Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  tcphcph Structured version   Visualization version   GIF version

Theorem tcphcph 23937
 Description: The standard definition of a norm turns any pre-Hilbert space over a subfield of ℂfld closed under square roots of nonnegative reals into a subcomplex pre-Hilbert space (which allows access to a norm, metric, and topology). (Contributed by Mario Carneiro, 11-Oct-2015.)
Hypotheses
Ref Expression
tcphval.n 𝐺 = (toℂPreHil‘𝑊)
tcphcph.v 𝑉 = (Base‘𝑊)
tcphcph.f 𝐹 = (Scalar‘𝑊)
tcphcph.1 (𝜑𝑊 ∈ PreHil)
tcphcph.2 (𝜑𝐹 = (ℂflds 𝐾))
tcphcph.h , = (·𝑖𝑊)
tcphcph.3 ((𝜑 ∧ (𝑥𝐾𝑥 ∈ ℝ ∧ 0 ≤ 𝑥)) → (√‘𝑥) ∈ 𝐾)
tcphcph.4 ((𝜑𝑥𝑉) → 0 ≤ (𝑥 , 𝑥))
Assertion
Ref Expression
tcphcph (𝜑𝐺 ∈ ℂPreHil)
Distinct variable groups:   𝑥, ,   𝑥,𝐹   𝑥,𝐺   𝑥,𝑉   𝜑,𝑥   𝑥,𝑊
Allowed substitution hint:   𝐾(𝑥)

Proof of Theorem tcphcph
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tcphcph.1 . . . 4 (𝜑𝑊 ∈ PreHil)
2 tcphval.n . . . . 5 𝐺 = (toℂPreHil‘𝑊)
32tcphphl 23927 . . . 4 (𝑊 ∈ PreHil ↔ 𝐺 ∈ PreHil)
41, 3sylib 221 . . 3 (𝜑𝐺 ∈ PreHil)
5 tcphcph.v . . . . . . 7 𝑉 = (Base‘𝑊)
6 tcphcph.h . . . . . . 7 , = (·𝑖𝑊)
72, 5, 6tcphval 23918 . . . . . 6 𝐺 = (𝑊 toNrmGrp (𝑥𝑉 ↦ (√‘(𝑥 , 𝑥))))
8 eqid 2758 . . . . . 6 (-g𝑊) = (-g𝑊)
9 eqid 2758 . . . . . 6 (0g𝑊) = (0g𝑊)
10 phllmod 20395 . . . . . . . 8 (𝑊 ∈ PreHil → 𝑊 ∈ LMod)
111, 10syl 17 . . . . . . 7 (𝜑𝑊 ∈ LMod)
12 lmodgrp 19709 . . . . . . 7 (𝑊 ∈ LMod → 𝑊 ∈ Grp)
1311, 12syl 17 . . . . . 6 (𝜑𝑊 ∈ Grp)
14 tcphcph.f . . . . . . . . 9 𝐹 = (Scalar‘𝑊)
15 tcphcph.2 . . . . . . . . 9 (𝜑𝐹 = (ℂflds 𝐾))
162, 5, 14, 1, 15, 6tcphcphlem3 23933 . . . . . . . 8 ((𝜑𝑥𝑉) → (𝑥 , 𝑥) ∈ ℝ)
17 tcphcph.4 . . . . . . . 8 ((𝜑𝑥𝑉) → 0 ≤ (𝑥 , 𝑥))
1816, 17resqrtcld 14825 . . . . . . 7 ((𝜑𝑥𝑉) → (√‘(𝑥 , 𝑥)) ∈ ℝ)
1918fmpttd 6870 . . . . . 6 (𝜑 → (𝑥𝑉 ↦ (√‘(𝑥 , 𝑥))):𝑉⟶ℝ)
20 oveq12 7159 . . . . . . . . . . . 12 ((𝑥 = 𝑦𝑥 = 𝑦) → (𝑥 , 𝑥) = (𝑦 , 𝑦))
2120anidms 570 . . . . . . . . . . 11 (𝑥 = 𝑦 → (𝑥 , 𝑥) = (𝑦 , 𝑦))
2221fveq2d 6662 . . . . . . . . . 10 (𝑥 = 𝑦 → (√‘(𝑥 , 𝑥)) = (√‘(𝑦 , 𝑦)))
23 eqid 2758 . . . . . . . . . 10 (𝑥𝑉 ↦ (√‘(𝑥 , 𝑥))) = (𝑥𝑉 ↦ (√‘(𝑥 , 𝑥)))
24 fvex 6671 . . . . . . . . . 10 (√‘(𝑥 , 𝑥)) ∈ V
2522, 23, 24fvmpt3i 6764 . . . . . . . . 9 (𝑦𝑉 → ((𝑥𝑉 ↦ (√‘(𝑥 , 𝑥)))‘𝑦) = (√‘(𝑦 , 𝑦)))
2625adantl 485 . . . . . . . 8 ((𝜑𝑦𝑉) → ((𝑥𝑉 ↦ (√‘(𝑥 , 𝑥)))‘𝑦) = (√‘(𝑦 , 𝑦)))
