MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tcphcph Structured version   Visualization version   GIF version

Theorem tcphcph 24601
Description: The standard definition of a norm turns any pre-Hilbert space over a subfield of fld closed under square roots of nonnegative reals into a subcomplex pre-Hilbert space (which allows access to a norm, metric, and topology). (Contributed by Mario Carneiro, 11-Oct-2015.)
Hypotheses
Ref Expression
tcphval.n 𝐺 = (toℂPreHil‘𝑊)
tcphcph.v 𝑉 = (Base‘𝑊)
tcphcph.f 𝐹 = (Scalar‘𝑊)
tcphcph.1 (𝜑𝑊 ∈ PreHil)
tcphcph.2 (𝜑𝐹 = (ℂflds 𝐾))
tcphcph.h , = (·𝑖𝑊)
tcphcph.3 ((𝜑 ∧ (𝑥𝐾𝑥 ∈ ℝ ∧ 0 ≤ 𝑥)) → (√‘𝑥) ∈ 𝐾)
tcphcph.4 ((𝜑𝑥𝑉) → 0 ≤ (𝑥 , 𝑥))
Assertion
Ref Expression
tcphcph (𝜑𝐺 ∈ ℂPreHil)
Distinct variable groups:   𝑥, ,   𝑥,𝐹   𝑥,𝐺   𝑥,𝑉   𝜑,𝑥   𝑥,𝑊
Allowed substitution hint:   𝐾(𝑥)

Proof of Theorem tcphcph
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tcphcph.1 . . . 4 (𝜑𝑊 ∈ PreHil)
2 tcphval.n . . . . 5 𝐺 = (toℂPreHil‘𝑊)
32tcphphl 24591 . . . 4 (𝑊 ∈ PreHil ↔ 𝐺 ∈ PreHil)
41, 3sylib 217 . . 3 (𝜑𝐺 ∈ PreHil)
5 tcphcph.v . . . . . . 7 𝑉 = (Base‘𝑊)
6 tcphcph.h . . . . . . 7 , = (·𝑖𝑊)
72, 5, 6tcphval 24582 . . . . . 6 𝐺 = (𝑊 toNrmGrp (𝑥𝑉 ↦ (√‘(𝑥 , 𝑥))))
8 eqid 2736 . . . . . 6 (-g𝑊) = (-g𝑊)
9 eqid 2736 . . . . . 6 (0g𝑊) = (0g𝑊)
10 phllmod 21034 . . . . . . . 8 (𝑊 ∈ PreHil → 𝑊 ∈ LMod)
111, 10syl 17 . . . . . . 7 (𝜑𝑊 ∈ LMod)
12 lmodgrp 20329 . . . . . . 7 (𝑊 ∈ LMod → 𝑊 ∈ Grp)
1311, 12syl 17 . . . . . 6 (𝜑𝑊 ∈ Grp)
14 tcphcph.f . . . . . . . . 9 𝐹 = (Scalar‘𝑊)
15 tcphcph.2 . . . . . . . . 9 (𝜑𝐹 = (ℂflds 𝐾))
162, 5, 14, 1, 15, 6tcphcphlem3 24597 . . . . . . . 8 ((𝜑𝑥𝑉) → (𝑥 , 𝑥) ∈ ℝ)
17 tcphcph.4 . . . . . . . 8 ((𝜑𝑥𝑉) → 0 ≤ (𝑥 , 𝑥))
1816, 17resqrtcld 15302 . . . . . . 7 ((𝜑𝑥𝑉) → (√‘(𝑥 , 𝑥)) ∈ ℝ)
1918fmpttd 7063 . . . . . 6 (𝜑 → (𝑥𝑉 ↦ (√‘(𝑥 , 𝑥))):𝑉⟶ℝ)
20 oveq12 7366 . . . . . . . . . . . 12 ((𝑥 = 𝑦𝑥 = 𝑦) → (𝑥 , 𝑥) = (𝑦 , 𝑦))
2120anidms 567 . . . . . . . . . . 11 (𝑥 = 𝑦 → (𝑥 , 𝑥) = (𝑦 , 𝑦))
2221fveq2d 6846 . . . . . . . . . 10 (𝑥 = 𝑦 → (√‘(𝑥 , 𝑥)) = (√‘(𝑦 , 𝑦)))
23 eqid 2736 . . . . . . . . . 10 (𝑥𝑉 ↦ (√‘(𝑥 , 𝑥))) = (𝑥𝑉 ↦ (√‘(𝑥 , 𝑥)))
24 fvex 6855 . . . . . . . . . 10 (√‘(𝑥 , 𝑥)) ∈ V
