Step | Hyp | Ref
| Expression |
1 | | tcphcph.1 |
. . . 4
⊢ (𝜑 → 𝑊 ∈ PreHil) |
2 | | tcphval.n |
. . . . 5
⊢ 𝐺 = (toℂPreHil‘𝑊) |
3 | 2 | tcphphl 23927 |
. . . 4
⊢ (𝑊 ∈ PreHil ↔ 𝐺 ∈ PreHil) |
4 | 1, 3 | sylib 221 |
. . 3
⊢ (𝜑 → 𝐺 ∈ PreHil) |
5 | | tcphcph.v |
. . . . . . 7
⊢ 𝑉 = (Base‘𝑊) |
6 | | tcphcph.h |
. . . . . . 7
⊢ , =
(·𝑖‘𝑊) |
7 | 2, 5, 6 | tcphval 23918 |
. . . . . 6
⊢ 𝐺 = (𝑊 toNrmGrp (𝑥 ∈ 𝑉 ↦ (√‘(𝑥 , 𝑥)))) |
8 | | eqid 2758 |
. . . . . 6
⊢
(-g‘𝑊) = (-g‘𝑊) |
9 | | eqid 2758 |
. . . . . 6
⊢
(0g‘𝑊) = (0g‘𝑊) |
10 | | phllmod 20395 |
. . . . . . . 8
⊢ (𝑊 ∈ PreHil → 𝑊 ∈ LMod) |
11 | 1, 10 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 𝑊 ∈ LMod) |
12 | | lmodgrp 19709 |
. . . . . . 7
⊢ (𝑊 ∈ LMod → 𝑊 ∈ Grp) |
13 | 11, 12 | syl 17 |
. . . . . 6
⊢ (𝜑 → 𝑊 ∈ Grp) |
14 | | tcphcph.f |
. . . . . . . . 9
⊢ 𝐹 = (Scalar‘𝑊) |
15 | | tcphcph.2 |
. . . . . . . . 9
⊢ (𝜑 → 𝐹 = (ℂfld
↾s 𝐾)) |
16 | 2, 5, 14, 1, 15, 6 | tcphcphlem3 23933 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → (𝑥 , 𝑥) ∈ ℝ) |
17 | | tcphcph.4 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → 0 ≤ (𝑥 , 𝑥)) |
18 | 16, 17 | resqrtcld 14825 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → (√‘(𝑥 , 𝑥)) ∈ ℝ) |
19 | 18 | fmpttd 6870 |
. . . . . 6
⊢ (𝜑 → (𝑥 ∈ 𝑉 ↦ (√‘(𝑥 , 𝑥))):𝑉⟶ℝ) |
20 | | oveq12 7159 |
. . . . . . . . . . . 12
⊢ ((𝑥 = 𝑦 ∧ 𝑥 = 𝑦) → (𝑥 , 𝑥) = (𝑦 , 𝑦)) |
21 | 20 | anidms 570 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑦 → (𝑥 , 𝑥) = (𝑦 , 𝑦)) |
22 | 21 | fveq2d 6662 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑦 → (√‘(𝑥 , 𝑥)) = (√‘(𝑦 , 𝑦))) |
23 | | eqid 2758 |
. . . . . . . . . 10
⊢ (𝑥 ∈ 𝑉 ↦ (√‘(𝑥 , 𝑥))) = (𝑥 ∈ 𝑉 ↦ (√‘(𝑥 , 𝑥))) |
24 | | fvex 6671 |
. . . . . . . . . 10
⊢
(√‘(𝑥
, 𝑥)) ∈ V |
25 | 22, 23, 24 | fvmpt3i 6764 |
. . . . . . . . 9
⊢ (𝑦 ∈ 𝑉 → ((𝑥 ∈ 𝑉 ↦ (√‘(𝑥 , 𝑥)))‘𝑦) = (√‘(𝑦 , 𝑦))) |
26 | 25 | adantl 485 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑉) → ((𝑥 ∈ 𝑉 ↦ (√‘(𝑥 , 𝑥)))‘𝑦) = (√‘(𝑦 , 𝑦))) |
27 | 26 | eqeq1d 2760 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑉) → (((𝑥 ∈ 𝑉 ↦ (√‘(𝑥 , 𝑥)))‘𝑦) = 0 ↔ (√‘(𝑦 , 𝑦)) = 0)) |
28 | | eqid 2758 |
. . . . . . . . . . . . . . 15
⊢
(Base‘𝐹) =
(Base‘𝐹) |
29 | | phllvec 20394 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑊 ∈ PreHil → 𝑊 ∈ LVec) |
