MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tcphcph Structured version   Visualization version   GIF version

Theorem tcphcph 23841
Description: The standard definition of a norm turns any pre-Hilbert space over a subfield of fld closed under square roots of nonnegative reals into a subcomplex pre-Hilbert space (which allows access to a norm, metric, and topology). (Contributed by Mario Carneiro, 11-Oct-2015.)
Hypotheses
Ref Expression
tcphval.n 𝐺 = (toℂPreHil‘𝑊)
tcphcph.v 𝑉 = (Base‘𝑊)
tcphcph.f 𝐹 = (Scalar‘𝑊)
tcphcph.1 (𝜑𝑊 ∈ PreHil)
tcphcph.2 (𝜑𝐹 = (ℂflds 𝐾))
tcphcph.h , = (·𝑖𝑊)
tcphcph.3 ((𝜑 ∧ (𝑥𝐾𝑥 ∈ ℝ ∧ 0 ≤ 𝑥)) → (√‘𝑥) ∈ 𝐾)
tcphcph.4 ((𝜑𝑥𝑉) → 0 ≤ (𝑥 , 𝑥))
Assertion
Ref Expression
tcphcph (𝜑𝐺 ∈ ℂPreHil)
Distinct variable groups:   𝑥, ,   𝑥,𝐹   𝑥,𝐺   𝑥,𝑉   𝜑,𝑥   𝑥,𝑊
Allowed substitution hint:   𝐾(𝑥)

Proof of Theorem tcphcph
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tcphcph.1 . . . 4 (𝜑𝑊 ∈ PreHil)
2 tcphval.n . . . . 5 𝐺 = (toℂPreHil‘𝑊)
32tcphphl 23831 . . . 4 (𝑊 ∈ PreHil ↔ 𝐺 ∈ PreHil)
41, 3sylib 221 . . 3 (𝜑𝐺 ∈ PreHil)
5 tcphcph.v . . . . . . 7 𝑉 = (Base‘𝑊)
6 tcphcph.h . . . . . . 7 , = (·𝑖𝑊)
72, 5, 6tcphval 23822 . . . . . 6 𝐺 = (𝑊 toNrmGrp (𝑥𝑉 ↦ (√‘(𝑥 , 𝑥))))
8 eqid 2798 . . . . . 6 (-g𝑊) = (-g𝑊)
9 eqid 2798 . . . . . 6 (0g𝑊) = (0g𝑊)
10 phllmod 20319 . . . . . . . 8 (𝑊 ∈ PreHil → 𝑊 ∈ LMod)
111, 10syl 17 . . . . . . 7 (𝜑𝑊 ∈ LMod)
12 lmodgrp 19634 . . . . . . 7 (𝑊 ∈ LMod → 𝑊 ∈ Grp)
1311, 12syl 17 . . . . . 6 (𝜑𝑊 ∈ Grp)
14 tcphcph.f . . . . . . . . 9 𝐹 = (Scalar‘𝑊)
15 tcphcph.2 . . . . . . . . 9 (𝜑𝐹 = (ℂflds 𝐾))
162, 5, 14, 1, 15, 6tcphcphlem3 23837 . . . . . . . 8 ((𝜑𝑥𝑉) → (𝑥 , 𝑥) ∈ ℝ)
17 tcphcph.4 . . . . . . . 8 ((𝜑𝑥𝑉) → 0 ≤ (𝑥 , 𝑥))
1816, 17resqrtcld 14769 . . . . . . 7 ((𝜑𝑥𝑉) → (√‘(𝑥 , 𝑥)) ∈ ℝ)
1918fmpttd 6856 . . . . . 6 (𝜑 → (𝑥𝑉 ↦ (√‘(𝑥 , 𝑥))):𝑉⟶ℝ)
20 oveq12 7144 . . . . . . . . . . . 12 ((𝑥 = 𝑦𝑥 = 𝑦) → (𝑥 , 𝑥) = (𝑦 , 𝑦))
2120anidms 570 . . . . . . . . . . 11 (𝑥 = 𝑦 → (𝑥 , 𝑥) = (𝑦 , 𝑦))
2221fveq2d 6649 . . . . . . . . . 10 (𝑥 = 𝑦 → (√‘(𝑥 , 𝑥)) = (√‘(𝑦 , 𝑦)))
23 eqid 2798 . . . . . . . . . 10 (𝑥𝑉 ↦ (√‘(𝑥 , 𝑥))) = (𝑥𝑉 ↦ (√‘(𝑥 , 𝑥)))
24 fvex 6658 . . . . . . . . . 10 (√‘(𝑥 , 𝑥)) ∈ V