2522, 23, 24fvmpt3i 6953 . . . . . . . . 9 (𝑦𝑉 → ((𝑥𝑉 ↦ (√‘(𝑥 , 𝑥)))‘𝑦) = (√‘(𝑦 , 𝑦)))
2625adantl 482 . . . . . . . 8 ((𝜑𝑦𝑉) → ((𝑥𝑉 ↦ (√‘(𝑥 , 𝑥)))‘𝑦) = (√‘(𝑦 , 𝑦)))
2726eqeq1d 2738 . . . . . . 7 ((𝜑𝑦𝑉) → (((𝑥𝑉 ↦ (√‘(𝑥 , 𝑥)))‘𝑦) = 0 ↔ (√‘(𝑦 , 𝑦)) = 0))
28 eqid 2736 . . . . . . . . . . . . . . 15 (Base‘𝐹) = (Base‘𝐹)
29 phllvec 21033 . . . . . . . . . . . . . . . . 17 (𝑊 ∈ PreHil → 𝑊 ∈ LVec)
301, 29syl 17 . . . . . . . . . . . . . . . 16 (𝜑𝑊 ∈ LVec)
3114lvecdrng 20566 . . . . . . . . . . . . . . . 16 (𝑊 ∈ LVec → 𝐹 ∈ DivRing)
3230, 31syl 17 . . . . . . . . . . . . . . 15 (𝜑𝐹 ∈ DivRing)
3328, 15, 32cphsubrglem 24541 . . . . . . . . . . . . . 14 (𝜑 → (𝐹 = (ℂflds (Base‘𝐹)) ∧ (Base‘𝐹) = (𝐾 ∩ ℂ) ∧ (Base‘𝐹) ∈ (SubRing‘ℂfld)))
3433simp2d 1143 . . . . . . . . . . . . 13 (𝜑 → (Base‘𝐹) = (𝐾 ∩ ℂ))
35 inss2 4189 . . . . . . . . . . . . 13 (𝐾 ∩ ℂ) ⊆ ℂ
3634, 35eqsstrdi 3998 . . . . . . . . . . . 12 (𝜑 → (Base‘𝐹) ⊆ ℂ)
3736adantr 481 . . . . . . . . . . 11 ((𝜑𝑦𝑉) → (Base‘𝐹) ⊆ ℂ)
3814, 6, 5, 28ipcl 21037 . . . . . . . . . . . . 13 ((𝑊 ∈ PreHil ∧ 𝑦𝑉𝑦𝑉) → (𝑦 , 𝑦) ∈ (Base‘𝐹))
39383anidm23 1421 . . . . . . . . . . . 12 ((𝑊 ∈ PreHil ∧ 𝑦𝑉) → (𝑦 , 𝑦) ∈ (Base‘𝐹))
401, 39sylan 580 . . . . . . . . . . 11 ((𝜑𝑦𝑉) → (𝑦 , 𝑦) ∈ (Base‘𝐹))
4137, 40sseldd 3945 . . . . . . . . . 10 ((𝜑𝑦𝑉) → (𝑦 , 𝑦) ∈ ℂ)
4241sqrtcld 15322 . . . . . . . . 9 ((𝜑𝑦𝑉) → (√‘(𝑦 , 𝑦)) ∈ ℂ)
43 sqeq0 14025 . . . . . . . . 9 ((√‘(𝑦 , 𝑦)) ∈ ℂ → (((√‘(𝑦 , 𝑦))↑2) = 0 ↔ (√‘(𝑦 , 𝑦)) = 0))
4442, 43syl 17 . . . . . . . 8 ((𝜑𝑦𝑉) → (((√‘(𝑦 , 𝑦))↑2) = 0 ↔ (√‘(𝑦 , 𝑦)) = 0))
4541sqsqrtd 15324 . . . . . . . . 9 ((𝜑𝑦𝑉) → ((√‘(𝑦 , 𝑦))↑2) = (𝑦 , 𝑦))
462, 5, 14, 1, 15phclm 24596 . . . . . . . . . . 11 (𝜑𝑊 ∈ ℂMod)
4714clm0 24435 . . . . . . . . . . 11 (𝑊 ∈ ℂMod → 0 = (0g𝐹))
4846, 47syl 17 . . . . . . . . . 10 (𝜑 → 0 = (0g𝐹))
4948adantr 481 . . . . . . . . 9 ((𝜑𝑦𝑉) → 0 = (0g𝐹))
5045, 49eqeq12d 2752 . . . . . . . 8 ((𝜑𝑦𝑉) → (((√‘(𝑦 , 𝑦))↑2) = 0 ↔ (𝑦 , 𝑦) = (0g𝐹)))
5144, 50bitr3d 280 . . . . . . 7 ((𝜑𝑦𝑉) → ((√‘(𝑦 , 𝑦)) = 0 ↔ (𝑦 , 𝑦) = (0g𝐹)))
52 eqid 2736 . . . . . . . . 9 (0g𝐹) = (0g𝐹)
5314, 6, 5, 52, 9ipeq0 21042 . . . . . . . 8 ((𝑊 ∈ PreHil ∧ 𝑦𝑉) → ((𝑦 , 𝑦) = (0g𝐹) ↔ 𝑦 = (0g𝑊)))
541, 53sylan 580 . . . . . . 7 ((𝜑𝑦𝑉) → ((𝑦 , 𝑦) = (0g𝐹) ↔ 𝑦 = (0g𝑊)))