30 | 1, 29 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝑊 ∈ LVec) |
31 | 14 | lvecdrng 19945 |
. . . . . . . . . . . . . . . 16
⊢ (𝑊 ∈ LVec → 𝐹 ∈
DivRing) |
32 | 30, 31 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐹 ∈ DivRing) |
33 | 28, 15, 32 | cphsubrglem 23878 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝐹 = (ℂfld
↾s (Base‘𝐹)) ∧ (Base‘𝐹) = (𝐾 ∩ ℂ) ∧ (Base‘𝐹) ∈
(SubRing‘ℂfld))) |
34 | 33 | simp2d 1140 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (Base‘𝐹) = (𝐾 ∩ ℂ)) |
35 | | inss2 4134 |
. . . . . . . . . . . . 13
⊢ (𝐾 ∩ ℂ) ⊆
ℂ |
36 | 34, 35 | eqsstrdi 3946 |
. . . . . . . . . . . 12
⊢ (𝜑 → (Base‘𝐹) ⊆
ℂ) |
37 | 36 | adantr 484 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑉) → (Base‘𝐹) ⊆ ℂ) |
38 | 14, 6, 5, 28 | ipcl 20398 |
. . . . . . . . . . . . 13
⊢ ((𝑊 ∈ PreHil ∧ 𝑦 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) → (𝑦 , 𝑦) ∈ (Base‘𝐹)) |
39 | 38 | 3anidm23 1418 |
. . . . . . . . . . . 12
⊢ ((𝑊 ∈ PreHil ∧ 𝑦 ∈ 𝑉) → (𝑦 , 𝑦) ∈ (Base‘𝐹)) |
40 | 1, 39 | sylan 583 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑉) → (𝑦 , 𝑦) ∈ (Base‘𝐹)) |
41 | 37, 40 | sseldd 3893 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑉) → (𝑦 , 𝑦) ∈ ℂ) |
42 | 41 | sqrtcld 14845 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑉) → (√‘(𝑦 , 𝑦)) ∈ ℂ) |
43 | | sqeq0 13536 |
. . . . . . . . 9
⊢
((√‘(𝑦
, 𝑦)) ∈ ℂ →
(((√‘(𝑦 , 𝑦))↑2) = 0 ↔
(√‘(𝑦 , 𝑦)) = 0)) |
44 | 42, 43 | syl 17 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑉) → (((√‘(𝑦 , 𝑦))↑2) = 0 ↔ (√‘(𝑦 , 𝑦)) = 0)) |
45 | 41 | sqsqrtd 14847 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑉) → ((√‘(𝑦 , 𝑦))↑2) = (𝑦 , 𝑦)) |
46 | 2, 5, 14, 1, 15 | phclm 23932 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑊 ∈ ℂMod) |
47 | 14 | clm0 23773 |
. . . . . . . . . . 11
⊢ (𝑊 ∈ ℂMod → 0 =
(0g‘𝐹)) |
48 | 46, 47 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → 0 =
(0g‘𝐹)) |
49 | 48 | adantr 484 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑉) → 0 = (0g‘𝐹)) |
50 | 45, 49 | eqeq12d 2774 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑉) → (((√‘(𝑦 , 𝑦))↑2) = 0 ↔ (𝑦 , 𝑦) = (0g‘𝐹))) |
51 | 44, 50 | bitr3d 284 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑉) → ((√‘(𝑦 , 𝑦)) = 0 ↔ (𝑦 , 𝑦) = (0g‘𝐹))) |
52 | | eqid 2758 |
. . . . . . . . 9
⊢
