab2 3653 1 (𝐽 ∈ Fre ↔ (𝐽 ∈ Top ∧ ∀𝑎𝑋 {𝑎} ∈ (Clsd‘𝐽)))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  {csn 4579   cuni 4861  cfv 6486  Topctop 22796  Clsdccld 22919  Frect1 23210
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-iota 6442  df-fv 6494  df-t1 23217
This theorem is referenced by:  t1sncld  23229  t1ficld  23230  t1top  23233  ist1-2  23250  cnt1  23253  ordtt1  23282  qtopt1  33804  zarmxt1  33849  onint1  36425
  Copyright terms: Public domain W3C validator