2522, 23, 24fvmpt3i 6750 . . . . . . . . 9 (𝑦𝑉 → ((𝑥𝑉 ↦ (√‘(𝑥 , 𝑥)))‘𝑦) = (√‘(𝑦 , 𝑦)))
2625adantl 485 . . . . . . . 8 ((𝜑𝑦𝑉) → ((𝑥𝑉 ↦ (√‘(𝑥 , 𝑥)))‘𝑦) = (√‘(𝑦 , 𝑦)))
2726eqeq1d 2800 . . . . . . 7 ((𝜑𝑦𝑉) → (((𝑥𝑉 ↦ (√‘(𝑥 , 𝑥)))‘𝑦) = 0 ↔ (√‘(𝑦 , 𝑦)) = 0))
28 eqid 2798 . . . . . . . . . . . . . . 15 (Base‘𝐹) = (Base‘𝐹)
29 phllvec 20318 . . . . . . . . . . . . . . . . 17 (𝑊 ∈ PreHil → 𝑊 ∈ LVec)
301, 29syl 17 . . . . . . . . . . . . . . . 16 (𝜑𝑊 ∈ LVec)
3114lvecdrng 19870 . . . . . . . . . . . . . . . 16 (𝑊 ∈ LVec → 𝐹 ∈ DivRing)
3230, 31syl 17 . . . . . . . . . . . . . . 15 (𝜑𝐹 ∈ DivRing)
3328, 15, 32cphsubrglem 23782 . . . . . . . . . . . . . 14 (𝜑 → (𝐹 = (ℂflds (Base‘𝐹)) ∧ (Base‘𝐹) = (𝐾 ∩ ℂ) ∧ (Base‘𝐹) ∈ (SubRing‘ℂfld)))
3433simp2d 1140 . . . . . . . . . . . . 13 (𝜑 → (Base‘𝐹) = (𝐾 ∩ ℂ))
35 inss2 4156 . . . . . . . . . . . . 13 (𝐾 ∩ ℂ) ⊆ ℂ
3634, 35eqsstrdi 3969 . . . . . . . . . . . 12 (𝜑 → (Base‘𝐹) ⊆ ℂ)
3736adantr 484 . . . . . . . . . . 11 ((𝜑𝑦𝑉) → (Base‘𝐹) ⊆ ℂ)
3814, 6, 5, 28ipcl 20322 . . . . . . . . . . . . 13 ((𝑊 ∈ PreHil ∧ 𝑦𝑉𝑦𝑉) → (𝑦 , 𝑦) ∈ (Base‘𝐹))
39383anidm23 1418 . . . . . . . . . . . 12 ((𝑊 ∈ PreHil ∧ 𝑦𝑉) → (𝑦 , 𝑦) ∈ (Base‘𝐹))
401, 39sylan 583 . . . . . . . . . . 11 ((𝜑𝑦𝑉) → (𝑦 , 𝑦) ∈ (Base‘𝐹))
4137, 40sseldd 3916 . . . . . . . . . 10 ((𝜑𝑦𝑉) → (𝑦 , 𝑦) ∈ ℂ)
4241sqrtcld 14789 . . . . . . . . 9 ((𝜑𝑦𝑉) → (√‘(𝑦 , 𝑦)) ∈ ℂ)
43 sqeq0 13482 . . . . . . . . 9 ((√‘(𝑦 , 𝑦)) ∈ ℂ → (((√‘(𝑦 , 𝑦))↑2) = 0 ↔ (√‘(𝑦 , 𝑦)) = 0))
4442, 43syl 17 . . . . . . . 8 ((𝜑𝑦𝑉) → (((√‘(𝑦 , 𝑦))↑2) = 0 ↔ (√‘(𝑦 , 𝑦)) = 0))
4541sqsqrtd 14791 . . . . . . . . 9 ((𝜑𝑦𝑉) → ((√‘(𝑦 , 𝑦))↑2) = (𝑦 , 𝑦))
462, 5, 14, 1, 15phclm 23836 . . . . . . . . . . 11 (𝜑𝑊 ∈ ℂMod)
4714clm0 23677 . . . . . . . . . . 11 (𝑊 ∈ ℂMod → 0 = (0g𝐹))
4846, 47syl 17 . . . . . . . . . 10 (𝜑 → 0 = (0g𝐹))
4948adantr 484 . . . . . . . . 9 ((𝜑𝑦𝑉) → 0 = (0g𝐹))
5045, 49eqeq12d 2814 . . . . . . . 8 ((𝜑𝑦𝑉) → (((√‘(𝑦 , 𝑦))↑2) = 0 ↔ (𝑦 , 𝑦) = (0g𝐹)))
5144, 50bitr3d 284 . . . . . . 7 ((𝜑𝑦𝑉) → ((√‘(𝑦 , 𝑦)) = 0 ↔ (𝑦 , 𝑦) = (0g𝐹)))
52 eqid 2798 . . . . . . . . 9 (0g𝐹) = (0g𝐹)
5314, 6, 5, 52, 9ipeq0 20327 . . . . . . . 8 ((𝑊 ∈ PreHil ∧ 𝑦𝑉) → ((𝑦 , 𝑦) = (0g𝐹) ↔ 𝑦 = (0g𝑊)))
541, 53sylan 583 . . . . . . 7 ((𝜑𝑦𝑉) → ((𝑦 , 𝑦) = (0g𝐹) ↔ 𝑦 = (0g𝑊)))