5527, 51, 543bitrd 304 . . . . . 6 ((𝜑𝑦𝑉) → (((𝑥𝑉 ↦ (√‘(𝑥 , 𝑥)))‘𝑦) = 0 ↔ 𝑦 = (0g𝑊)))
561adantr 481 . . . . . . . 8 ((𝜑 ∧ (𝑦𝑉𝑧𝑉)) → 𝑊 ∈ PreHil)
5733simp1d 1142 . . . . . . . . 9 (𝜑𝐹 = (ℂflds (Base‘𝐹)))
5857adantr 481 . . . . . . . 8 ((𝜑 ∧ (𝑦𝑉𝑧𝑉)) → 𝐹 = (ℂflds (Base‘𝐹)))
59 3anass 1095 . . . . . . . . . . 11 ((𝑥 ∈ (Base‘𝐹) ∧ 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ↔ (𝑥 ∈ (Base‘𝐹) ∧ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥)))
60 tcphcph.3 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥𝐾𝑥 ∈ ℝ ∧ 0 ≤ 𝑥)) → (√‘𝑥) ∈ 𝐾)
61 simpr2 1195 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑥𝐾𝑥 ∈ ℝ ∧ 0 ≤ 𝑥)) → 𝑥 ∈ ℝ)
6261recnd 11183 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑥𝐾𝑥 ∈ ℝ ∧ 0 ≤ 𝑥)) → 𝑥 ∈ ℂ)
6362sqrtcld 15322 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥𝐾𝑥 ∈ ℝ ∧ 0 ≤ 𝑥)) → (√‘𝑥) ∈ ℂ)
6460, 63jca 512 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥𝐾𝑥 ∈ ℝ ∧ 0 ≤ 𝑥)) → ((√‘𝑥) ∈ 𝐾 ∧ (√‘𝑥) ∈ ℂ))
6564ex 413 . . . . . . . . . . . 12 (𝜑 → ((𝑥𝐾𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) → ((√‘𝑥) ∈ 𝐾 ∧ (√‘𝑥) ∈ ℂ)))
6634eleq2d 2823 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑥 ∈ (Base‘𝐹) ↔ 𝑥 ∈ (𝐾 ∩ ℂ)))
67 recn 11141 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ℝ → 𝑥 ∈ ℂ)
68 elin 3926 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ (𝐾 ∩ ℂ) ↔ (𝑥𝐾𝑥 ∈ ℂ))
6968rbaib 539 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ℂ → (𝑥 ∈ (𝐾 ∩ ℂ) ↔ 𝑥𝐾))
7067, 69syl 17 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ℝ → (𝑥 ∈ (𝐾 ∩ ℂ) ↔ 𝑥𝐾))
7166, 70sylan9bb 510 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ ℝ) → (𝑥 ∈ (Base‘𝐹) ↔ 𝑥𝐾))
7271adantrr 715 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥)) → (𝑥 ∈ (Base‘𝐹) ↔ 𝑥𝐾))
7372ex 413 . . . . . . . . . . . . . 14 (𝜑 → ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) → (𝑥 ∈ (Base‘𝐹) ↔ 𝑥𝐾)))
7473pm5.32rd 578 . . . . . . . . . . . . 13 (𝜑 → ((𝑥 ∈ (Base‘𝐹) ∧ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥)) ↔ (𝑥𝐾 ∧ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥))))
75 3anass 1095 . . . . . . . . . . . . 13 ((𝑥𝐾𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ↔ (𝑥𝐾 ∧ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥)))