2726eqeq1d 2760 . . . . . . 7 ((𝜑𝑦𝑉) → (((𝑥𝑉 ↦ (√‘(𝑥 , 𝑥)))‘𝑦) = 0 ↔ (√‘(𝑦 , 𝑦)) = 0))
28 eqid 2758 . . . . . . . . . . . . . . 15 (Base‘𝐹) = (Base‘𝐹)
29 phllvec 20394 . . . . . . . . . . . . . . . . 17 (𝑊 ∈ PreHil → 𝑊 ∈ LVec)
301, 29syl 17 . . . . . . . . . . . . . . . 16 (𝜑𝑊 ∈ LVec)
3114lvecdrng 19945 . . . . . . . . . . . . . . . 16 (𝑊 ∈ LVec → 𝐹 ∈ DivRing)
3230, 31syl 17 . . . . . . . . . . . . . . 15 (𝜑𝐹 ∈ DivRing)
3328, 15, 32cphsubrglem 23878 . . . . . . . . . . . . . 14 (𝜑 → (𝐹 = (ℂflds (Base‘𝐹)) ∧ (Base‘𝐹) = (𝐾 ∩ ℂ) ∧ (Base‘𝐹) ∈ (SubRing‘ℂfld)))
3433simp2d 1140 . . . . . . . . . . . . 13 (𝜑 → (Base‘𝐹) = (𝐾 ∩ ℂ))
35 inss2 4134 . . . . . . . . . . . . 13 (𝐾 ∩ ℂ) ⊆ ℂ
3634, 35eqsstrdi 3946 . . . . . . . . . . . 12 (𝜑 → (Base‘𝐹) ⊆ ℂ)
3736adantr 484 . . . . . . . . . . 11 ((𝜑𝑦𝑉) → (Base‘𝐹) ⊆ ℂ)
3814, 6, 5, 28ipcl 20398 . . . . . . . . . . . . 13 ((𝑊 ∈ PreHil ∧ 𝑦𝑉𝑦𝑉) → (𝑦 , 𝑦) ∈ (Base‘𝐹))
39383anidm23 1418 . . . . . . . . . . . 12 ((𝑊 ∈ PreHil ∧ 𝑦𝑉) → (𝑦 , 𝑦) ∈ (Base‘𝐹))
401, 39sylan 583 . . . . . . . . . . 11 ((𝜑𝑦𝑉) → (𝑦 , 𝑦) ∈ (Base‘𝐹))
4137, 40sseldd 3893 . . . . . . . . . 10 ((𝜑𝑦𝑉) → (𝑦 , 𝑦) ∈ ℂ)
4241sqrtcld 14845 . . . . . . . . 9 ((𝜑𝑦𝑉) → (√‘(𝑦 , 𝑦)) ∈ ℂ)
43 sqeq0 13536 . . . . . . . . 9 ((√‘(𝑦 , 𝑦)) ∈ ℂ → (((√‘(𝑦 , 𝑦))↑2) = 0 ↔ (√‘(𝑦 , 𝑦)) = 0))
4442, 43syl 17 . . . . . . . 8 ((𝜑𝑦𝑉) → (((√‘(𝑦 , 𝑦))↑2) = 0 ↔ (√‘(𝑦 , 𝑦)) = 0))
4541sqsqrtd 14847 . . . . . . . . 9 ((𝜑𝑦𝑉) → ((√‘(𝑦 , 𝑦))↑2) = (𝑦 , 𝑦))
462, 5, 14, 1, 15phclm 23932 . . . . . . . . . . 11 (𝜑𝑊 ∈ ℂMod)
4714clm0 23773 . . . . . . . . . . 11 (𝑊 ∈ ℂMod → 0 = (0g𝐹))
4846, 47syl 17 . . . . . . . . . 10 (𝜑 → 0 = (0g𝐹))
4948adantr 484 . . . . . . . . 9 ((𝜑𝑦𝑉) → 0 = (0g𝐹))
5045, 49eqeq12d 2774 . . . . . . . 8 ((𝜑𝑦𝑉) → (((√‘(𝑦 , 𝑦))↑2) = 0 ↔ (𝑦 , 𝑦) = (0g𝐹)))
5144, 50bitr3d 284 . . . . . . 7 ((𝜑𝑦𝑉) → ((√‘(𝑦 , 𝑦)) = 0 ↔ (𝑦 , 𝑦) = (0g𝐹)))
52 eqid 2758 . . . . . . . . 9 (0g𝐹) = (0g𝐹)
5314, 6, 5, 52, 9ipeq0 20403 . . . . . . . 8 ((𝑊 ∈ PreHil ∧ 𝑦𝑉) → ((𝑦 , 𝑦) = (0g𝐹) ↔ 𝑦 = (0g𝑊)))
541, 53sylan 583 . . . . . . 7 ((𝜑𝑦𝑉) → ((𝑦 , 𝑦) = (0g𝐹) ↔ 𝑦 = (0g𝑊)))
5527, 51, 543bitrd 308 . . . . . 6 ((𝜑𝑦𝑉) → (((𝑥𝑉 ↦ (√‘(𝑥 , 𝑥)))‘𝑦) = 0 ↔ 𝑦 = (0g𝑊)))
561adantr 484 . . . . . . . 8 ((𝜑 ∧ (𝑦𝑉𝑧𝑉)) → 𝑊 ∈ PreHil)
5733simp1d 1139 . . . . . . . . 9 (𝜑𝐹 = (ℂflds (Base‘𝐹)))
5857adantr 484 . . . . . . . 8 ((𝜑 ∧ (𝑦𝑉𝑧𝑉)) → 𝐹 = (ℂflds (Base‘𝐹)))