5527, 51, 543bitrd 308 . . . . . 6 ((𝜑𝑦𝑉) → (((𝑥𝑉 ↦ (√‘(𝑥 , 𝑥)))‘𝑦) = 0 ↔ 𝑦 = (0g𝑊)))
561adantr 484 . . . . . . . 8 ((𝜑 ∧ (𝑦𝑉𝑧𝑉)) → 𝑊 ∈ PreHil)
5733simp1d 1139 . . . . . . . . 9 (𝜑𝐹 = (ℂflds (Base‘𝐹)))
5857adantr 484 . . . . . . . 8 ((𝜑 ∧ (𝑦𝑉𝑧𝑉)) → 𝐹 = (ℂflds (Base‘𝐹)))
59 3anass 1092 . . . . . . . . . . 11 ((𝑥 ∈ (Base‘𝐹) ∧ 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ↔ (𝑥 ∈ (Base‘𝐹) ∧ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥)))
60 tcphcph.3 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥𝐾𝑥 ∈ ℝ ∧ 0 ≤ 𝑥)) → (√‘𝑥) ∈ 𝐾)
61 simpr2 1192 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑥𝐾𝑥 ∈ ℝ ∧ 0 ≤ 𝑥)) → 𝑥 ∈ ℝ)
6261recnd 10658 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑥𝐾𝑥 ∈ ℝ ∧ 0 ≤ 𝑥)) → 𝑥 ∈ ℂ)
6362sqrtcld 14789 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥𝐾𝑥 ∈ ℝ ∧ 0 ≤ 𝑥)) → (√‘𝑥) ∈ ℂ)
6460, 63jca 515 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥𝐾𝑥 ∈ ℝ ∧ 0 ≤ 𝑥)) → ((√‘𝑥) ∈ 𝐾 ∧ (√‘𝑥) ∈ ℂ))
6564ex 416 . . . . . . . . . . . 12 (𝜑 → ((𝑥𝐾𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) → ((√‘𝑥) ∈ 𝐾 ∧ (√‘𝑥) ∈ ℂ)))
6634eleq2d 2875 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑥 ∈ (Base‘𝐹) ↔ 𝑥 ∈ (𝐾 ∩ ℂ)))
67 recn 10616 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ℝ → 𝑥 ∈ ℂ)
68 elin 3897 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ (𝐾 ∩ ℂ) ↔ (𝑥𝐾𝑥 ∈ ℂ))
6968rbaib 542 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ℂ → (𝑥 ∈ (𝐾 ∩ ℂ) ↔ 𝑥𝐾))
7067, 69syl 17 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ℝ → (𝑥 ∈ (𝐾 ∩ ℂ) ↔ 𝑥𝐾))
7166, 70sylan9bb 513 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ ℝ) → (𝑥 ∈ (Base‘𝐹) ↔ 𝑥𝐾))
7271adantrr 716 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥)) → (𝑥 ∈ (Base‘𝐹) ↔ 𝑥𝐾))
7372ex 416 . . . . . . . . . . . . . 14 (𝜑 → ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) → (𝑥 ∈ (Base‘𝐹) ↔ 𝑥𝐾)))
7473pm5.32rd 581 . . . . . . . . . . . . 13 (𝜑 → ((𝑥 ∈ (Base‘𝐹) ∧ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥)) ↔ (𝑥𝐾 ∧ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥))))
75 3anass 1092 . . . . . . . . . . . . 13 ((𝑥𝐾𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ↔ (𝑥𝐾 ∧ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥)))
