MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tcphcph Structured version   Visualization version   GIF version

Theorem tcphcph 25153
Description: The standard definition of a norm turns any pre-Hilbert space over a subfield of fld closed under square roots of nonnegative reals into a subcomplex pre-Hilbert space (which allows access to a norm, metric, and topology). (Contributed by Mario Carneiro, 11-Oct-2015.)
Hypotheses
Ref Expression
tcphval.n 𝐺 = (toℂPreHil‘𝑊)
tcphcph.v 𝑉 = (Base‘𝑊)
tcphcph.f 𝐹 = (Scalar‘𝑊)
tcphcph.1 (𝜑𝑊 ∈ PreHil)
tcphcph.2 (𝜑𝐹 = (ℂflds 𝐾))
tcphcph.h , = (·𝑖𝑊)
tcphcph.3 ((𝜑 ∧ (𝑥𝐾𝑥 ∈ ℝ ∧ 0 ≤ 𝑥)) → (√‘𝑥) ∈ 𝐾)
tcphcph.4 ((𝜑𝑥𝑉) → 0 ≤ (𝑥 , 𝑥))
Assertion
Ref Expression
tcphcph (𝜑𝐺 ∈ ℂPreHil)
Distinct variable groups:   𝑥, ,   𝑥,𝐹   𝑥,𝐺   𝑥,𝑉   𝜑,𝑥   𝑥,𝑊
Allowed substitution hint:   𝐾(𝑥)

Proof of Theorem tcphcph
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tcphcph.1 . . . 4 (𝜑𝑊 ∈ PreHil)
2 tcphval.n . . . . 5 𝐺 = (toℂPreHil‘𝑊)
32tcphphl 25143 . . . 4 (𝑊 ∈ PreHil ↔ 𝐺 ∈ PreHil)
41, 3sylib 218 . . 3 (𝜑𝐺 ∈ PreHil)
5 tcphcph.v . . . . . . 7 𝑉 = (Base‘𝑊)
6 tcphcph.h . . . . . . 7 , = (·𝑖𝑊)
72, 5, 6tcphval 25134 . . . . . 6 𝐺 = (𝑊 toNrmGrp (𝑥𝑉 ↦ (√‘(𝑥 , 𝑥))))
8 eqid 2729 . . . . . 6 (-g𝑊) = (-g𝑊)
9 eqid 2729 . . . . . 6 (0g𝑊) = (0g𝑊)
10 phllmod 21555 . . . . . . . 8 (𝑊 ∈ PreHil → 𝑊 ∈ LMod)
111, 10syl 17 . . . . . . 7 (𝜑𝑊 ∈ LMod)
12 lmodgrp 20788 . . . . . . 7 (𝑊 ∈ LMod → 𝑊 ∈ Grp)
1311, 12syl 17 . . . . . 6 (𝜑𝑊 ∈ Grp)
14 tcphcph.f . . . . . . . . 9 𝐹 = (Scalar‘𝑊)
15 tcphcph.2 . . . . . . . . 9 (𝜑𝐹 = (ℂflds 𝐾))
162, 5, 14, 1, 15, 6tcphcphlem3 25149 . . . . . . . 8 ((𝜑𝑥𝑉) → (𝑥 , 𝑥) ∈ ℝ)
17 tcphcph.4 . . . . . . . 8 ((𝜑𝑥𝑉) → 0 ≤ (𝑥 , 𝑥))
1816, 17resqrtcld 15343 . . . . . . 7 ((𝜑𝑥𝑉) → (√‘(𝑥 , 𝑥)) ∈ ℝ)
1918fmpttd 7053 . . . . . 6 (𝜑 → (𝑥𝑉 ↦ (√‘(𝑥 , 𝑥))):𝑉⟶ℝ)
20 oveq12 7362 . . . . . . . . . . . 12 ((𝑥 = 𝑦𝑥 = 𝑦) → (𝑥 , 𝑥) = (𝑦 , 𝑦))
2120anidms 566 . . . . . . . . . . 11 (𝑥 = 𝑦 → (𝑥 , 𝑥) = (𝑦 , 𝑦))