(0g‘𝐹) = (0g‘𝐹) |
53 | 14, 6, 5, 52, 9 | ipeq0 20403 |
. . . . . . . 8
⊢ ((𝑊 ∈ PreHil ∧ 𝑦 ∈ 𝑉) → ((𝑦 , 𝑦) = (0g‘𝐹) ↔ 𝑦 = (0g‘𝑊))) |
54 | 1, 53 | sylan 583 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑉) → ((𝑦 , 𝑦) = (0g‘𝐹) ↔ 𝑦 = (0g‘𝑊))) |
55 | 27, 51, 54 | 3bitrd 308 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑉) → (((𝑥 ∈ 𝑉 ↦ (√‘(𝑥 , 𝑥)))‘𝑦) = 0 ↔ 𝑦 = (0g‘𝑊))) |
56 | 1 | adantr 484 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → 𝑊 ∈ PreHil) |
57 | 33 | simp1d 1139 |
. . . . . . . . 9
⊢ (𝜑 → 𝐹 = (ℂfld
↾s (Base‘𝐹))) |
58 | 57 | adantr 484 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → 𝐹 = (ℂfld
↾s (Base‘𝐹))) |
59 | | 3anass 1092 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ (Base‘𝐹) ∧ 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ↔ (𝑥 ∈ (Base‘𝐹) ∧ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥))) |
60 | | tcphcph.3 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐾 ∧ 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥)) → (√‘𝑥) ∈ 𝐾) |
61 | | simpr2 1192 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐾 ∧ 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥)) → 𝑥 ∈ ℝ) |
62 | 61 | recnd 10707 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐾 ∧ 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥)) → 𝑥 ∈ ℂ) |
63 | 62 | sqrtcld 14845 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐾 ∧ 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥)) → (√‘𝑥) ∈
ℂ) |
64 | 60, 63 | jca 515 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐾 ∧ 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥)) → ((√‘𝑥) ∈ 𝐾 ∧ (√‘𝑥) ∈ ℂ)) |
65 | 64 | ex 416 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((𝑥 ∈ 𝐾 ∧ 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) → ((√‘𝑥) ∈ 𝐾 ∧ (√‘𝑥) ∈ ℂ))) |
66 | 34 | eleq2d 2837 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (𝑥 ∈ (Base‘𝐹) ↔ 𝑥 ∈ (𝐾 ∩ ℂ))) |
67 | | recn 10665 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 ∈ ℝ → 𝑥 ∈
ℂ) |
68 | | elin 3874 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 ∈ (𝐾 ∩ ℂ) ↔ (𝑥 ∈ 𝐾 ∧ 𝑥 ∈ ℂ)) |
69 | 68 | rbaib 542 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 ∈ ℂ → (𝑥 ∈ (𝐾 ∩ ℂ) ↔ 𝑥 ∈ 𝐾)) |
70 | 67, 69 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 ∈ ℝ → (𝑥 ∈ (𝐾 ∩ ℂ) ↔ 𝑥 ∈ 𝐾)) |