59 3anass 1092 . . . . . . . . . . 11 ((𝑥 ∈ (Base‘𝐹) ∧ 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ↔ (𝑥 ∈ (Base‘𝐹) ∧ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥)))
60 tcphcph.3 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥𝐾𝑥 ∈ ℝ ∧ 0 ≤ 𝑥)) → (√‘𝑥) ∈ 𝐾)
61 simpr2 1192 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑥𝐾𝑥 ∈ ℝ ∧ 0 ≤ 𝑥)) → 𝑥 ∈ ℝ)
6261recnd 10707 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑥𝐾𝑥 ∈ ℝ ∧ 0 ≤ 𝑥)) → 𝑥 ∈ ℂ)
6362sqrtcld 14845 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥𝐾𝑥 ∈ ℝ ∧ 0 ≤ 𝑥)) → (√‘𝑥) ∈ ℂ)
6460, 63jca 515 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥𝐾𝑥 ∈ ℝ ∧ 0 ≤ 𝑥)) → ((√‘𝑥) ∈ 𝐾 ∧ (√‘𝑥) ∈ ℂ))
6564ex 416 . . . . . . . . . . . 12 (𝜑 → ((𝑥𝐾𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) → ((√‘𝑥) ∈ 𝐾 ∧ (√‘𝑥) ∈ ℂ)))
6634eleq2d 2837 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑥 ∈ (Base‘𝐹) ↔ 𝑥 ∈ (𝐾 ∩ ℂ)))
67 recn 10665 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ℝ → 𝑥 ∈ ℂ)
68 elin 3874 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ (𝐾 ∩ ℂ) ↔ (𝑥𝐾𝑥 ∈ ℂ))
6968rbaib 542 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ℂ → (𝑥 ∈ (𝐾 ∩ ℂ) ↔ 𝑥𝐾))
7067, 69syl 17 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ℝ → (𝑥 ∈ (𝐾 ∩ ℂ) ↔ 𝑥𝐾))
7166, 70sylan9bb 513 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ ℝ) → (𝑥 ∈ (Base‘𝐹) ↔ 𝑥𝐾))
7271adantrr 716 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥)) → (𝑥 ∈ (Base‘𝐹) ↔ 𝑥𝐾))
7372ex 416 . . . . . . . . . . . . . 14 (𝜑 → ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) → (𝑥 ∈ (Base‘𝐹) ↔ 𝑥𝐾)))
7473pm5.32rd 581 . . . . . . . . . . . . 13 (𝜑 → ((𝑥 ∈ (Base‘𝐹) ∧ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥)) ↔ (𝑥𝐾 ∧ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥))))
75 3anass 1092 . . . . . . . . . . . . 13 ((𝑥𝐾𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ↔ (𝑥𝐾 ∧ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥)))
7674, 75bitr4di 292 . . . . . . . . . . . 12 (𝜑 → ((𝑥 ∈ (Base‘𝐹) ∧ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥)) ↔ (𝑥𝐾𝑥 ∈ ℝ ∧ 0 ≤ 𝑥)))
7734eleq2d 2837 . . . . . . . . . . . . 13 (𝜑 → ((√‘𝑥) ∈ (Base‘𝐹) ↔ (√‘𝑥) ∈ (𝐾 ∩ ℂ)))
78 elin 3874 . . . . . . . . . . . . 13 ((√‘𝑥) ∈ (𝐾 ∩ ℂ) ↔ ((√‘𝑥) ∈ 𝐾 ∧ (√‘𝑥) ∈ ℂ))
7977, 78bitrdi 290 . . . . . . . . . . . 12 (𝜑 → ((√‘𝑥) ∈ (Base‘𝐹) ↔ ((√‘𝑥) ∈ 𝐾 ∧ (√‘𝑥) ∈ ℂ)))
8065, 76, 793imtr4d 297 . . . . . . . . . . 11 (𝜑 → ((𝑥 ∈ (Base‘𝐹) ∧ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥)) → (√‘𝑥) ∈ (Base‘𝐹)))