2221fveq2d 6830 . . . . . . . . . 10 (𝑥 = 𝑦 → (√‘(𝑥 , 𝑥)) = (√‘(𝑦 , 𝑦)))
23 eqid 2729 . . . . . . . . . 10 (𝑥𝑉 ↦ (√‘(𝑥 , 𝑥))) = (𝑥𝑉 ↦ (√‘(𝑥 , 𝑥)))
24 fvex 6839 . . . . . . . . . 10 (√‘(𝑥 , 𝑥)) ∈ V
2522, 23, 24fvmpt3i 6939 . . . . . . . . 9 (𝑦𝑉 → ((𝑥𝑉 ↦ (√‘(𝑥 , 𝑥)))‘𝑦) = (√‘(𝑦 , 𝑦)))
2625adantl 481 . . . . . . . 8 ((𝜑𝑦𝑉) → ((𝑥𝑉 ↦ (√‘(𝑥 , 𝑥)))‘𝑦) = (√‘(𝑦 , 𝑦)))
2726eqeq1d 2731 . . . . . . 7 ((𝜑𝑦𝑉) → (((𝑥𝑉 ↦ (√‘(𝑥 , 𝑥)))‘𝑦) = 0 ↔ (√‘(𝑦 , 𝑦)) = 0))
28 eqid 2729 . . . . . . . . . . . . . . 15 (Base‘𝐹) = (Base‘𝐹)
29 phllvec 21554 . . . . . . . . . . . . . . . . 17 (𝑊 ∈ PreHil → 𝑊 ∈ LVec)
301, 29syl 17 . . . . . . . . . . . . . . . 16 (𝜑𝑊 ∈ LVec)
3114lvecdrng 21027 . . . . . . . . . . . . . . . 16 (𝑊 ∈ LVec → 𝐹 ∈ DivRing)
3230, 31syl 17 . . . . . . . . . . . . . . 15 (𝜑𝐹 ∈ DivRing)
3328, 15, 32cphsubrglem 25093 . . . . . . . . . . . . . 14 (𝜑 → (𝐹 = (ℂflds (Base‘𝐹)) ∧ (Base‘𝐹) = (𝐾 ∩ ℂ) ∧ (Base‘𝐹) ∈ (SubRing‘ℂfld)))
3433simp2d 1143 . . . . . . . . . . . . 13 (𝜑 → (Base‘𝐹) = (𝐾 ∩ ℂ))
35 inss2 4191 . . . . . . . . . . . . 13 (𝐾 ∩ ℂ) ⊆ ℂ
3634, 35eqsstrdi 3982 . . . . . . . . . . . 12 (𝜑 → (Base‘𝐹) ⊆ ℂ)
3736adantr 480 . . . . . . . . . . 11 ((𝜑𝑦𝑉) → (Base‘𝐹) ⊆ ℂ)
3814, 6, 5, 28ipcl 21558 . . . . . . . . . . . . 13 ((𝑊 ∈ PreHil ∧ 𝑦𝑉𝑦𝑉) → (𝑦 , 𝑦) ∈ (Base‘𝐹))
39383anidm23 1423 . . . . . . . . . . . 12 ((𝑊 ∈ PreHil ∧ 𝑦𝑉) → (𝑦 , 𝑦) ∈ (Base‘𝐹))
401, 39sylan 580 . . . . . . . . . . 11 ((𝜑𝑦𝑉) → (𝑦 , 𝑦) ∈ (Base‘𝐹))
4137, 40sseldd 3938 . . . . . . . . . 10 ((𝜑𝑦𝑉) → (𝑦 , 𝑦) ∈ ℂ)
4241sqrtcld 15365 . . . . . . . . 9 ((𝜑𝑦𝑉) → (√‘(𝑦 , 𝑦)) ∈ ℂ)
43 sqeq0 14045 . . . . . . . . 9 ((√‘(𝑦 , 𝑦)) ∈ ℂ → (((√‘(𝑦 , 𝑦))↑2) = 0 ↔ (√‘(𝑦 , 𝑦)) = 0))
4442, 43syl 17 . . . . . . . 8 ((𝜑𝑦𝑉) → (((√‘(𝑦 , 𝑦))↑2) = 0 ↔ (√‘(𝑦 , 𝑦)) = 0))
4541sqsqrtd 15367 . . . . . . . . 9 ((𝜑𝑦𝑉) → ((√‘(𝑦 , 𝑦))↑2) = (𝑦 , 𝑦))
462, 5, 14, 1, 15phclm 25148 . . . . . . . . . . 11 (𝜑𝑊 ∈ ℂMod)
4714clm0 24988 . . . . . . . . . . 11 (𝑊 ∈ ℂMod → 0 = (0g𝐹))