71 | 66, 70 | sylan9bb 513 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝑥 ∈ (Base‘𝐹) ↔ 𝑥 ∈ 𝐾)) |
72 | 71 | adantrr 716 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥)) → (𝑥 ∈ (Base‘𝐹) ↔ 𝑥 ∈ 𝐾)) |
73 | 72 | ex 416 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) → (𝑥 ∈ (Base‘𝐹) ↔ 𝑥 ∈ 𝐾))) |
74 | 73 | pm5.32rd 581 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((𝑥 ∈ (Base‘𝐹) ∧ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥)) ↔ (𝑥 ∈ 𝐾 ∧ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥)))) |
75 | | 3anass 1092 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ 𝐾 ∧ 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ↔ (𝑥 ∈ 𝐾 ∧ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥))) |
76 | 74, 75 | bitr4di 292 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((𝑥 ∈ (Base‘𝐹) ∧ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥)) ↔ (𝑥 ∈ 𝐾 ∧ 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥))) |
77 | 34 | eleq2d 2837 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((√‘𝑥) ∈ (Base‘𝐹) ↔ (√‘𝑥) ∈ (𝐾 ∩ ℂ))) |
78 | | elin 3874 |
. . . . . . . . . . . . 13
⊢
((√‘𝑥)
∈ (𝐾 ∩ ℂ)
↔ ((√‘𝑥)
∈ 𝐾 ∧
(√‘𝑥) ∈
ℂ)) |
79 | 77, 78 | bitrdi 290 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((√‘𝑥) ∈ (Base‘𝐹) ↔ ((√‘𝑥) ∈ 𝐾 ∧ (√‘𝑥) ∈ ℂ))) |
80 | 65, 76, 79 | 3imtr4d 297 |
. . . . . . . . . . 11
⊢ (𝜑 → ((𝑥 ∈ (Base‘𝐹) ∧ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥)) → (√‘𝑥) ∈ (Base‘𝐹))) |
81 | 59, 80 | syl5bi 245 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝑥 ∈ (Base‘𝐹) ∧ 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) → (√‘𝑥) ∈ (Base‘𝐹))) |
82 | 81 | imp 410 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥)) → (√‘𝑥) ∈ (Base‘𝐹)) |
83 | 82 | adantlr 714 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥)) → (√‘𝑥) ∈ (Base‘𝐹)) |
84 | 17 | adantlr 714 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) ∧ 𝑥 ∈ 𝑉) → 0 ≤ (𝑥 , 𝑥)) |
85 | | simprl 770 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → 𝑦 ∈ 𝑉) |
86 | | simprr 772 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → 𝑧 ∈ 𝑉) |
87 | 2, 5, 14, 56, 58, 6, 83, 84, 28, 8, 85, 86 | tcphcphlem1 23935 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → (√‘((𝑦(-g‘𝑊)𝑧) , (𝑦(-g‘𝑊)𝑧))) ≤ ((√‘(𝑦 , 𝑦)) + (√‘(𝑧 , 𝑧)))) |