8159, 80syl5bi 245 . . . . . . . . . 10 (𝜑 → ((𝑥 ∈ (Base‘𝐹) ∧ 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) → (√‘𝑥) ∈ (Base‘𝐹)))
8281imp 410 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥)) → (√‘𝑥) ∈ (Base‘𝐹))
8382adantlr 714 . . . . . . . 8 (((𝜑 ∧ (𝑦𝑉𝑧𝑉)) ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥)) → (√‘𝑥) ∈ (Base‘𝐹))
8417adantlr 714 . . . . . . . 8 (((𝜑 ∧ (𝑦𝑉𝑧𝑉)) ∧ 𝑥𝑉) → 0 ≤ (𝑥 , 𝑥))
85 simprl 770 . . . . . . . 8 ((𝜑 ∧ (𝑦𝑉𝑧𝑉)) → 𝑦𝑉)
86 simprr 772 . . . . . . . 8 ((𝜑 ∧ (𝑦𝑉𝑧𝑉)) → 𝑧𝑉)
872, 5, 14, 56, 58, 6, 83, 84, 28, 8, 85, 86tcphcphlem1 23935 . . . . . . 7 ((𝜑 ∧ (𝑦𝑉𝑧𝑉)) → (√‘((𝑦(-g𝑊)𝑧) , (𝑦(-g𝑊)𝑧))) ≤ ((√‘(𝑦 , 𝑦)) + (√‘(𝑧 , 𝑧))))
885, 8grpsubcl 18246 . . . . . . . . . 10 ((𝑊 ∈ Grp ∧ 𝑦𝑉𝑧𝑉) → (𝑦(-g𝑊)𝑧) ∈ 𝑉)
89883expb 1117 . . . . . . . . 9 ((𝑊 ∈ Grp ∧ (𝑦𝑉𝑧𝑉)) → (𝑦(-g𝑊)𝑧) ∈ 𝑉)
9013, 89sylan 583 . . . . . . . 8 ((𝜑 ∧ (𝑦𝑉𝑧𝑉)) → (𝑦(-g𝑊)𝑧) ∈ 𝑉)
91 oveq12 7159 . . . . . . . . . . 11 ((𝑥 = (𝑦(-g𝑊)𝑧) ∧ 𝑥 = (𝑦(-g𝑊)𝑧)) → (𝑥 , 𝑥) = ((𝑦(-g𝑊)𝑧) , (𝑦(-g𝑊)𝑧)))
9291anidms 570 . . . . . . . . . 10 (𝑥 = (𝑦(-g𝑊)𝑧) → (𝑥 , 𝑥) = ((𝑦(-g𝑊)𝑧) , (𝑦(-g𝑊)𝑧)))
9392fveq2d 6662 . . . . . . . . 9 (𝑥 = (𝑦(-g𝑊)𝑧) → (√‘(𝑥 , 𝑥)) = (√‘((𝑦(-g𝑊)𝑧) , (𝑦(-g𝑊)𝑧))))
9493, 23, 24fvmpt3i 6764 . . . . . . . 8 ((𝑦(-g𝑊)𝑧) ∈ 𝑉 → ((𝑥𝑉 ↦ (√‘(𝑥 , 𝑥)))‘(𝑦(-g𝑊)𝑧)) = (√‘((𝑦(-g𝑊)𝑧) , (𝑦(-g𝑊)𝑧))))
9590, 94syl 17 . . . . . . 7 ((𝜑 ∧ (𝑦𝑉𝑧𝑉)) → ((𝑥𝑉 ↦ (√‘(𝑥 , 𝑥)))‘(𝑦(-g𝑊)𝑧)) = (√‘((𝑦(-g𝑊)𝑧) , (𝑦(-g𝑊)𝑧))))
96 oveq12 7159 . . . . . . . . . . . 12 ((𝑥 = 𝑧𝑥 = 𝑧) → (𝑥 , 𝑥) = (𝑧 , 𝑧))
9796anidms 570 . . . . . . . . . . 11 (𝑥 = 𝑧 → (𝑥 , 𝑥) = (𝑧 , 𝑧))
9897fveq2d 6662 . . . . . . . . . 10 (𝑥 = 𝑧 → (√‘(𝑥 , 𝑥)) = (√‘(𝑧 , 𝑧)))
9998, 23, 24fvmpt3i 6764 . . . . . . . . 9 (𝑧𝑉 → ((𝑥𝑉 ↦ (√‘(𝑥 , 𝑥)))‘𝑧) = (√‘(𝑧 , 𝑧)))
10025, 99oveqan12d 7169 . . . . . . . 8 ((𝑦𝑉𝑧𝑉) → (((𝑥𝑉 ↦ (√‘(𝑥 , 𝑥)))‘𝑦) + ((𝑥𝑉 ↦ (√‘(𝑥 , 𝑥)))‘𝑧)) = ((√‘(𝑦 , 𝑦)) + (√‘(𝑧 , 𝑧))))
101100adantl 485 . . . . . . 7 ((𝜑 ∧ (𝑦𝑉𝑧𝑉)) → (((𝑥𝑉 ↦ (√‘(𝑥 , 𝑥)))‘𝑦) + ((𝑥𝑉 ↦ (√‘(𝑥 , 𝑥)))‘𝑧)) = ((√‘(𝑦 , 𝑦)) + (√‘(𝑧 , 𝑧))))
10287, 95, 1013brtr4d 5064 . . . . . 6 ((𝜑 ∧ (𝑦𝑉𝑧𝑉)) → ((𝑥𝑉 ↦ (√‘(𝑥 , 𝑥)))‘(𝑦(-g𝑊)𝑧)) ≤ (((𝑥𝑉 ↦ (√‘(𝑥 , 𝑥)))‘𝑦) + ((𝑥𝑉 ↦ (√‘(𝑥 , 𝑥)))‘𝑧)))
1037, 5, 8, 9, 13, 19, 55, 102tngngpd 23355 . . . . 5 (𝜑𝐺 ∈ NrmGrp)
104 phllmod 20395 . . . . . 6 (𝐺 ∈ PreHil → 𝐺 ∈ LMod)
1054, 104syl 17 . . . . 5 (𝜑𝐺 ∈ LMod)
106 cnnrg 23482 . . . . . . 7 fld ∈ NrmRing