4846, 47syl 17 . . . . . . . . . 10 (𝜑 → 0 = (0g𝐹))
4948adantr 480 . . . . . . . . 9 ((𝜑𝑦𝑉) → 0 = (0g𝐹))
5045, 49eqeq12d 2745 . . . . . . . 8 ((𝜑𝑦𝑉) → (((√‘(𝑦 , 𝑦))↑2) = 0 ↔ (𝑦 , 𝑦) = (0g𝐹)))
5144, 50bitr3d 281 . . . . . . 7 ((𝜑𝑦𝑉) → ((√‘(𝑦 , 𝑦)) = 0 ↔ (𝑦 , 𝑦) = (0g𝐹)))
52 eqid 2729 . . . . . . . . 9 (0g𝐹) = (0g𝐹)
5314, 6, 5, 52, 9ipeq0 21563 . . . . . . . 8 ((𝑊 ∈ PreHil ∧ 𝑦𝑉) → ((𝑦 , 𝑦) = (0g𝐹) ↔ 𝑦 = (0g𝑊)))
541, 53sylan 580 . . . . . . 7 ((𝜑𝑦𝑉) → ((𝑦 , 𝑦) = (0g𝐹) ↔ 𝑦 = (0g𝑊)))
5527, 51, 543bitrd 305 . . . . . 6 ((𝜑𝑦𝑉) → (((𝑥𝑉 ↦ (√‘(𝑥 , 𝑥)))‘𝑦) = 0 ↔ 𝑦 = (0g𝑊)))
561adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑦𝑉𝑧𝑉)) → 𝑊 ∈ PreHil)
5733simp1d 1142 . . . . . . . . 9 (𝜑𝐹 = (ℂflds (Base‘𝐹)))
5857adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑦𝑉𝑧𝑉)) → 𝐹 = (ℂflds (Base‘𝐹)))
59 3anass 1094 . . . . . . . . . . 11 ((𝑥 ∈ (Base‘𝐹) ∧ 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ↔ (𝑥 ∈ (Base‘𝐹) ∧ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥)))
60 tcphcph.3 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥𝐾𝑥 ∈ ℝ ∧ 0 ≤ 𝑥)) → (√‘𝑥) ∈ 𝐾)
61 simpr2 1196 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑥𝐾𝑥 ∈ ℝ ∧ 0 ≤ 𝑥)) → 𝑥 ∈ ℝ)
6261recnd 11162 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑥𝐾𝑥 ∈ ℝ ∧ 0 ≤ 𝑥)) → 𝑥 ∈ ℂ)
6362sqrtcld 15365 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥𝐾𝑥 ∈ ℝ ∧ 0 ≤ 𝑥)) → (√‘𝑥) ∈ ℂ)
6460, 63jca 511 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥𝐾𝑥 ∈ ℝ ∧ 0 ≤ 𝑥)) → ((√‘𝑥) ∈ 𝐾 ∧ (√‘𝑥) ∈ ℂ))
6564ex 412 . . . . . . . . . . . 12 (𝜑 → ((𝑥𝐾𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) → ((√‘𝑥) ∈ 𝐾 ∧ (√‘𝑥) ∈ ℂ)))
6634eleq2d 2814 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑥 ∈ (Base‘𝐹) ↔ 𝑥 ∈ (𝐾 ∩ ℂ)))
67 recn 11118 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ℝ → 𝑥 ∈ ℂ)
68 elin 3921 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ (𝐾 ∩ ℂ) ↔ (𝑥𝐾𝑥 ∈ ℂ))