7674, 75bitr4di 288 . . . . . . . . . . . 12 (𝜑 → ((𝑥 ∈ (Base‘𝐹) ∧ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥)) ↔ (𝑥𝐾𝑥 ∈ ℝ ∧ 0 ≤ 𝑥)))
7734eleq2d 2823 . . . . . . . . . . . . 13 (𝜑 → ((√‘𝑥) ∈ (Base‘𝐹) ↔ (√‘𝑥) ∈ (𝐾 ∩ ℂ)))
78 elin 3926 . . . . . . . . . . . . 13 ((√‘𝑥) ∈ (𝐾 ∩ ℂ) ↔ ((√‘𝑥) ∈ 𝐾 ∧ (√‘𝑥) ∈ ℂ))
7977, 78bitrdi 286 . . . . . . . . . . . 12 (𝜑 → ((√‘𝑥) ∈ (Base‘𝐹) ↔ ((√‘𝑥) ∈ 𝐾 ∧ (√‘𝑥) ∈ ℂ)))
8065, 76, 793imtr4d 293 . . . . . . . . . . 11 (𝜑 → ((𝑥 ∈ (Base‘𝐹) ∧ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥)) → (√‘𝑥) ∈ (Base‘𝐹)))
8159, 80biimtrid 241 . . . . . . . . . 10 (𝜑 → ((𝑥 ∈ (Base‘𝐹) ∧ 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) → (√‘𝑥) ∈ (Base‘𝐹)))
8281imp 407 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥)) → (√‘𝑥) ∈ (Base‘𝐹))
8382adantlr 713 . . . . . . . 8 (((𝜑 ∧ (𝑦𝑉𝑧𝑉)) ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥)) → (√‘𝑥) ∈ (Base‘𝐹))
8417adantlr 713 . . . . . . . 8 (((𝜑 ∧ (𝑦𝑉𝑧𝑉)) ∧ 𝑥𝑉) → 0 ≤ (𝑥 , 𝑥))
85 simprl 769 . . . . . . . 8 ((𝜑 ∧ (𝑦𝑉𝑧𝑉)) → 𝑦𝑉)
86 simprr 771 . . . . . . . 8 ((𝜑 ∧ (𝑦𝑉𝑧𝑉)) → 𝑧𝑉)
872, 5, 14, 56, 58, 6, 83, 84, 28, 8, 85, 86tcphcphlem1 24599 . . . . . . 7 ((𝜑 ∧ (𝑦𝑉𝑧𝑉)) → (√‘((𝑦(-g𝑊)𝑧) , (𝑦(-g𝑊)𝑧))) ≤ ((√‘(𝑦 , 𝑦)) + (√‘(𝑧 , 𝑧))))
885, 8grpsubcl 18827 . . . . . . . . . 10 ((𝑊 ∈ Grp ∧ 𝑦𝑉𝑧𝑉) → (𝑦(-g𝑊)𝑧) ∈ 𝑉)
89883expb 1120 . . . . . . . . 9 ((𝑊 ∈ Grp ∧ (𝑦𝑉𝑧𝑉)) → (𝑦(-g𝑊)𝑧) ∈ 𝑉)
9013, 89sylan 580 . . . . . . . 8 ((𝜑 ∧ (𝑦𝑉𝑧𝑉)) → (𝑦(-g𝑊)𝑧) ∈ 𝑉)
91 oveq12 7366 . . . . . . . . . . 11 ((𝑥 = (𝑦(-g𝑊)𝑧) ∧ 𝑥 = (𝑦(-g𝑊)𝑧)) → (𝑥 , 𝑥) = ((𝑦(-g𝑊)𝑧) , (𝑦(-g𝑊)𝑧)))
9291anidms 567 . . . . . . . . . 10 (𝑥 = (𝑦(-g𝑊)𝑧) → (𝑥 , 𝑥) = ((𝑦(-g𝑊)𝑧) , (𝑦(-g𝑊)𝑧)))
9392fveq2d 6846 . . . . . . . . 9 (𝑥 = (𝑦(-g𝑊)𝑧) → (√‘(𝑥 , 𝑥)) = (√‘((𝑦(-g𝑊)𝑧) , (𝑦(-g𝑊)𝑧))))
9493, 23, 24fvmpt3i 6953 . . . . . . . 8 ((𝑦(-g𝑊)𝑧) ∈ 𝑉 → ((𝑥𝑉 ↦ (√‘(𝑥 , 𝑥)))‘(𝑦(-g𝑊)𝑧)) = (√‘((𝑦(-g𝑊)𝑧) , (𝑦(-g𝑊)𝑧))))
9590, 94syl 17 . . . . . . 7 ((𝜑 ∧ (𝑦𝑉𝑧𝑉)) → ((𝑥𝑉 ↦ (√‘(𝑥 , 𝑥)))‘(𝑦(-g𝑊)𝑧)) = (√‘((𝑦(-g𝑊)𝑧) , (𝑦(-g𝑊)𝑧))))
96 oveq12 7366 . . . . . . . . . . . 12 ((𝑥 = 𝑧𝑥 = 𝑧) → (𝑥 , 𝑥) = (𝑧 , 𝑧))
9796anidms 567 . . . . . . . . . . 11 (𝑥 = 𝑧 → (𝑥 , 𝑥) = (𝑧 , 𝑧))
9897fveq2d 6846 . . . . . . . . . 10 (𝑥 = 𝑧 → (√‘(𝑥 , 𝑥)) = (√‘(𝑧 , 𝑧)))