10733simp3d 1141 . . . . . . 7 (𝜑 → (Base‘𝐹) ∈ (SubRing‘ℂfld))
108 eqid 2758 . . . . . . . 8 (ℂflds (Base‘𝐹)) = (ℂflds (Base‘𝐹))
109108subrgnrg 23375 . . . . . . 7 ((ℂfld ∈ NrmRing ∧ (Base‘𝐹) ∈ (SubRing‘ℂfld)) → (ℂflds (Base‘𝐹)) ∈ NrmRing)
110106, 107, 109sylancr 590 . . . . . 6 (𝜑 → (ℂflds (Base‘𝐹)) ∈ NrmRing)
11157, 110eqeltrd 2852 . . . . 5 (𝜑𝐹 ∈ NrmRing)
112103, 105, 1113jca 1125 . . . 4 (𝜑 → (𝐺 ∈ NrmGrp ∧ 𝐺 ∈ LMod ∧ 𝐹 ∈ NrmRing))
1131adantr 484 . . . . . . 7 ((𝜑 ∧ (𝑦 ∈ (Base‘𝐹) ∧ 𝑧𝑉)) → 𝑊 ∈ PreHil)
11457adantr 484 . . . . . . 7 ((𝜑 ∧ (𝑦 ∈ (Base‘𝐹) ∧ 𝑧𝑉)) → 𝐹 = (ℂflds (Base‘𝐹)))
11582adantlr 714 . . . . . . 7 (((𝜑 ∧ (𝑦 ∈ (Base‘𝐹) ∧ 𝑧𝑉)) ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥)) → (√‘𝑥) ∈ (Base‘𝐹))
11617adantlr 714 . . . . . . 7 (((𝜑 ∧ (𝑦 ∈ (Base‘𝐹) ∧ 𝑧𝑉)) ∧ 𝑥𝑉) → 0 ≤ (𝑥 , 𝑥))
117 eqid 2758 . . . . . . 7 ( ·𝑠𝑊) = ( ·𝑠𝑊)
118 simprl 770 . . . . . . 7 ((𝜑 ∧ (𝑦 ∈ (Base‘𝐹) ∧ 𝑧𝑉)) → 𝑦 ∈ (Base‘𝐹))
119 simprr 772 . . . . . . 7 ((𝜑 ∧ (𝑦 ∈ (Base‘𝐹) ∧ 𝑧𝑉)) → 𝑧𝑉)
1202, 5, 14, 113, 114, 6, 115, 116, 28, 117, 118, 119tcphcphlem2 23936 . . . . . 6 ((𝜑 ∧ (𝑦 ∈ (Base‘𝐹) ∧ 𝑧𝑉)) → (√‘((𝑦( ·𝑠𝑊)𝑧) , (𝑦( ·𝑠𝑊)𝑧))) = ((abs‘𝑦) · (√‘(𝑧 , 𝑧))))
1215, 14, 117, 28lmodvscl 19719 . . . . . . . . 9 ((𝑊 ∈ LMod ∧ 𝑦 ∈ (Base‘𝐹) ∧ 𝑧𝑉) → (𝑦( ·𝑠𝑊)𝑧) ∈ 𝑉)
1221213expb 1117 . . . . . . . 8 ((𝑊 ∈ LMod ∧ (𝑦 ∈ (Base‘𝐹) ∧ 𝑧𝑉)) → (𝑦( ·𝑠𝑊)𝑧) ∈ 𝑉)
12311, 122sylan 583 . . . . . . 7 ((𝜑 ∧ (𝑦 ∈ (Base‘𝐹) ∧ 𝑧𝑉)) → (𝑦( ·𝑠𝑊)𝑧) ∈ 𝑉)
124 eqid 2758 . . . . . . . 8 (norm‘𝐺) = (norm‘𝐺)
1252, 124, 5, 6tcphnmval 23929 . . . . . . 7 ((𝑊 ∈ Grp ∧ (𝑦( ·𝑠𝑊)𝑧) ∈ 𝑉) → ((norm‘𝐺)‘(𝑦( ·𝑠𝑊)𝑧)) = (√‘((𝑦( ·𝑠𝑊)𝑧) , (𝑦( ·𝑠𝑊)𝑧))))
12613, 123, 125syl2an2r 684 . . . . . 6 ((𝜑 ∧ (𝑦 ∈ (Base‘𝐹) ∧ 𝑧𝑉)) → ((norm‘𝐺)‘(𝑦( ·𝑠𝑊)𝑧)) = (√‘((𝑦( ·𝑠𝑊)𝑧) , (𝑦( ·𝑠𝑊)𝑧))))
127114fveq2d 6662 . . . . . . . . 9 ((𝜑 ∧ (𝑦 ∈ (Base‘𝐹) ∧ 𝑧𝑉)) → (norm‘𝐹) = (norm‘(ℂflds (Base‘𝐹))))
128127fveq1d 6660 . . . . . . . 8 ((𝜑 ∧ (𝑦 ∈ (Base‘𝐹) ∧ 𝑧𝑉)) → ((norm‘𝐹)‘𝑦) = ((norm‘(ℂflds (Base‘𝐹)))‘𝑦))
129 subrgsubg 19609 . . . . . . . . . 10 ((Base‘𝐹) ∈ (SubRing‘ℂfld) → (Base‘𝐹) ∈ (SubGrp‘ℂfld))
130107, 129syl 17 . . . . . . . . 9 (𝜑 → (Base‘𝐹) ∈ (SubGrp‘ℂfld))
131 cnfldnm 23480 . . . . . . . . . 10 abs = (norm‘ℂfld)
132 eqid 2758 . . . . . . . . . 10 (norm‘(ℂflds (Base‘𝐹))) = (norm‘(ℂflds (Base‘𝐹)))
133108, 131, 132subgnm2 23336 . . . . . . . . 9 (((Base‘𝐹) ∈ (SubGrp‘ℂfld) ∧ 𝑦 ∈ (Base‘𝐹)) → ((norm‘(ℂflds (Base‘𝐹)))‘𝑦) = (abs‘𝑦))