7674, 75syl6bbr 292 . . . . . . . . . . . 12 (𝜑 → ((𝑥 ∈ (Base‘𝐹) ∧ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥)) ↔ (𝑥𝐾𝑥 ∈ ℝ ∧ 0 ≤ 𝑥)))
7734eleq2d 2875 . . . . . . . . . . . . 13 (𝜑 → ((√‘𝑥) ∈ (Base‘𝐹) ↔ (√‘𝑥) ∈ (𝐾 ∩ ℂ)))
78 elin 3897 . . . . . . . . . . . . 13 ((√‘𝑥) ∈ (𝐾 ∩ ℂ) ↔ ((√‘𝑥) ∈ 𝐾 ∧ (√‘𝑥) ∈ ℂ))
7977, 78syl6bb 290 . . . . . . . . . . . 12 (𝜑 → ((√‘𝑥) ∈ (Base‘𝐹) ↔ ((√‘𝑥) ∈ 𝐾 ∧ (√‘𝑥) ∈ ℂ)))
8065, 76, 793imtr4d 297 . . . . . . . . . . 11 (𝜑 → ((𝑥 ∈ (Base‘𝐹) ∧ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥)) → (√‘𝑥) ∈ (Base‘𝐹)))
8159, 80syl5bi 245 . . . . . . . . . 10 (𝜑 → ((𝑥 ∈ (Base‘𝐹) ∧ 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) → (√‘𝑥) ∈ (Base‘𝐹)))
8281imp 410 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥)) → (√‘𝑥) ∈ (Base‘𝐹))
8382adantlr 714 . . . . . . . 8 (((𝜑 ∧ (𝑦𝑉𝑧𝑉)) ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥)) → (√‘𝑥) ∈ (Base‘𝐹))
8417adantlr 714 . . . . . . . 8 (((𝜑 ∧ (𝑦𝑉𝑧𝑉)) ∧ 𝑥𝑉) → 0 ≤ (𝑥 , 𝑥))
85 simprl 770 . . . . . . . 8 ((𝜑 ∧ (𝑦𝑉𝑧𝑉)) → 𝑦𝑉)
86 simprr 772 . . . . . . . 8 ((𝜑 ∧ (𝑦𝑉𝑧𝑉)) → 𝑧𝑉)
872, 5, 14, 56, 58, 6, 83, 84, 28, 8, 85, 86tcphcphlem1 23839 . . . . . . 7 ((𝜑 ∧ (𝑦𝑉𝑧𝑉)) → (√‘((𝑦(-g𝑊)𝑧) , (𝑦(-g𝑊)𝑧))) ≤ ((√‘(𝑦 , 𝑦)) + (√‘(𝑧 , 𝑧))))
885, 8grpsubcl 18171 . . . . . . . . . 10 ((𝑊 ∈ Grp ∧ 𝑦𝑉𝑧𝑉) → (𝑦(-g𝑊)𝑧) ∈ 𝑉)
89883expb 1117 . . . . . . . . 9 ((𝑊 ∈ Grp ∧ (𝑦𝑉𝑧𝑉)) → (𝑦(-g𝑊)𝑧) ∈ 𝑉)
9013, 89sylan 583 . . . . . . . 8 ((𝜑 ∧ (𝑦𝑉𝑧𝑉)) → (𝑦(-g𝑊)𝑧) ∈ 𝑉)
91 oveq12 7144 . . . . . . . . . . 11 ((𝑥 = (𝑦(-g𝑊)𝑧) ∧ 𝑥 = (𝑦(-g𝑊)𝑧)) → (𝑥 , 𝑥) = ((𝑦(-g𝑊)𝑧) , (𝑦(-g𝑊)𝑧)))
9291anidms 570 . . . . . . . . . 10 (𝑥 = (𝑦(-g𝑊)𝑧) → (𝑥 , 𝑥) = ((𝑦(-g𝑊)𝑧) , (𝑦(-g𝑊)𝑧)))
9392fveq2d 6649 . . . . . . . . 9 (𝑥 = (𝑦(-g𝑊)𝑧) → (√‘(𝑥 , 𝑥)) = (√‘((𝑦(-g𝑊)𝑧) , (𝑦(-g𝑊)𝑧))))
9493, 23, 24fvmpt3i 6750 . . . . . . . 8 ((𝑦(-g𝑊)𝑧) ∈ 𝑉 → ((𝑥𝑉 ↦ (√‘(𝑥 , 𝑥)))‘(𝑦(-g𝑊)𝑧)) = (√‘((𝑦(-g𝑊)𝑧) , (𝑦(-g𝑊)𝑧))))
9590, 94syl 17 . . . . . . 7 ((𝜑 ∧ (𝑦𝑉𝑧𝑉)) → ((𝑥𝑉 ↦ (√‘(𝑥 , 𝑥)))‘(𝑦(-g𝑊)𝑧)) = (√‘((𝑦(-g𝑊)𝑧) , (𝑦(-g𝑊)𝑧))))
96 oveq12 7144 . . . . . . . . . . . 12 ((𝑥 = 𝑧𝑥 = 𝑧) → (𝑥 , 𝑥) = (𝑧 , 𝑧))
9796anidms 570 . . . . . . . . . . 11 (𝑥 = 𝑧 → (𝑥 , 𝑥) = (𝑧 , 𝑧))