6968rbaib 538 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ℂ → (𝑥 ∈ (𝐾 ∩ ℂ) ↔ 𝑥𝐾))
7067, 69syl 17 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ℝ → (𝑥 ∈ (𝐾 ∩ ℂ) ↔ 𝑥𝐾))
7166, 70sylan9bb 509 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ ℝ) → (𝑥 ∈ (Base‘𝐹) ↔ 𝑥𝐾))
7271adantrr 717 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥)) → (𝑥 ∈ (Base‘𝐹) ↔ 𝑥𝐾))
7372ex 412 . . . . . . . . . . . . . 14 (𝜑 → ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) → (𝑥 ∈ (Base‘𝐹) ↔ 𝑥𝐾)))
7473pm5.32rd 578 . . . . . . . . . . . . 13 (𝜑 → ((𝑥 ∈ (Base‘𝐹) ∧ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥)) ↔ (𝑥𝐾 ∧ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥))))
75 3anass 1094 . . . . . . . . . . . . 13 ((𝑥𝐾𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ↔ (𝑥𝐾 ∧ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥)))
7674, 75bitr4di 289 . . . . . . . . . . . 12 (𝜑 → ((𝑥 ∈ (Base‘𝐹) ∧ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥)) ↔ (𝑥𝐾𝑥 ∈ ℝ ∧ 0 ≤ 𝑥)))
7734eleq2d 2814 . . . . . . . . . . . . 13 (𝜑 → ((√‘𝑥) ∈ (Base‘𝐹) ↔ (√‘𝑥) ∈ (𝐾 ∩ ℂ)))
78 elin 3921 . . . . . . . . . . . . 13 ((√‘𝑥) ∈ (𝐾 ∩ ℂ) ↔ ((√‘𝑥) ∈ 𝐾 ∧ (√‘𝑥) ∈ ℂ))
7977, 78bitrdi 287 . . . . . . . . . . . 12 (𝜑 → ((√‘𝑥) ∈ (Base‘𝐹) ↔ ((√‘𝑥) ∈ 𝐾 ∧ (√‘𝑥) ∈ ℂ)))
8065, 76, 793imtr4d 294 . . . . . . . . . . 11 (𝜑 → ((𝑥 ∈ (Base‘𝐹) ∧ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥)) → (√‘𝑥) ∈ (Base‘𝐹)))
8159, 80biimtrid 242 . . . . . . . . . 10 (𝜑 → ((𝑥 ∈ (Base‘𝐹) ∧ 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) → (√‘𝑥) ∈ (Base‘𝐹)))
8281imp 406 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥)) → (√‘𝑥) ∈ (Base‘𝐹))
8382adantlr 715 . . . . . . . 8 (((𝜑 ∧ (𝑦𝑉𝑧𝑉)) ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥)) → (√‘𝑥) ∈ (Base‘𝐹))
8417adantlr 715 . . . . . . . 8 (((𝜑 ∧ (𝑦𝑉𝑧𝑉)) ∧ 𝑥𝑉) → 0 ≤ (𝑥 , 𝑥))
85 simprl 770 . . . . . . . 8 ((𝜑 ∧ (𝑦𝑉𝑧𝑉)) → 𝑦𝑉)
86 simprr 772 . . . . . . . 8 ((𝜑 ∧ (𝑦𝑉𝑧𝑉)) → 𝑧𝑉)