134130, 118, 133syl2an2r 684 . . . . . . . 8 ((𝜑 ∧ (𝑦 ∈ (Base‘𝐹) ∧ 𝑧𝑉)) → ((norm‘(ℂflds (Base‘𝐹)))‘𝑦) = (abs‘𝑦))
135128, 134eqtrd 2793 . . . . . . 7 ((𝜑 ∧ (𝑦 ∈ (Base‘𝐹) ∧ 𝑧𝑉)) → ((norm‘𝐹)‘𝑦) = (abs‘𝑦))
1362, 124, 5, 6tcphnmval 23929 . . . . . . . 8 ((𝑊 ∈ Grp ∧ 𝑧𝑉) → ((norm‘𝐺)‘𝑧) = (√‘(𝑧 , 𝑧)))
13713, 119, 136syl2an2r 684 . . . . . . 7 ((𝜑 ∧ (𝑦 ∈ (Base‘𝐹) ∧ 𝑧𝑉)) → ((norm‘𝐺)‘𝑧) = (√‘(𝑧 , 𝑧)))
138135, 137oveq12d 7168 . . . . . 6 ((𝜑 ∧ (𝑦 ∈ (Base‘𝐹) ∧ 𝑧𝑉)) → (((norm‘𝐹)‘𝑦) · ((norm‘𝐺)‘𝑧)) = ((abs‘𝑦) · (√‘(𝑧 , 𝑧))))
139120, 126, 1383eqtr4d 2803 . . . . 5 ((𝜑 ∧ (𝑦 ∈ (Base‘𝐹) ∧ 𝑧𝑉)) → ((norm‘𝐺)‘(𝑦( ·𝑠𝑊)𝑧)) = (((norm‘𝐹)‘𝑦) · ((norm‘𝐺)‘𝑧)))
140139ralrimivva 3120 . . . 4 (𝜑 → ∀𝑦 ∈ (Base‘𝐹)∀𝑧𝑉 ((norm‘𝐺)‘(𝑦( ·𝑠𝑊)𝑧)) = (((norm‘𝐹)‘𝑦) · ((norm‘𝐺)‘𝑧)))
1412, 5tcphbas 23919 . . . . 5 𝑉 = (Base‘𝐺)
1422, 117tcphvsca 23924 . . . . 5 ( ·𝑠𝑊) = ( ·𝑠𝐺)
1432, 14tcphsca 23923 . . . . 5 𝐹 = (Scalar‘𝐺)
144 eqid 2758 . . . . 5 (norm‘𝐹) = (norm‘𝐹)
145141, 124, 142, 143, 28, 144isnlm 23377 . . . 4 (𝐺 ∈ NrmMod ↔ ((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ LMod ∧ 𝐹 ∈ NrmRing) ∧ ∀𝑦 ∈ (Base‘𝐹)∀𝑧𝑉 ((norm‘𝐺)‘(𝑦( ·𝑠𝑊)𝑧)) = (((norm‘𝐹)‘𝑦) · ((norm‘𝐺)‘𝑧))))
146112, 140, 145sylanbrc 586 . . 3 (𝜑𝐺 ∈ NrmMod)
1474, 146, 573jca 1125 . 2 (𝜑 → (𝐺 ∈ PreHil ∧ 𝐺 ∈ NrmMod ∧ 𝐹 = (ℂflds (Base‘𝐹))))
148 elin 3874 . . . . . 6 (𝑥 ∈ ((Base‘𝐹) ∩ (0[,)+∞)) ↔ (𝑥 ∈ (Base‘𝐹) ∧ 𝑥 ∈ (0[,)+∞)))
149 elrege0 12886 . . . . . . 7 (𝑥 ∈ (0[,)+∞) ↔ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥))
150149anbi2i 625 . . . . . 6 ((𝑥 ∈ (Base‘𝐹) ∧ 𝑥 ∈ (0[,)+∞)) ↔ (𝑥 ∈ (Base‘𝐹) ∧ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥)))
151148, 150bitri 278 . . . . 5 (𝑥 ∈ ((Base‘𝐹) ∩ (0[,)+∞)) ↔ (𝑥 ∈ (Base‘𝐹) ∧ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥)))
152151, 80syl5bi 245 . . . 4 (𝜑 → (𝑥 ∈ ((Base‘𝐹) ∩ (0[,)+∞)) → (√‘𝑥) ∈ (Base‘𝐹)))
153152ralrimiv 3112 . . 3 (𝜑 → ∀𝑥 ∈ ((Base‘𝐹) ∩ (0[,)+∞))(√‘𝑥) ∈ (Base‘𝐹))
154 sqrtf 14771 . . . . 5 √:ℂ⟶ℂ
155 ffun 6501 . . . . 5 (√:ℂ⟶ℂ → Fun √)
156154, 155ax-mp 5 . . . 4 Fun √
157 inss1 4133 . . . . . 6 ((Base‘𝐹) ∩ (0[,)+∞)) ⊆ (Base‘𝐹)
158157, 36sstrid 3903 . . . . 5 (𝜑 → ((Base‘𝐹) ∩ (0[,)+∞)) ⊆ ℂ)
159154fdmi 6509 . . . . 5 dom √ = ℂ
160158, 159sseqtrrdi 3943 . . . 4 (𝜑 → ((Base‘𝐹) ∩ (0[,)+∞)) ⊆ dom √)
161 funimass4 6718 . . . 4 ((Fun √ ∧ ((Base‘𝐹) ∩ (0[,)+∞)) ⊆ dom √) → ((√ “ ((Base‘𝐹) ∩ (0[,)+∞))) ⊆ (Base‘𝐹) ↔ ∀𝑥 ∈ ((Base‘𝐹) ∩ (0[,)+∞))(√‘𝑥) ∈ (Base‘𝐹)))