9897fveq2d 6649 . . . . . . . . . 10 (𝑥 = 𝑧 → (√‘(𝑥 , 𝑥)) = (√‘(𝑧 , 𝑧)))
9998, 23, 24fvmpt3i 6750 . . . . . . . . 9 (𝑧𝑉 → ((𝑥𝑉 ↦ (√‘(𝑥 , 𝑥)))‘𝑧) = (√‘(𝑧 , 𝑧)))
10025, 99oveqan12d 7154 . . . . . . . 8 ((𝑦𝑉𝑧𝑉) → (((𝑥𝑉 ↦ (√‘(𝑥 , 𝑥)))‘𝑦) + ((𝑥𝑉 ↦ (√‘(𝑥 , 𝑥)))‘𝑧)) = ((√‘(𝑦 , 𝑦)) + (√‘(𝑧 , 𝑧))))
101100adantl 485 . . . . . . 7 ((𝜑 ∧ (𝑦𝑉𝑧𝑉)) → (((𝑥𝑉 ↦ (√‘(𝑥 , 𝑥)))‘𝑦) + ((𝑥𝑉 ↦ (√‘(𝑥 , 𝑥)))‘𝑧)) = ((√‘(𝑦 , 𝑦)) + (√‘(𝑧 , 𝑧))))
10287, 95, 1013brtr4d 5062 . . . . . 6 ((𝜑 ∧ (𝑦𝑉𝑧𝑉)) → ((𝑥𝑉 ↦ (√‘(𝑥 , 𝑥)))‘(𝑦(-g𝑊)𝑧)) ≤ (((𝑥𝑉 ↦ (√‘(𝑥 , 𝑥)))‘𝑦) + ((𝑥𝑉 ↦ (√‘(𝑥 , 𝑥)))‘𝑧)))
1037, 5, 8, 9, 13, 19, 55, 102tngngpd 23259 . . . . 5 (𝜑𝐺 ∈ NrmGrp)
104 phllmod 20319 . . . . . 6 (𝐺 ∈ PreHil → 𝐺 ∈ LMod)
1054, 104syl 17 . . . . 5 (𝜑𝐺 ∈ LMod)
106 cnnrg 23386 . . . . . . 7 fld ∈ NrmRing
10733simp3d 1141 . . . . . . 7 (𝜑 → (Base‘𝐹) ∈ (SubRing‘ℂfld))
108 eqid 2798 . . . . . . . 8 (ℂflds (Base‘𝐹)) = (ℂflds (Base‘𝐹))
109108subrgnrg 23279 . . . . . . 7 ((ℂfld ∈ NrmRing ∧ (Base‘𝐹) ∈ (SubRing‘ℂfld)) → (ℂflds (Base‘𝐹)) ∈ NrmRing)
110106, 107, 109sylancr 590 . . . . . 6 (𝜑 → (ℂflds (Base‘𝐹)) ∈ NrmRing)
11157, 110eqeltrd 2890 . . . . 5 (𝜑𝐹 ∈ NrmRing)
112103, 105, 1113jca 1125 . . . 4 (𝜑 → (𝐺 ∈ NrmGrp ∧ 𝐺 ∈ LMod ∧ 𝐹 ∈ NrmRing))
1131adantr 484 . . . . . . 7 ((𝜑 ∧ (𝑦 ∈ (Base‘𝐹) ∧ 𝑧𝑉)) → 𝑊 ∈ PreHil)
11457adantr 484 . . . . . . 7 ((𝜑 ∧ (𝑦 ∈ (Base‘𝐹) ∧ 𝑧𝑉)) → 𝐹 = (ℂflds (Base‘𝐹)))
11582adantlr 714 . . . . . . 7 (((𝜑 ∧ (𝑦 ∈ (Base‘𝐹) ∧ 𝑧𝑉)) ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥)) → (√‘𝑥) ∈ (Base‘𝐹))
11617adantlr 714 . . . . . . 7 (((𝜑 ∧ (𝑦 ∈ (Base‘𝐹) ∧ 𝑧𝑉)) ∧ 𝑥𝑉) → 0 ≤ (𝑥 , 𝑥))
117 eqid 2798 . . . . . . 7 ( ·𝑠𝑊) = ( ·𝑠𝑊)
118 simprl 770 . . . . . . 7 ((𝜑 ∧ (𝑦 ∈ (Base‘𝐹) ∧ 𝑧𝑉)) → 𝑦 ∈ (Base‘𝐹))
119 simprr 772 . . . . . . 7 ((𝜑 ∧ (𝑦 ∈ (Base‘𝐹) ∧ 𝑧𝑉)) → 𝑧𝑉)
1202, 5, 14, 113, 114, 6, 115, 116, 28, 117, 118, 119tcphcphlem2 23840 . . . . . 6 ((𝜑 ∧ (𝑦 ∈ (Base‘𝐹) ∧ 𝑧𝑉)) → (√‘((𝑦( ·𝑠𝑊)𝑧) , (𝑦( ·𝑠𝑊)𝑧))) = ((abs‘𝑦) · (√‘(𝑧 , 𝑧))))
1215, 14, 117, 28lmodvscl 19644 . . . . . . . . 9 ((𝑊 ∈ LMod ∧ 𝑦 ∈ (Base‘𝐹) ∧ 𝑧𝑉) → (𝑦( ·𝑠𝑊)𝑧) ∈ 𝑉)
1221213expb 1117 . . . . . . . 8 ((𝑊 ∈ LMod ∧ (𝑦 ∈ (Base‘𝐹) ∧ 𝑧𝑉)) → (𝑦( ·𝑠𝑊)𝑧) ∈ 𝑉)
12311, 122sylan 583 . . . . . . 7 ((𝜑 ∧ (𝑦 ∈ (Base‘𝐹) ∧ 𝑧𝑉)) → (𝑦( ·𝑠𝑊)𝑧) ∈ 𝑉)