88 | 5, 8 | grpsubcl 18246 |
. . . . . . . . . 10
⊢ ((𝑊 ∈ Grp ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉) → (𝑦(-g‘𝑊)𝑧) ∈ 𝑉) |
89 | 88 | 3expb 1117 |
. . . . . . . . 9
⊢ ((𝑊 ∈ Grp ∧ (𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → (𝑦(-g‘𝑊)𝑧) ∈ 𝑉) |
90 | 13, 89 | sylan 583 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → (𝑦(-g‘𝑊)𝑧) ∈ 𝑉) |
91 | | oveq12 7159 |
. . . . . . . . . . 11
⊢ ((𝑥 = (𝑦(-g‘𝑊)𝑧) ∧ 𝑥 = (𝑦(-g‘𝑊)𝑧)) → (𝑥 , 𝑥) = ((𝑦(-g‘𝑊)𝑧) , (𝑦(-g‘𝑊)𝑧))) |
92 | 91 | anidms 570 |
. . . . . . . . . 10
⊢ (𝑥 = (𝑦(-g‘𝑊)𝑧) → (𝑥 , 𝑥) = ((𝑦(-g‘𝑊)𝑧) , (𝑦(-g‘𝑊)𝑧))) |
93 | 92 | fveq2d 6662 |
. . . . . . . . 9
⊢ (𝑥 = (𝑦(-g‘𝑊)𝑧) → (√‘(𝑥 , 𝑥)) = (√‘((𝑦(-g‘𝑊)𝑧) , (𝑦(-g‘𝑊)𝑧)))) |
94 | 93, 23, 24 | fvmpt3i 6764 |
. . . . . . . 8
⊢ ((𝑦(-g‘𝑊)𝑧) ∈ 𝑉 → ((𝑥 ∈ 𝑉 ↦ (√‘(𝑥 , 𝑥)))‘(𝑦(-g‘𝑊)𝑧)) = (√‘((𝑦(-g‘𝑊)𝑧) , (𝑦(-g‘𝑊)𝑧)))) |
95 | 90, 94 | syl 17 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → ((𝑥 ∈ 𝑉 ↦ (√‘(𝑥 , 𝑥)))‘(𝑦(-g‘𝑊)𝑧)) = (√‘((𝑦(-g‘𝑊)𝑧) , (𝑦(-g‘𝑊)𝑧)))) |
96 | | oveq12 7159 |
. . . . . . . . . . . 12
⊢ ((𝑥 = 𝑧 ∧ 𝑥 = 𝑧) → (𝑥 , 𝑥) = (𝑧 , 𝑧)) |
97 | 96 | anidms 570 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑧 → (𝑥 , 𝑥) = (𝑧 , 𝑧)) |
98 | 97 | fveq2d 6662 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑧 → (√‘(𝑥 , 𝑥)) = (√‘(𝑧 , 𝑧))) |
99 | 98, 23, 24 | fvmpt3i 6764 |
. . . . . . . . 9
⊢ (𝑧 ∈ 𝑉 → ((𝑥 ∈ 𝑉 ↦ (√‘(𝑥 , 𝑥)))‘𝑧) = (√‘(𝑧 , 𝑧))) |
100 | 25, 99 | oveqan12d 7169 |
. . . . . . . 8
⊢ ((𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉) → (((𝑥 ∈ 𝑉 ↦ (√‘(𝑥 , 𝑥)))‘𝑦) + ((𝑥 ∈ 𝑉 ↦ (√‘(𝑥 , 𝑥)))‘𝑧)) = ((√‘(𝑦 , 𝑦)) + (√‘(𝑧 , 𝑧)))) |
101 | 100 | adantl 485 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → (((𝑥 ∈ 𝑉 ↦ (√‘(𝑥 , 𝑥)))‘𝑦) + ((𝑥 ∈ 𝑉 ↦ (√‘(𝑥 , 𝑥)))‘𝑧)) = ((√‘(𝑦 , 𝑦)) + (√‘(𝑧 , 𝑧)))) |
102 | 87, 95, 101 | 3brtr4d 5064 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → ((𝑥 ∈ 𝑉 ↦ (√‘(𝑥 , 𝑥)))‘(𝑦(-g‘𝑊)𝑧)) ≤ (((𝑥 ∈ 𝑉 ↦ (√‘(𝑥 , 𝑥)))‘𝑦) + ((𝑥 ∈ 𝑉 ↦ (√‘(𝑥 , 𝑥)))‘𝑧))) |
103 | 7, 5, 8, 9, 13, 19, 55, 102 | tngngpd 23355 |
. . . . 5
⊢ (𝜑 → 𝐺 ∈ NrmGrp) |
104 | | phllmod 20395 |
. . . . . 6
⊢ (𝐺 ∈ PreHil → 𝐺 ∈ LMod) |
105 | 4, 104 | syl 17 |
. . . . 5
⊢ (𝜑 → 𝐺 ∈ LMod) |
106 | | cnnrg 23482 |
. . . . . . 7
⊢
ℂfld ∈ NrmRing |
107 | 33 | simp3d 1141 |
. . . . . . 7
⊢ (𝜑 → (Base‘𝐹) ∈
(SubRing‘ℂfld)) |
108 | | eqid 2758 |
