| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ist1 | Structured version Visualization version GIF version | ||
| Description: The predicate "is a T1 space". (Contributed by FL, 18-Jun-2007.) |
| Ref | Expression |
|---|---|
| ist0.1 | ⊢ 𝑋 = ∪ 𝐽 |
| Ref | Expression |
|---|---|
| ist1 | ⊢ (𝐽 ∈ Fre ↔ (𝐽 ∈ Top ∧ ∀𝑎 ∈ 𝑋 {𝑎} ∈ (Clsd‘𝐽))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unieq 4865 | . . . 4 ⊢ (𝑥 = 𝐽 → ∪ 𝑥 = ∪ 𝐽) | |
| 2 | ist0.1 | . . . 4 ⊢ 𝑋 = ∪ 𝐽 | |
| 3 | 1, 2 | eqtr4di 2784 | . . 3 ⊢ (𝑥 = 𝐽 → ∪ 𝑥 = 𝑋) |
| 4 | fveq2 6817 | . . . 4 ⊢ (𝑥 = 𝐽 → (Clsd‘𝑥) = (Clsd‘𝐽)) | |
| 5 | 4 | eleq2d 2817 | . . 3 ⊢ (𝑥 = 𝐽 → ({𝑎} ∈ (Clsd‘𝑥) ↔ {𝑎} ∈ (Clsd‘𝐽))) |
| 6 | 3, 5 | raleqbidv 3312 | . 2 ⊢ (𝑥 = 𝐽 → (∀𝑎 ∈ ∪ 𝑥{𝑎} ∈ (Clsd‘𝑥) ↔ ∀𝑎 ∈ 𝑋 {𝑎} ∈ (Clsd‘𝐽))) |
| 7 | df-t1 23224 | . 2 ⊢ Fre = {𝑥 ∈ Top ∣ ∀𝑎 ∈ ∪ 𝑥{𝑎} ∈ (Clsd‘𝑥)} | |
| 8 | 6, 7 | elrab2 3645 | 1 ⊢ (𝐽 ∈ Fre ↔ (𝐽 ∈ Top ∧ ∀𝑎 ∈ 𝑋 {𝑎} ∈ (Clsd‘𝐽))) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∀wral 3047 {csn 4571 ∪ cuni 4854 ‘cfv 6476 Topctop 22803 Clsdccld 22926 Frect1 23217 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-iota 6432 df-fv 6484 df-t1 23224 |
| This theorem is referenced by: t1sncld 23236 t1ficld 23237 t1top 23240 ist1-2 23257 cnt1 23260 ordtt1 23289 qtopt1 33840 zarmxt1 33885 onint1 36483 |
| Copyright terms: Public domain | W3C validator |