124 eqid 2798 . . . . . . . 8 (norm‘𝐺) = (norm‘𝐺)
1252, 124, 5, 6tcphnmval 23833 . . . . . . 7 ((𝑊 ∈ Grp ∧ (𝑦( ·𝑠𝑊)𝑧) ∈ 𝑉) → ((norm‘𝐺)‘(𝑦( ·𝑠𝑊)𝑧)) = (√‘((𝑦( ·𝑠𝑊)𝑧) , (𝑦( ·𝑠𝑊)𝑧))))
12613, 123, 125syl2an2r 684 . . . . . 6 ((𝜑 ∧ (𝑦 ∈ (Base‘𝐹) ∧ 𝑧𝑉)) → ((norm‘𝐺)‘(𝑦( ·𝑠𝑊)𝑧)) = (√‘((𝑦( ·𝑠𝑊)𝑧) , (𝑦( ·𝑠𝑊)𝑧))))
127114fveq2d 6649 . . . . . . . . 9 ((𝜑 ∧ (𝑦 ∈ (Base‘𝐹) ∧ 𝑧𝑉)) → (norm‘𝐹) = (norm‘(ℂflds (Base‘𝐹))))
128127fveq1d 6647 . . . . . . . 8 ((𝜑 ∧ (𝑦 ∈ (Base‘𝐹) ∧ 𝑧𝑉)) → ((norm‘𝐹)‘𝑦) = ((norm‘(ℂflds (Base‘𝐹)))‘𝑦))
129 subrgsubg 19534 . . . . . . . . . 10 ((Base‘𝐹) ∈ (SubRing‘ℂfld) → (Base‘𝐹) ∈ (SubGrp‘ℂfld))
130107, 129syl 17 . . . . . . . . 9 (𝜑 → (Base‘𝐹) ∈ (SubGrp‘ℂfld))
131 cnfldnm 23384 . . . . . . . . . 10 abs = (norm‘ℂfld)
132 eqid 2798 . . . . . . . . . 10 (norm‘(ℂflds (Base‘𝐹))) = (norm‘(ℂflds (Base‘𝐹)))
133108, 131, 132subgnm2 23240 . . . . . . . . 9 (((Base‘𝐹) ∈ (SubGrp‘ℂfld) ∧ 𝑦 ∈ (Base‘𝐹)) → ((norm‘(ℂflds (Base‘𝐹)))‘𝑦) = (abs‘𝑦))
134130, 118, 133syl2an2r 684 . . . . . . . 8 ((𝜑 ∧ (𝑦 ∈ (Base‘𝐹) ∧ 𝑧𝑉)) → ((norm‘(ℂflds (Base‘𝐹)))‘𝑦) = (abs‘𝑦))
135128, 134eqtrd 2833 . . . . . . 7 ((𝜑 ∧ (𝑦 ∈ (Base‘𝐹) ∧ 𝑧𝑉)) → ((norm‘𝐹)‘𝑦) = (abs‘𝑦))
1362, 124, 5, 6tcphnmval 23833 . . . . . . . 8 ((𝑊 ∈ Grp ∧ 𝑧𝑉) → ((norm‘𝐺)‘𝑧) = (√‘(𝑧 , 𝑧)))
13713, 119, 136syl2an2r 684 . . . . . . 7 ((𝜑 ∧ (𝑦 ∈ (Base‘𝐹) ∧ 𝑧𝑉)) → ((norm‘𝐺)‘𝑧) = (√‘(𝑧 , 𝑧)))
138135, 137oveq12d 7153 . . . . . 6 ((𝜑 ∧ (𝑦 ∈ (Base‘𝐹) ∧ 𝑧𝑉)) → (((norm‘𝐹)‘𝑦) · ((norm‘𝐺)‘𝑧)) = ((abs‘𝑦) · (√‘(𝑧 , 𝑧))))
139120, 126, 1383eqtr4d 2843 . . . . 5 ((𝜑 ∧ (𝑦 ∈ (Base‘𝐹) ∧ 𝑧𝑉)) → ((norm‘𝐺)‘(𝑦( ·𝑠𝑊)𝑧)) = (((norm‘𝐹)‘𝑦) · ((norm‘𝐺)‘𝑧)))
140139ralrimivva 3156 . . . 4 (𝜑 → ∀𝑦 ∈ (Base‘𝐹)∀𝑧𝑉 ((norm‘𝐺)‘(𝑦( ·𝑠𝑊)𝑧)) = (((norm‘𝐹)‘𝑦) · ((norm‘𝐺)‘𝑧)))
1412, 5tcphbas 23823 . . . . 5 𝑉 = (Base‘𝐺)
1422, 117tcphvsca 23828 . . . . 5 ( ·𝑠𝑊) = ( ·𝑠𝐺)
1432, 14tcphsca 23827 . . . . 5 𝐹 = (Scalar‘𝐺)
144 eqid 2798 . . . . 5 (norm‘𝐹) = (norm‘𝐹)
145141, 124, 142, 143, 28, 144isnlm 23281 . . . 4 (𝐺 ∈ NrmMod ↔ ((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ LMod ∧ 𝐹 ∈ NrmRing) ∧ ∀𝑦 ∈ (Base‘𝐹)∀𝑧𝑉 ((norm‘𝐺)‘(𝑦( ·𝑠𝑊)𝑧)) = (((norm‘𝐹)‘𝑦) · ((norm‘𝐺)‘𝑧))))
146112, 140, 145sylanbrc 586 . . 3 (𝜑𝐺 ∈ NrmMod)