162156, 160, 161sylancr 590 . . 3 (𝜑 → ((√ “ ((Base‘𝐹) ∩ (0[,)+∞))) ⊆ (Base‘𝐹) ↔ ∀𝑥 ∈ ((Base‘𝐹) ∩ (0[,)+∞))(√‘𝑥) ∈ (Base‘𝐹)))
163153, 162mpbird 260 . 2 (𝜑 → (√ “ ((Base‘𝐹) ∩ (0[,)+∞))) ⊆ (Base‘𝐹))
16442fmpttd 6870 . . . 4 (𝜑 → (𝑦𝑉 ↦ (√‘(𝑦 , 𝑦))):𝑉⟶ℂ)
1652, 5, 6tcphval 23918 . . . . 5 𝐺 = (𝑊 toNrmGrp (𝑦𝑉 ↦ (√‘(𝑦 , 𝑦))))
166 cnex 10656 . . . . 5 ℂ ∈ V
167165, 5, 166tngnm 23353 . . . 4 ((𝑊 ∈ Grp ∧ (𝑦𝑉 ↦ (√‘(𝑦 , 𝑦))):𝑉⟶ℂ) → (𝑦𝑉 ↦ (√‘(𝑦 , 𝑦))) = (norm‘𝐺))
16813, 164, 167syl2anc 587 . . 3 (𝜑 → (𝑦𝑉 ↦ (√‘(𝑦 , 𝑦))) = (norm‘𝐺))
169168eqcomd 2764 . 2 (𝜑 → (norm‘𝐺) = (𝑦𝑉 ↦ (√‘(𝑦 , 𝑦))))
1702, 6tcphip 23925 . . 3 , = (·𝑖𝐺)
171141, 170, 124, 143, 28iscph 23871 . 2 (𝐺 ∈ ℂPreHil ↔ ((𝐺 ∈ PreHil ∧ 𝐺 ∈ NrmMod ∧ 𝐹 = (ℂflds (Base‘𝐹))) ∧ (√ “ ((Base‘𝐹) ∩ (0[,)+∞))) ⊆ (Base‘𝐹) ∧ (norm‘𝐺) = (𝑦𝑉 ↦ (√‘(𝑦 , 𝑦)))))
172147, 163, 169, 171syl3anbrc 1340 1 (𝜑𝐺 ∈ ℂPreHil)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   ∧ w3a 1084   = wceq 1538   ∈ wcel 2111  ∀wral 3070   ∩ cin 3857   ⊆ wss 3858   class class class wbr 5032   ↦ cmpt 5112  dom cdm 5524   “ cima 5527  Fun wfun 6329  ⟶wf 6331  ‘cfv 6335  (class class class)co 7150  ℂcc 10573  ℝcr 10574  0cc0 10575   + caddc 10578   · cmul 10580  +∞cpnf 10710   ≤ cle 10714  2c2 11729  [,)cico 12781  ↑cexp 13479  √csqrt 14640  abscabs 14641  Basecbs 16541   ↾s cress 16542  Scalarcsca 16626   ·𝑠 cvsca 16627  ·𝑖cip 16628  0gc0g 16771  Grpcgrp 18169  -gcsg 18171  SubGrpcsubg 18340  DivRingcdr 19570  SubRingcsubrg 19599  LModclmod 19702  LVecclvec 19942  ℂfldccnfld 20166  PreHilcphl 20389  normcnm 23278  NrmGrpcngp 23279  NrmRingcnrg 23281  NrmModcnlm 23282  ℂModcclm 23763  ℂPreHilccph 23867  toℂPreHilctcph 23868 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5156  ax-sep 5169  ax-nul 5176  ax-pow 5234  ax-pr 5298  ax-un 7459  ax-cnex 10631  ax-resscn 10632  ax-1cn 10633  ax-icn 10634  ax-addcl 10635  ax-addrcl 10636  ax-mulcl 10637  ax-mulrcl 10638  ax-mulcom 10639  ax-addass 10640  ax-mulass 10641  ax-distr 10642  ax-i2m1 10643  ax-1ne0 10644  ax-1rid 10645  ax-rnegex 10646  ax-rrecex 10647  ax-cnre 10648  ax-pre-lttri 10649  ax-pre-lttrn 10650  ax-pre-ltadd 10651  ax-pre-mulgt0 10652  ax-pre-sup 10653  ax-addf 10654  ax-mulf 10655 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3697  df-csb 3806  df-dif 3861  df-un 3863  df-in 3865  df-ss 3875  df-pss 