872, 5, 14, 56, 58, 6, 83, 84, 28, 8, 85, 86tcphcphlem1 25151 . . . . . . 7 ((𝜑 ∧ (𝑦𝑉𝑧𝑉)) → (√‘((𝑦(-g𝑊)𝑧) , (𝑦(-g𝑊)𝑧))) ≤ ((√‘(𝑦 , 𝑦)) + (√‘(𝑧 , 𝑧))))
885, 8grpsubcl 18917 . . . . . . . . . 10 ((𝑊 ∈ Grp ∧ 𝑦𝑉𝑧𝑉) → (𝑦(-g𝑊)𝑧) ∈ 𝑉)
89883expb 1120 . . . . . . . . 9 ((𝑊 ∈ Grp ∧ (𝑦𝑉𝑧𝑉)) → (𝑦(-g𝑊)𝑧) ∈ 𝑉)
9013, 89sylan 580 . . . . . . . 8 ((𝜑 ∧ (𝑦𝑉𝑧𝑉)) → (𝑦(-g𝑊)𝑧) ∈ 𝑉)
91 oveq12 7362 . . . . . . . . . . 11 ((𝑥 = (𝑦(-g𝑊)𝑧) ∧ 𝑥 = (𝑦(-g𝑊)𝑧)) → (𝑥 , 𝑥) = ((𝑦(-g𝑊)𝑧) , (𝑦(-g𝑊)𝑧)))
9291anidms 566 . . . . . . . . . 10 (𝑥 = (𝑦(-g𝑊)𝑧) → (𝑥 , 𝑥) = ((𝑦(-g𝑊)𝑧) , (𝑦(-g𝑊)𝑧)))
9392fveq2d 6830 . . . . . . . . 9 (𝑥 = (𝑦(-g𝑊)𝑧) → (√‘(𝑥 , 𝑥)) = (√‘((𝑦(-g𝑊)𝑧) , (𝑦(-g𝑊)𝑧))))
9493, 23, 24fvmpt3i 6939 . . . . . . . 8 ((𝑦(-g𝑊)𝑧) ∈ 𝑉 → ((𝑥𝑉 ↦ (√‘(𝑥 , 𝑥)))‘(𝑦(-g𝑊)𝑧)) = (√‘((𝑦(-g𝑊)𝑧) , (𝑦(-g𝑊)𝑧))))
9590, 94syl 17 . . . . . . 7 ((𝜑 ∧ (𝑦𝑉𝑧𝑉)) → ((𝑥𝑉 ↦ (√‘(𝑥 , 𝑥)))‘(𝑦(-g𝑊)𝑧)) = (√‘((𝑦(-g𝑊)𝑧) , (𝑦(-g𝑊)𝑧))))
96 oveq12 7362 . . . . . . . . . . . 12 ((𝑥 = 𝑧𝑥 = 𝑧) → (𝑥 , 𝑥) = (𝑧 , 𝑧))
9796anidms 566 . . . . . . . . . . 11 (𝑥 = 𝑧 → (𝑥 , 𝑥) = (𝑧 , 𝑧))
9897fveq2d 6830 . . . . . . . . . 10 (𝑥 = 𝑧 → (√‘(𝑥 , 𝑥)) = (√‘(𝑧 , 𝑧)))
9998, 23, 24fvmpt3i 6939 . . . . . . . . 9 (𝑧𝑉 → ((𝑥𝑉 ↦ (√‘(𝑥 , 𝑥)))‘𝑧) = (√‘(𝑧 , 𝑧)))
10025, 99oveqan12d 7372 . . . . . . . 8 ((𝑦𝑉𝑧𝑉) → (((𝑥𝑉 ↦ (√‘(𝑥 , 𝑥)))‘𝑦) + ((𝑥𝑉 ↦ (√‘(𝑥 , 𝑥)))‘𝑧)) = ((√‘(𝑦 , 𝑦)) + (√‘(𝑧 , 𝑧))))
101100adantl 481 . . . . . . 7 ((𝜑 ∧ (𝑦𝑉𝑧𝑉)) → (((𝑥𝑉 ↦ (√‘(𝑥 , 𝑥)))‘𝑦) + ((𝑥𝑉 ↦ (√‘(𝑥 , 𝑥)))‘𝑧)) = ((√‘(𝑦 , 𝑦)) + (√‘(𝑧 , 𝑧))))
10287, 95, 1013brtr4d 5127 . . . . . 6 ((𝜑 ∧ (𝑦𝑉𝑧𝑉)) → ((𝑥𝑉 ↦ (√‘(𝑥 , 𝑥)))‘(𝑦(-g𝑊)𝑧)) ≤ (((𝑥𝑉 ↦ (√‘(𝑥 , 𝑥)))‘𝑦) + ((𝑥𝑉 ↦ (√‘(𝑥 , 𝑥)))‘𝑧)))
1037, 5, 8, 9, 13, 19, 55, 102tngngpd 24557 . . . . 5 (𝜑𝐺 ∈ NrmGrp)
104 phllmod 21555 . . . . . 6 (𝐺 ∈ PreHil → 𝐺 ∈ LMod)
1054, 104syl 17 . . . . 5 (𝜑𝐺 ∈ LMod)
106 cnnrg 24684 . . . . . . 7 fld ∈ NrmRing
10733simp3d 1144 . . . . . . 7 (𝜑 → (Base‘𝐹) ∈ (SubRing‘ℂfld))
108 eqid 2729 . . . . . . . 8 (ℂflds (Base‘𝐹)) = (ℂflds (Base‘𝐹))