1474, 146, 573jca 1125 . 2 (𝜑 → (𝐺 ∈ PreHil ∧ 𝐺 ∈ NrmMod ∧ 𝐹 = (ℂflds (Base‘𝐹))))
148 elin 3897 . . . . . 6 (𝑥 ∈ ((Base‘𝐹) ∩ (0[,)+∞)) ↔ (𝑥 ∈ (Base‘𝐹) ∧ 𝑥 ∈ (0[,)+∞)))
149 elrege0 12832 . . . . . . 7 (𝑥 ∈ (0[,)+∞) ↔ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥))
150149anbi2i 625 . . . . . 6 ((𝑥 ∈ (Base‘𝐹) ∧ 𝑥 ∈ (0[,)+∞)) ↔ (𝑥 ∈ (Base‘𝐹) ∧ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥)))
151148, 150bitri 278 . . . . 5 (𝑥 ∈ ((Base‘𝐹) ∩ (0[,)+∞)) ↔ (𝑥 ∈ (Base‘𝐹) ∧ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥)))
152151, 80syl5bi 245 . . . 4 (𝜑 → (𝑥 ∈ ((Base‘𝐹) ∩ (0[,)+∞)) → (√‘𝑥) ∈ (Base‘𝐹)))
153152ralrimiv 3148 . . 3 (𝜑 → ∀𝑥 ∈ ((Base‘𝐹) ∩ (0[,)+∞))(√‘𝑥) ∈ (Base‘𝐹))
154 sqrtf 14715 . . . . 5 √:ℂ⟶ℂ
155 ffun 6490 . . . . 5 (√:ℂ⟶ℂ → Fun √)
156154, 155ax-mp 5 . . . 4 Fun √
157 inss1 4155 . . . . . 6 ((Base‘𝐹) ∩ (0[,)+∞)) ⊆ (Base‘𝐹)
158157, 36sstrid 3926 . . . . 5 (𝜑 → ((Base‘𝐹) ∩ (0[,)+∞)) ⊆ ℂ)
159154fdmi 6498 . . . . 5 dom √ = ℂ
160158, 159sseqtrrdi 3966 . . . 4 (𝜑 → ((Base‘𝐹) ∩ (0[,)+∞)) ⊆ dom √)
161 funimass4 6705 . . . 4 ((Fun √ ∧ ((Base‘𝐹) ∩ (0[,)+∞)) ⊆ dom √) → ((√ “ ((Base‘𝐹) ∩ (0[,)+∞))) ⊆ (Base‘𝐹) ↔ ∀𝑥 ∈ ((Base‘𝐹) ∩ (0[,)+∞))(√‘𝑥) ∈ (Base‘𝐹)))
162156, 160, 161sylancr 590 . . 3 (𝜑 → ((√ “ ((Base‘𝐹) ∩ (0[,)+∞))) ⊆ (Base‘𝐹) ↔ ∀𝑥 ∈ ((Base‘𝐹) ∩ (0[,)+∞))(√‘𝑥) ∈ (Base‘𝐹)))
163153, 162mpbird 260 . 2 (𝜑 → (√ “ ((Base‘𝐹) ∩ (0[,)+∞))) ⊆ (Base‘𝐹))
16442fmpttd 6856 . . . 4 (𝜑 → (𝑦𝑉 ↦ (√‘(𝑦 , 𝑦))):𝑉⟶ℂ)
1652, 5, 6tcphval 23822 . . . . 5 𝐺 = (𝑊 toNrmGrp (𝑦𝑉 ↦ (√‘(𝑦 , 𝑦))))
166 cnex 10607 . . . . 5 ℂ ∈ V
167165, 5, 166tngnm 23257 . . . 4 ((𝑊 ∈ Grp ∧ (𝑦𝑉 ↦ (√‘(𝑦 , 𝑦))):𝑉⟶ℂ) → (𝑦𝑉 ↦ (√‘(𝑦 , 𝑦))) = (norm‘𝐺))
16813, 164, 167syl2anc 587 . . 3 (𝜑 → (𝑦𝑉 ↦ (√‘(𝑦 , 𝑦))) = (norm‘𝐺))
169168eqcomd 2804 . 2 (𝜑 → (norm‘𝐺) = (𝑦𝑉 ↦ (√‘(𝑦 , 𝑦))))
1702, 6tcphip 23829 . . 3 , = (·𝑖𝐺)
171141, 170, 124, 143, 28iscph 23775 . 2 (𝐺 ∈ ℂPreHil ↔ ((𝐺 ∈ PreHil ∧ 𝐺 ∈ NrmMod ∧ 𝐹 = (ℂflds (Base‘𝐹))) ∧ (√ “ ((Base‘𝐹) ∩ (0[,)+∞))) ⊆ (Base‘𝐹) ∧ (norm‘𝐺) = (𝑦𝑉 ↦ (√‘(𝑦 , 𝑦)))))