3877  df-nul 4226  df-if 4421  df-pw 4496  df-sn 4523  df-pr 4525  df-tp 4527  df-op 4529  df-uni 4799  df-iun 4885  df-br 5033  df-opab 5095  df-mpt 5113  df-tr 5139  df-id 5430  df-eprel 5435  df-po 5443  df-so 5444  df-fr 5483  df-we 5485  df-xp 5530  df-rel 5531  df-cnv 5532  df-co 5533  df-dm 5534  df-rn 5535  df-res 5536  df-ima 5537  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6294  df-fun 6337  df-fn 6338  df-f 6339  df-f1 6340  df-fo 6341  df-f1o 6342  df-fv 6343  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7580  df-1st 7693  df-2nd 7694  df-tpos 7902  df-wrecs 7957  df-recs 8018  df-rdg 8056  df-1o 8112  df-er 8299  df-map 8418  df-en 8528  df-dom 8529  df-sdom 8530  df-fin 8531  df-sup 8939  df-inf 8940  df-pnf 10715  df-mnf 10716  df-xr 10717  df-ltxr 10718  df-le 10719  df-sub 10910  df-neg 10911  df-div 11336  df-nn 11675  df-2 11737  df-3 11738  df-4 11739  df-5 11740  df-6 11741  df-7 11742  df-8 11743  df-9 11744  df-n0 11935  df-z 12021  df-dec 12138  df-uz 12283  df-q 12389  df-rp 12431  df-xneg 12548  df-xadd 12549  df-xmul 12550  df-ico 12785  df-fz 12940  df-seq 13419  df-exp 13480  df-cj 14506  df-re 14507  df-im 14508  df-sqrt 14642  df-abs 14643  df-struct 16543  df-ndx 16544  df-slot 16545  df-base 16547  df-sets 16548  df-ress 16549  df-plusg 16636  df-mulr 16637  df-starv 16638  df-sca 16639  df-vsca 16640  df-ip 16641  df-tset 16642  df-ple 16643  df-ds 16645  df-unif 16646  df-rest 16754  df-topn 16755  df-0g 16773  df-topgen 16775  df-mgm 17918  df-sgrp 17967  df-mnd 17978  df-mhm 18022  df-grp 18172  df-minusg 18173  df-sbg 18174  df-subg 18343  df-ghm 18423  df-cmn 18975  df-abl 18976  df-mgp 19308  df-ur 19320  df-ring 19367  df-cring 19368  df-oppr 19444  df-dvdsr 19462  df-unit 19463  df-invr 19493  df-dvr 19504  df-rnghom 19538  df-drng 19572  df-subrg 19601  df-abv 19656  df-staf 19684  df-srng 19685  df-lmod 19704  df-lmhm 19862  df-lvec 19943  df-sra 20012  df-rgmod 20013  df-psmet 20158  df-xmet 20159  df-met 20160  df-bl 20161  df-mopn 20162  df-cnfld 20167  df-phl 20391  df-top 21594  df-topon 21611  df-topsp 21633  df-bases 21646  df-xms 23022  df-ms 23023  df-nm 23284  df-ngp 23285  df-tng 23286  df-nrg 23287  df-nlm 23288  df-clm 23764  df-cph 23869  df-tcph 23870 This theorem is referenced by:  rrxcph  24092
 Copyright terms: Public domain W3C validator