. . . . . . . 8
⊢
(ℂfld ↾s (Base‘𝐹)) = (ℂfld
↾s (Base‘𝐹)) |
109 | 108 | subrgnrg 23375 |
. . . . . . 7
⊢
((ℂfld ∈ NrmRing ∧ (Base‘𝐹) ∈
(SubRing‘ℂfld)) → (ℂfld
↾s (Base‘𝐹)) ∈ NrmRing) |
110 | 106, 107,
109 | sylancr 590 |
. . . . . 6
⊢ (𝜑 → (ℂfld
↾s (Base‘𝐹)) ∈ NrmRing) |
111 | 57, 110 | eqeltrd 2852 |
. . . . 5
⊢ (𝜑 → 𝐹 ∈ NrmRing) |
112 | 103, 105,
111 | 3jca 1125 |
. . . 4
⊢ (𝜑 → (𝐺 ∈ NrmGrp ∧ 𝐺 ∈ LMod ∧ 𝐹 ∈ NrmRing)) |
113 | 1 | adantr 484 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑦 ∈ (Base‘𝐹) ∧ 𝑧 ∈ 𝑉)) → 𝑊 ∈ PreHil) |
114 | 57 | adantr 484 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑦 ∈ (Base‘𝐹) ∧ 𝑧 ∈ 𝑉)) → 𝐹 = (ℂfld
↾s (Base‘𝐹))) |
115 | 82 | adantlr 714 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑦 ∈ (Base‘𝐹) ∧ 𝑧 ∈ 𝑉)) ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥)) → (√‘𝑥) ∈ (Base‘𝐹)) |
116 | 17 | adantlr 714 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑦 ∈ (Base‘𝐹) ∧ 𝑧 ∈ 𝑉)) ∧ 𝑥 ∈ 𝑉) → 0 ≤ (𝑥 , 𝑥)) |
117 | | eqid 2758 |
. . . . . . 7
⊢ (
·𝑠 ‘𝑊) = ( ·𝑠
‘𝑊) |
118 | | simprl 770 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑦 ∈ (Base‘𝐹) ∧ 𝑧 ∈ 𝑉)) → 𝑦 ∈ (Base‘𝐹)) |
119 | | simprr 772 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑦 ∈ (Base‘𝐹) ∧ 𝑧 ∈ 𝑉)) → 𝑧 ∈ 𝑉) |
120 | 2, 5, 14, 113, 114, 6, 115, 116, 28, 117, 118, 119 | tcphcphlem2 23936 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑦 ∈ (Base‘𝐹) ∧ 𝑧 ∈ 𝑉)) → (√‘((𝑦(
·𝑠 ‘𝑊)𝑧) , (𝑦( ·𝑠
‘𝑊)𝑧))) = ((abs‘𝑦) · (√‘(𝑧 , 𝑧)))) |
121 | 5, 14, 117, 28 | lmodvscl 19719 |
. . . . . . . . 9
⊢ ((𝑊 ∈ LMod ∧ 𝑦 ∈ (Base‘𝐹) ∧ 𝑧 ∈ 𝑉) → (𝑦( ·𝑠
‘𝑊)𝑧) ∈ 𝑉) |
122 | 121 | 3expb 1117 |
. . . . . . . 8
⊢ ((𝑊 ∈ LMod ∧ (𝑦 ∈ (Base‘𝐹) ∧ 𝑧 ∈ 𝑉)) → (𝑦( ·𝑠
‘𝑊)𝑧) ∈ 𝑉) |
123 | 11, 122 | sylan 583 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑦 ∈ (Base‘𝐹) ∧ 𝑧 ∈ 𝑉)) → (𝑦( ·𝑠
‘𝑊)𝑧) ∈ 𝑉) |
124 | | eqid 2758 |
. . . . . . . 8
⊢
(norm‘𝐺) =
(norm‘𝐺) |
125 | 2, 124, 5, 6 | tcphnmval 23929 |
. . . . . . 7
⊢ ((𝑊 ∈ Grp ∧ (𝑦(
·𝑠 ‘𝑊)𝑧) ∈ 𝑉) → ((norm‘𝐺)‘(𝑦( ·𝑠
‘𝑊)𝑧)) = (√‘((𝑦( ·𝑠
‘𝑊)𝑧) , (𝑦( ·𝑠
‘𝑊)𝑧)))) |
126 | 13, 123, 125 | syl2an2r 684 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑦 ∈ (Base‘𝐹) ∧ 𝑧 ∈ 𝑉)) → ((norm‘𝐺)‘(𝑦( ·𝑠
‘𝑊)𝑧)) = (√‘((𝑦( ·𝑠
‘𝑊)𝑧) , (𝑦( ·𝑠
‘𝑊)𝑧)))) |
127 | 114 | fveq2d 6662 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑦 ∈ (Base‘𝐹) ∧ 𝑧 ∈ 𝑉)) → (norm‘𝐹) = (norm‘(ℂfld