172147, 163, 169, 171syl3anbrc 1340 1 (𝜑𝐺 ∈ ℂPreHil)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  wral 3106  cin 3880  wss 3881   class class class wbr 5030  cmpt 5110  dom cdm 5519  cima 5522  Fun wfun 6318  wf 6320  cfv 6324  (class class class)co 7135  cc 10524  cr 10525  0cc0 10526   + caddc 10529   · cmul 10531  +∞cpnf 10661  cle 10665  2c2 11680  [,)cico 12728  cexp 13425  csqrt 14584  abscabs 14585  Basecbs 16475  s cress 16476  Scalarcsca 16560   ·𝑠 cvsca 16561  ·𝑖cip 16562  0gc0g 16705  Grpcgrp 18095  -gcsg 18097  SubGrpcsubg 18265  DivRingcdr 19495  SubRingcsubrg 19524  LModclmod 19627  LVecclvec 19867  fldccnfld 20091  PreHilcphl 20313  normcnm 23183  NrmGrpcngp 23184  NrmRingcnrg 23186  NrmModcnlm 23187  ℂModcclm 23667  ℂPreHilccph 23771  toℂPreHilctcph 23772
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604  ax-addf 10605  ax-mulf 10606
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-tpos 7875  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-map 8391  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-sup 8890  df-inf 8891  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-q 12337  df-rp 12378  df-xneg 12495  df-xadd 12496  df-xmul 12497  df-ico 12732  df-fz 12886  df-seq 13365  df-exp 13426  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-starv 16572  df-sca 16573  df-vsca 16574  df-ip 16575  df-tset 16576  df-ple 16577  df-ds 16579  df-unif 16580  df-rest 16688  df-topn 16689  df-0g 16707  df-topgen 16709  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-mhm 17948  df-grp 18098  df-minusg 18099  df-sbg 18100  df-subg 18268  df-ghm 18348  df-cmn 18900  df-abl 18901  df-mgp 19233  df-ur 19245  df-ring 19292  df-cring 19293  df-oppr 19369  df-dvdsr 19387  df-unit 19388  df-invr 19418  df-dvr 19429  df-rnghom 19463  df-drng 19497  df-subrg 19526  df-abv 19581  df-staf 19609  df-srng 19610  df-lmod 19629  df-lmhm 19787  df-lvec 19868  df-sra 19937  df-rgmod 19938  df-psmet 20083  df-xmet 20084  df-met 20085  df-bl 20086  df-mopn 20087  df-cnfld 20092  df-phl 20315  df-top 21499  df-topon 21516  df-topsp 21538  df-bases 21551  df-xms 22927  df-ms 22928  df-nm 23189  df-ngp 23190  df-tng 23191  df-nrg 23192  df-nlm 23193  df-clm 23668  df-cph 23773  df-tcph 23774
This theorem is referenced by:  rrxcph  23996
  Copyright terms: Public domain W3C validator