9998, 23, 24fvmpt3i 6953 . . . . . . . . 9 (𝑧𝑉 → ((𝑥𝑉 ↦ (√‘(𝑥 , 𝑥)))‘𝑧) = (√‘(𝑧 , 𝑧)))
10025, 99oveqan12d 7376 . . . . . . . 8 ((𝑦𝑉𝑧𝑉) → (((𝑥𝑉 ↦ (√‘(𝑥 , 𝑥)))‘𝑦) + ((𝑥𝑉 ↦ (√‘(𝑥 , 𝑥)))‘𝑧)) = ((√‘(𝑦 , 𝑦)) + (√‘(𝑧 , 𝑧))))
101100adantl 482 . . . . . . 7 ((𝜑 ∧ (𝑦𝑉𝑧𝑉)) → (((𝑥𝑉 ↦ (√‘(𝑥 , 𝑥)))‘𝑦) + ((𝑥𝑉 ↦ (√‘(𝑥 , 𝑥)))‘𝑧)) = ((√‘(𝑦 , 𝑦)) + (√‘(𝑧 , 𝑧))))
10287, 95, 1013brtr4d 5137 . . . . . 6 ((𝜑 ∧ (𝑦𝑉𝑧𝑉)) → ((𝑥𝑉 ↦ (√‘(𝑥 , 𝑥)))‘(𝑦(-g𝑊)𝑧)) ≤ (((𝑥𝑉 ↦ (√‘(𝑥 , 𝑥)))‘𝑦) + ((𝑥𝑉 ↦ (√‘(𝑥 , 𝑥)))‘𝑧)))
1037, 5, 8, 9, 13, 19, 55, 102tngngpd 24017 . . . . 5 (𝜑𝐺 ∈ NrmGrp)
104 phllmod 21034 . . . . . 6 (𝐺 ∈ PreHil → 𝐺 ∈ LMod)
1054, 104syl 17 . . . . 5 (𝜑𝐺 ∈ LMod)
106 cnnrg 24144 . . . . . . 7 fld ∈ NrmRing
10733simp3d 1144 . . . . . . 7 (𝜑 → (Base‘𝐹) ∈ (SubRing‘ℂfld))
108 eqid 2736 . . . . . . . 8 (ℂflds (Base‘𝐹)) = (ℂflds (Base‘𝐹))
109108subrgnrg 24037 . . . . . . 7 ((ℂfld ∈ NrmRing ∧ (Base‘𝐹) ∈ (SubRing‘ℂfld)) → (ℂflds (Base‘𝐹)) ∈ NrmRing)
110106, 107, 109sylancr 587 . . . . . 6 (𝜑 → (ℂflds (Base‘𝐹)) ∈ NrmRing)
11157, 110eqeltrd 2838 . . . . 5 (𝜑𝐹 ∈ NrmRing)
112103, 105, 1113jca 1128 . . . 4 (𝜑 → (𝐺 ∈ NrmGrp ∧ 𝐺 ∈ LMod ∧ 𝐹 ∈ NrmRing))
1131adantr 481 . . . . . . 7 ((𝜑 ∧ (𝑦 ∈ (Base‘𝐹) ∧ 𝑧𝑉)) → 𝑊 ∈ PreHil)
11457adantr 481 . . . . . . 7 ((𝜑 ∧ (𝑦 ∈ (Base‘𝐹) ∧ 𝑧𝑉)) → 𝐹 = (ℂflds (Base‘𝐹)))
11582adantlr 713 . . . . . . 7 (((𝜑 ∧ (𝑦 ∈ (Base‘𝐹) ∧ 𝑧𝑉)) ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥)) → (√‘𝑥) ∈ (Base‘𝐹))
11617adantlr 713 . . . . . . 7 (((𝜑 ∧ (𝑦 ∈ (Base‘𝐹) ∧ 𝑧𝑉)) ∧ 𝑥𝑉) → 0 ≤ (𝑥 , 𝑥))
117 eqid 2736 . . . . . . 7 ( ·𝑠𝑊) = ( ·𝑠𝑊)
118 simprl 769 . . . . . . 7 ((𝜑 ∧ (𝑦 ∈ (Base‘𝐹) ∧ 𝑧𝑉)) → 𝑦 ∈ (Base‘𝐹))
119 simprr 771 . . . . . . 7 ((𝜑 ∧ (𝑦 ∈ (Base‘𝐹) ∧ 𝑧𝑉)) → 𝑧𝑉)
1202, 5, 14, 113, 114, 6, 115, 116, 28, 117, 118, 119tcphcphlem2 24600 . . . . . 6 ((𝜑 ∧ (𝑦 ∈ (Base‘𝐹) ∧ 𝑧𝑉)) → (√‘((𝑦( ·𝑠𝑊)𝑧) , (𝑦( ·𝑠𝑊)𝑧))) = ((abs‘𝑦) · (√‘(𝑧 , 𝑧))))
1215, 14, 117, 28lmodvscl 20339 . . . . . . . . 9 ((𝑊 ∈ LMod ∧ 𝑦 ∈ (Base‘𝐹) ∧ 𝑧𝑉) → (𝑦( ·𝑠𝑊)𝑧) ∈ 𝑉)
1221213expb 1120 . . . . . . . 8 ((𝑊 ∈ LMod ∧ (𝑦 ∈ (Base‘𝐹) ∧ 𝑧𝑉)) → (𝑦( ·𝑠𝑊)𝑧) ∈ 𝑉)
12311, 122sylan 580 . . . . . . 7 ((𝜑 ∧ (𝑦 ∈ (Base‘𝐹) ∧ 𝑧𝑉)) → (𝑦( ·𝑠𝑊)𝑧) ∈ 𝑉)
124 eqid 2736 . . . . . . . 8 (norm‘𝐺) = (norm‘𝐺)