↾s (Base‘𝐹)))) |
128 | 127 | fveq1d 6660 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑦 ∈ (Base‘𝐹) ∧ 𝑧 ∈ 𝑉)) → ((norm‘𝐹)‘𝑦) = ((norm‘(ℂfld
↾s (Base‘𝐹)))‘𝑦)) |
129 | | subrgsubg 19609 |
. . . . . . . . . 10
⊢
((Base‘𝐹)
∈ (SubRing‘ℂfld) → (Base‘𝐹) ∈
(SubGrp‘ℂfld)) |
130 | 107, 129 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → (Base‘𝐹) ∈
(SubGrp‘ℂfld)) |
131 | | cnfldnm 23480 |
. . . . . . . . . 10
⊢ abs =
(norm‘ℂfld) |
132 | | eqid 2758 |
. . . . . . . . . 10
⊢
(norm‘(ℂfld ↾s (Base‘𝐹))) =
(norm‘(ℂfld ↾s (Base‘𝐹))) |
133 | 108, 131,
132 | subgnm2 23336 |
. . . . . . . . 9
⊢
(((Base‘𝐹)
∈ (SubGrp‘ℂfld) ∧ 𝑦 ∈ (Base‘𝐹)) →
((norm‘(ℂfld ↾s (Base‘𝐹)))‘𝑦) = (abs‘𝑦)) |
134 | 130, 118,
133 | syl2an2r 684 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑦 ∈ (Base‘𝐹) ∧ 𝑧 ∈ 𝑉)) →
((norm‘(ℂfld ↾s (Base‘𝐹)))‘𝑦) = (abs‘𝑦)) |
135 | 128, 134 | eqtrd 2793 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑦 ∈ (Base‘𝐹) ∧ 𝑧 ∈ 𝑉)) → ((norm‘𝐹)‘𝑦) = (abs‘𝑦)) |
136 | 2, 124, 5, 6 | tcphnmval 23929 |
. . . . . . . 8
⊢ ((𝑊 ∈ Grp ∧ 𝑧 ∈ 𝑉) → ((norm‘𝐺)‘𝑧) = (√‘(𝑧 , 𝑧))) |
137 | 13, 119, 136 | syl2an2r 684 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑦 ∈ (Base‘𝐹) ∧ 𝑧 ∈ 𝑉)) → ((norm‘𝐺)‘𝑧) = (√‘(𝑧 , 𝑧))) |
138 | 135, 137 | oveq12d 7168 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑦 ∈ (Base‘𝐹) ∧ 𝑧 ∈ 𝑉)) → (((norm‘𝐹)‘𝑦) · ((norm‘𝐺)‘𝑧)) = ((abs‘𝑦) · (√‘(𝑧 , 𝑧)))) |
139 | 120, 126,
138 | 3eqtr4d 2803 |
. . . . 5
⊢ ((𝜑 ∧ (𝑦 ∈ (Base‘𝐹) ∧ 𝑧 ∈ 𝑉)) → ((norm‘𝐺)‘(𝑦( ·𝑠
‘𝑊)𝑧)) = (((norm‘𝐹)‘𝑦) · ((norm‘𝐺)‘𝑧))) |
140 | 139 | ralrimivva 3120 |
. . . 4
⊢ (𝜑 → ∀𝑦 ∈ (Base‘𝐹)∀𝑧 ∈ 𝑉 ((norm‘𝐺)‘(𝑦( ·𝑠
‘𝑊)𝑧)) = (((norm‘𝐹)‘𝑦) · ((norm‘𝐺)‘𝑧))) |
141 | 2, 5 | tcphbas 23919 |
. . . . 5
⊢ 𝑉 = (Base‘𝐺) |
142 | 2, 117 | tcphvsca 23924 |
. . . . 5
⊢ (
·𝑠 ‘𝑊) = ( ·𝑠
‘𝐺) |
143 | 2, 14 | tcphsca 23923 |
. . . . 5
⊢ 𝐹 = (Scalar‘𝐺) |
144 | | eqid 2758 |
. . . . 5
⊢
(norm‘𝐹) =
(norm‘𝐹) |
145 | 141, 124,
142, 143, 28, 144 | isnlm 23377 |
. . . 4
⊢ (𝐺 ∈ NrmMod ↔ ((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ LMod ∧ 𝐹 ∈ NrmRing) ∧
∀𝑦 ∈
(Base‘𝐹)∀𝑧 ∈ 𝑉 ((norm‘𝐺)‘(𝑦( ·𝑠
‘𝑊)𝑧)) = (((norm‘𝐹)‘𝑦) · ((norm‘𝐺)‘𝑧)))) |
146 | 112, 140,
145 | sylanbrc 586 |
. . 3
⊢ (𝜑 → 𝐺 ∈ NrmMod) |
147 | 4, 146, 57 | 3jca 1125 |
. 2