1252, 124, 5, 6tcphnmval 24593 . . . . . . 7 ((𝑊 ∈ Grp ∧ (𝑦( ·𝑠𝑊)𝑧) ∈ 𝑉) → ((norm‘𝐺)‘(𝑦( ·𝑠𝑊)𝑧)) = (√‘((𝑦( ·𝑠𝑊)𝑧) , (𝑦( ·𝑠𝑊)𝑧))))
12613, 123, 125syl2an2r 683 . . . . . 6 ((𝜑 ∧ (𝑦 ∈ (Base‘𝐹) ∧ 𝑧𝑉)) → ((norm‘𝐺)‘(𝑦( ·𝑠𝑊)𝑧)) = (√‘((𝑦( ·𝑠𝑊)𝑧) , (𝑦( ·𝑠𝑊)𝑧))))
127114fveq2d 6846 . . . . . . . . 9 ((𝜑 ∧ (𝑦 ∈ (Base‘𝐹) ∧ 𝑧𝑉)) → (norm‘𝐹) = (norm‘(ℂflds (Base‘𝐹))))
128127fveq1d 6844 . . . . . . . 8 ((𝜑 ∧ (𝑦 ∈ (Base‘𝐹) ∧ 𝑧𝑉)) → ((norm‘𝐹)‘𝑦) = ((norm‘(ℂflds (Base‘𝐹)))‘𝑦))
129 subrgsubg 20228 . . . . . . . . . 10 ((Base‘𝐹) ∈ (SubRing‘ℂfld) → (Base‘𝐹) ∈ (SubGrp‘ℂfld))
130107, 129syl 17 . . . . . . . . 9 (𝜑 → (Base‘𝐹) ∈ (SubGrp‘ℂfld))
131 cnfldnm 24142 . . . . . . . . . 10 abs = (norm‘ℂfld)
132 eqid 2736 . . . . . . . . . 10 (norm‘(ℂflds (Base‘𝐹))) = (norm‘(ℂflds (Base‘𝐹)))
133108, 131, 132subgnm2 23990 . . . . . . . . 9 (((Base‘𝐹) ∈ (SubGrp‘ℂfld) ∧ 𝑦 ∈ (Base‘𝐹)) → ((norm‘(ℂflds (Base‘𝐹)))‘𝑦) = (abs‘𝑦))
134130, 118, 133syl2an2r 683 . . . . . . . 8 ((𝜑 ∧ (𝑦 ∈ (Base‘𝐹) ∧ 𝑧𝑉)) → ((norm‘(ℂflds (Base‘𝐹)))‘𝑦) = (abs‘𝑦))
135128, 134eqtrd 2776 . . . . . . 7 ((𝜑 ∧ (𝑦 ∈ (Base‘𝐹) ∧ 𝑧𝑉)) → ((norm‘𝐹)‘𝑦) = (abs‘𝑦))
1362, 124, 5, 6tcphnmval 24593 . . . . . . . 8 ((𝑊 ∈ Grp ∧ 𝑧𝑉) → ((norm‘𝐺)‘𝑧) = (√‘(𝑧 , 𝑧)))
13713, 119, 136syl2an2r 683 . . . . . . 7 ((𝜑 ∧ (𝑦 ∈ (Base‘𝐹) ∧ 𝑧𝑉)) → ((norm‘𝐺)‘𝑧) = (√‘(𝑧 , 𝑧)))
138135, 137oveq12d 7375 . . . . . 6 ((𝜑 ∧ (𝑦 ∈ (Base‘𝐹) ∧ 𝑧𝑉)) → (((norm‘𝐹)‘𝑦) · ((norm‘𝐺)‘𝑧)) = ((abs‘𝑦) · (√‘(𝑧 , 𝑧))))
139120, 126, 1383eqtr4d 2786 . . . . 5 ((𝜑 ∧ (𝑦 ∈ (Base‘𝐹) ∧ 𝑧𝑉)) → ((norm‘𝐺)‘(𝑦( ·𝑠𝑊)𝑧)) = (((norm‘𝐹)‘𝑦) · ((norm‘𝐺)‘𝑧)))
140139ralrimivva 3197 . . . 4 (𝜑 → ∀𝑦 ∈ (Base‘𝐹)∀𝑧𝑉 ((norm‘𝐺)‘(𝑦( ·𝑠𝑊)𝑧)) = (((norm‘𝐹)‘𝑦) · ((norm‘𝐺)‘𝑧)))
1412, 5tcphbas 24583 . . . . 5 𝑉 = (Base‘𝐺)
1422, 117tcphvsca 24588 . . . . 5 ( ·𝑠𝑊) = ( ·𝑠𝐺)
1432, 14tcphsca 24587 . . . . 5 𝐹 = (Scalar‘𝐺)
144 eqid 2736 . . . . 5 (norm‘𝐹) = (norm‘𝐹)
145141, 124, 142, 143, 28, 144isnlm 24039 . . . 4 (𝐺 ∈ NrmMod ↔ ((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ LMod ∧ 𝐹 ∈ NrmRing) ∧ ∀𝑦 ∈ (Base‘𝐹)∀𝑧𝑉 ((norm‘𝐺)‘(𝑦( ·𝑠𝑊)𝑧)) = (((norm‘𝐹)‘𝑦) · ((norm‘𝐺)‘𝑧))))
146112, 140, 145sylanbrc 583 . . 3 (𝜑𝐺 ∈ NrmMod)
1474, 146, 573jca 1128 . 2 (𝜑 → (𝐺 ∈ PreHil ∧ 𝐺 ∈ NrmMod ∧ 𝐹 = (ℂflds (Base‘𝐹))))
148 elin 3926 . . . . . 6 (𝑥 ∈ ((Base‘𝐹) ∩ (0[,)+∞)) ↔ (𝑥 ∈ (Base‘𝐹) ∧ 𝑥 ∈ (0[,)+∞)))
149 elrege0 13371 . . . . . . 7 (𝑥 ∈ (0[,)+∞) ↔ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥))
150149anbi2i 623 . . . . . 6 ((𝑥 ∈ (Base‘𝐹) ∧ 𝑥 ∈ (0[,)+∞)) ↔ (𝑥 ∈ (Base‘𝐹) ∧ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥)))
151148, 150bitri 274 . . . . 5 (𝑥 ∈ ((Base‘𝐹) ∩ (0[,)+∞)) ↔ (𝑥 ∈ (Base‘𝐹) ∧ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥)))
152151, 80biimtrid 241 . . . 4 (𝜑 → (𝑥 ∈ ((Base‘𝐹) ∩ (0[,)+∞)) → (√‘𝑥) ∈ (Base‘𝐹)))
153152ralrimiv 3142 . . 3 (𝜑 → ∀𝑥 ∈ ((Base‘𝐹) ∩ (0[,)+∞))(√‘𝑥) ∈ (Base‘𝐹))
154 sqrtf 15248 . . . . 5 √:ℂ⟶ℂ
155 ffun 6671 . . . . 5 (√:ℂ⟶ℂ → Fun √)
156154, 155ax-mp 5 . . . 4 Fun √
157 inss1 4188 . . . . . 6 ((Base‘𝐹) ∩ (0[,)+∞)) ⊆ (Base‘𝐹)
158157, 36sstrid 3955 . . . . 5 (𝜑 → ((Base‘𝐹) ∩ (0[,)+∞)) ⊆ ℂ)
159154fdmi 6680 . . . . 5 dom √ = ℂ
160158, 159sseqtrrdi 3995 . . . 4 (𝜑 → ((Base‘𝐹) ∩ (0[,)+∞)) ⊆ dom √)
161 funimass4 6907 . . . 4 ((Fun √ ∧ ((Base‘𝐹) ∩ (0[,)+∞)) ⊆ dom √) → ((√ “ ((Base‘𝐹) ∩ (0[,)+∞))) ⊆ (Base‘𝐹) ↔ ∀𝑥 ∈ ((Base‘𝐹) ∩ (0[,)+∞))(√‘𝑥) ∈ (Base‘𝐹)))
162156, 160, 161sylancr 587 . . 3 (𝜑 → ((√ “ ((Base‘𝐹) ∩ (0[,)+∞))) ⊆ (Base‘𝐹) ↔ ∀𝑥 ∈ ((Base‘𝐹) ∩ (0[,)+∞))(√‘𝑥) ∈ (Base‘𝐹)))
163153, 162mpbird 256 . 2 (𝜑 → (√ “ ((Base‘𝐹) ∩ (0[,)+∞))) ⊆ (Base‘𝐹))
16442fmpttd 7063 . . . 4 (𝜑 → (𝑦𝑉 ↦ (√‘(𝑦 , 𝑦))):𝑉⟶ℂ)
1652, 5, 6tcphval 24582 . . . . 5 𝐺 = (𝑊 toNrmGrp (𝑦𝑉 ↦ (√‘(𝑦 , 𝑦))))
166 cnex 11132 . . . . 5 ℂ ∈ V
167165, 5, 166tngnm 24015 . . . 4 ((𝑊 ∈ Grp ∧ (𝑦𝑉 ↦ (√‘(𝑦 , 𝑦))):𝑉⟶ℂ) → (𝑦𝑉 ↦ (√‘(𝑦 , 𝑦))) = (norm‘𝐺))
16813, 164, 167syl2anc 584 . . 3 (𝜑 → (𝑦𝑉 ↦ (√‘(𝑦 , 𝑦))) = (norm‘𝐺))
169168eqcomd 2742 . 2 (𝜑 → (norm‘𝐺) = (𝑦𝑉 ↦ (√‘(𝑦 , 𝑦))))
1702, 6tcphip 24589 . . 3 , = (·𝑖𝐺)
171141, 170, 124, 143, 28iscph 24534 . 2 (𝐺 ∈ ℂPreHil ↔ ((𝐺 ∈ PreHil ∧ 𝐺 ∈ NrmMod ∧ 𝐹 = (ℂflds (Base‘𝐹))) ∧ (√ “ ((Base‘𝐹) ∩ (0[,)+∞))) ⊆ (Base‘𝐹) ∧ (norm‘𝐺) = (𝑦𝑉 ↦ (√‘(𝑦 , 𝑦)))))