⊢ (𝜑 → (𝐺 ∈ PreHil ∧ 𝐺 ∈ NrmMod ∧ 𝐹 = (ℂfld
↾s (Base‘𝐹)))) |
148 | | elin 3874 |
. . . . . 6
⊢ (𝑥 ∈ ((Base‘𝐹) ∩ (0[,)+∞)) ↔
(𝑥 ∈ (Base‘𝐹) ∧ 𝑥 ∈ (0[,)+∞))) |
149 | | elrege0 12886 |
. . . . . . 7
⊢ (𝑥 ∈ (0[,)+∞) ↔
(𝑥 ∈ ℝ ∧ 0
≤ 𝑥)) |
150 | 149 | anbi2i 625 |
. . . . . 6
⊢ ((𝑥 ∈ (Base‘𝐹) ∧ 𝑥 ∈ (0[,)+∞)) ↔ (𝑥 ∈ (Base‘𝐹) ∧ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥))) |
151 | 148, 150 | bitri 278 |
. . . . 5
⊢ (𝑥 ∈ ((Base‘𝐹) ∩ (0[,)+∞)) ↔
(𝑥 ∈ (Base‘𝐹) ∧ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥))) |
152 | 151, 80 | syl5bi 245 |
. . . 4
⊢ (𝜑 → (𝑥 ∈ ((Base‘𝐹) ∩ (0[,)+∞)) →
(√‘𝑥) ∈
(Base‘𝐹))) |
153 | 152 | ralrimiv 3112 |
. . 3
⊢ (𝜑 → ∀𝑥 ∈ ((Base‘𝐹) ∩ (0[,)+∞))(√‘𝑥) ∈ (Base‘𝐹)) |
154 | | sqrtf 14771 |
. . . . 5
⊢
√:ℂ⟶ℂ |
155 | | ffun 6501 |
. . . . 5
⊢
(√:ℂ⟶ℂ → Fun √) |
156 | 154, 155 | ax-mp 5 |
. . . 4
⊢ Fun
√ |
157 | | inss1 4133 |
. . . . . 6
⊢
((Base‘𝐹)
∩ (0[,)+∞)) ⊆ (Base‘𝐹) |
158 | 157, 36 | sstrid 3903 |
. . . . 5
⊢ (𝜑 → ((Base‘𝐹) ∩ (0[,)+∞)) ⊆
ℂ) |
159 | 154 | fdmi 6509 |
. . . . 5
⊢ dom
√ = ℂ |
160 | 158, 159 | sseqtrrdi 3943 |
. . . 4
⊢ (𝜑 → ((Base‘𝐹) ∩ (0[,)+∞)) ⊆
dom √) |
161 | | funimass4 6718 |
. . . 4
⊢ ((Fun
√ ∧ ((Base‘𝐹) ∩ (0[,)+∞)) ⊆ dom √)
→ ((√ “ ((Base‘𝐹) ∩ (0[,)+∞))) ⊆
(Base‘𝐹) ↔
∀𝑥 ∈
((Base‘𝐹) ∩
(0[,)+∞))(√‘𝑥) ∈ (Base‘𝐹))) |
162 | 156, 160,
161 | sylancr 590 |
. . 3
⊢ (𝜑 → ((√ “
((Base‘𝐹) ∩
(0[,)+∞))) ⊆ (Base‘𝐹) ↔ ∀𝑥 ∈ ((Base‘𝐹) ∩ (0[,)+∞))(√‘𝑥) ∈ (Base‘𝐹))) |
163 | 153, 162 | mpbird 260 |
. 2
⊢ (𝜑 → (√ “
((Base‘𝐹) ∩
(0[,)+∞))) ⊆ (Base‘𝐹)) |
164 | 42 | fmpttd 6870 |
. . . 4
⊢ (𝜑 → (𝑦 ∈ 𝑉 ↦ (√‘(𝑦 , 𝑦))):𝑉⟶ℂ) |
165 | 2, 5, 6 | tcphval 23918 |
. . . . 5
⊢ 𝐺 = (𝑊 toNrmGrp (𝑦 ∈ 𝑉 ↦ (√‘(𝑦 , 𝑦)))) |
166 | | cnex 10656 |
. . . . 5
⊢ ℂ
∈ V |
167 | 165, 5, 166 | tngnm 23353 |
. . . 4
⊢ ((𝑊 ∈ Grp ∧ (𝑦 ∈ 𝑉 ↦ (√‘(𝑦 , 𝑦))):𝑉⟶ℂ) → (𝑦 ∈ 𝑉 ↦ (√‘(𝑦 , 𝑦))) = (norm‘𝐺)) |
168 | 13, 164, 167 | syl2anc 587 |
. . 3
⊢ (𝜑 → (𝑦 ∈ 𝑉 ↦ (√‘(𝑦 , 𝑦))) = (norm‘𝐺)) |
169 | 168 | eqcomd 2764 |
. 2
⊢ (𝜑 → (norm‘𝐺) = (𝑦 ∈ 𝑉 ↦ (√‘(𝑦 , 𝑦)))) |
170 | 2, 6 | tcphip 23925 |
. . 3
⊢ , =
(·𝑖‘𝐺) |
171 | 141, 170,
124, 143, 28 | iscph 23871 |
. 2
⊢ (𝐺 ∈ ℂPreHil ↔
((𝐺 ∈ PreHil ∧
𝐺 ∈ NrmMod ∧ 𝐹 = (ℂfld
↾s (Base‘𝐹))) ∧ (√ “
((Base‘𝐹) ∩
(0[,)+∞))) ⊆ (Base‘𝐹) ∧ (norm‘𝐺) = (𝑦 ∈ 𝑉 ↦ (√‘(𝑦 , 𝑦))))) |
172 | 147, 163,
169, 171 | syl3anbrc 1340 |
1
⊢ (𝜑 → 𝐺 ∈ ℂPreHil) |