172147, 163, 169, 171syl3anbrc 1343 1 (𝜑𝐺 ∈ ℂPreHil)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wral 3064  cin 3909  wss 3910   class class class wbr 5105  cmpt 5188  dom cdm 5633  cima 5636  Fun wfun 6490  wf 6492  cfv 6496  (class class class)co 7357  cc 11049  cr 11050  0cc0 11051   + caddc 11054   · cmul 11056  +∞cpnf 11186  cle 11190  2c2 12208  [,)cico 13266  cexp 13967  csqrt 15118  abscabs 15119  Basecbs 17083  s cress 17112  Scalarcsca 17136   ·𝑠 cvsca 17137  ·𝑖cip 17138  0gc0g 17321  Grpcgrp 18748  -gcsg 18750  SubGrpcsubg 18922  DivRingcdr 20185  SubRingcsubrg 20218  LModclmod 20322  LVecclvec 20563  fldccnfld 20796  PreHilcphl 21028  normcnm 23932  NrmGrpcngp 23933  NrmRingcnrg 23935  NrmModcnlm 23936  ℂModcclm 24425  ℂPreHilccph 24530  toℂPreHilctcph 24531
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129  ax-addf 11130  ax-mulf 11131
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-tpos 8157  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-er 8648  df-map 8767  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-sup 9378  df-inf 9379  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-z 12500  df-dec 12619  df-uz 12764  df-q 12874  df-rp 12916  df-xneg 13033  df-xadd 13034  df-xmul 13035  df-ico 13270  df-fz 13425  df-seq 13907  df-exp 13968  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-struct 17019  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-mulr 17147  df-starv 17148  df-sca 17149  df-vsca 17150  df-ip 17151  df-tset 17152  df-ple 17153  df-ds 17155  df-unif 17156  df-rest 17304  df-topn 17305  df-0g 17323  df-topgen 17325  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-mhm 18601  df-grp 18751  df-minusg 18752  df-sbg 18753  df-subg 18925  df-ghm 19006  df-cmn 19564  df-abl 19565  df-mgp 19897  df-ur 19914  df-ring 19966  df-cring 19967  df-oppr 20049  df-dvdsr 20070  df-unit 20071  df-invr 20101  df-dvr 20112  df-rnghom 20146  df-drng 20187  df-subrg 20220  df-abv 20276  df-staf 20304  df-srng 20305  df-lmod 20324  df-lmhm 20483  df-lvec 20564  df-sra 20633  df-rgmod 20634  df-psmet 20788  df-xmet 20789  df-met 20790  df-bl 20791  df-mopn 20792  df-cnfld 20797  df-phl 21030  df-top 22243  df-topon 22260  df-topsp 22282  df-bases 22296  df-xms 23673  df-ms 23674  df-nm 23938  df-ngp 23939  df-tng 23940  df-nrg 23941  df-nlm 23942  df-clm 24426  df-cph 24532  df-tcph 24533
This theorem is referenced by:  rrxcph  24756
  Copyright terms: Public domain W3C validator