109108subrgnrg 24577 . . . . . . 7 ((ℂfld ∈ NrmRing ∧ (Base‘𝐹) ∈ (SubRing‘ℂfld)) → (ℂflds (Base‘𝐹)) ∈ NrmRing)
110106, 107, 109sylancr 587 . . . . . 6 (𝜑 → (ℂflds (Base‘𝐹)) ∈ NrmRing)
11157, 110eqeltrd 2828 . . . . 5 (𝜑𝐹 ∈ NrmRing)
112103, 105, 1113jca 1128 . . . 4 (𝜑 → (𝐺 ∈ NrmGrp ∧ 𝐺 ∈ LMod ∧ 𝐹 ∈ NrmRing))
1131adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑦 ∈ (Base‘𝐹) ∧ 𝑧𝑉)) → 𝑊 ∈ PreHil)
11457adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑦 ∈ (Base‘𝐹) ∧ 𝑧𝑉)) → 𝐹 = (ℂflds (Base‘𝐹)))
11582adantlr 715 . . . . . . 7 (((𝜑 ∧ (𝑦 ∈ (Base‘𝐹) ∧ 𝑧𝑉)) ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥)) → (√‘𝑥) ∈ (Base‘𝐹))
11617adantlr 715 . . . . . . 7 (((𝜑 ∧ (𝑦 ∈ (Base‘𝐹) ∧ 𝑧𝑉)) ∧ 𝑥𝑉) → 0 ≤ (𝑥 , 𝑥))
117 eqid 2729 . . . . . . 7 ( ·𝑠𝑊) = ( ·𝑠𝑊)
118 simprl 770 . . . . . . 7 ((𝜑 ∧ (𝑦 ∈ (Base‘𝐹) ∧ 𝑧𝑉)) → 𝑦 ∈ (Base‘𝐹))
119 simprr 772 . . . . . . 7 ((𝜑 ∧ (𝑦 ∈ (Base‘𝐹) ∧ 𝑧𝑉)) → 𝑧𝑉)
1202, 5, 14, 113, 114, 6, 115, 116, 28, 117, 118, 119tcphcphlem2 25152 . . . . . 6 ((𝜑 ∧ (𝑦 ∈ (Base‘𝐹) ∧ 𝑧𝑉)) → (√‘((𝑦( ·𝑠𝑊)𝑧) , (𝑦( ·𝑠𝑊)𝑧))) = ((abs‘𝑦) · (√‘(𝑧 , 𝑧))))
1215, 14, 117, 28lmodvscl 20799 . . . . . . . . 9 ((𝑊 ∈ LMod ∧ 𝑦 ∈ (Base‘𝐹) ∧ 𝑧𝑉) → (𝑦( ·𝑠𝑊)𝑧) ∈ 𝑉)
1221213expb 1120 . . . . . . . 8 ((𝑊 ∈ LMod ∧ (𝑦 ∈ (Base‘𝐹) ∧ 𝑧𝑉)) → (𝑦( ·𝑠𝑊)𝑧) ∈ 𝑉)
12311, 122sylan 580 . . . . . . 7 ((𝜑 ∧ (𝑦 ∈ (Base‘𝐹) ∧ 𝑧𝑉)) → (𝑦( ·𝑠𝑊)𝑧) ∈ 𝑉)
124 eqid 2729 . . . . . . . 8 (norm‘𝐺) = (norm‘𝐺)
1252, 124, 5, 6tcphnmval 25145 . . . . . . 7 ((𝑊 ∈ Grp ∧ (𝑦( ·𝑠𝑊)𝑧) ∈ 𝑉) → ((norm‘𝐺)‘(𝑦( ·𝑠𝑊)𝑧)) = (√‘((𝑦( ·𝑠𝑊)𝑧) , (𝑦( ·𝑠𝑊)𝑧))))
12613, 123, 125syl2an2r 685 . . . . . 6 ((𝜑 ∧ (𝑦 ∈ (Base‘𝐹) ∧ 𝑧𝑉)) → ((norm‘𝐺)‘(𝑦( ·𝑠𝑊)𝑧)) = (√‘((𝑦( ·𝑠𝑊)𝑧) , (𝑦( ·𝑠𝑊)𝑧))))
127114fveq2d 6830 . . . . . . . . 9 ((𝜑 ∧ (𝑦 ∈ (Base‘𝐹) ∧ 𝑧𝑉)) → (norm‘𝐹) = (norm‘(ℂflds (Base‘𝐹))))
128127fveq1d 6828 . . . . . . . 8 ((𝜑 ∧ (𝑦 ∈ (Base‘𝐹) ∧ 𝑧𝑉)) → ((norm‘𝐹)‘𝑦) = ((norm‘(ℂflds (Base‘𝐹)))‘𝑦))
129 subrgsubg 20480 . . . . . . . . . 10 ((Base‘𝐹) ∈ (SubRing‘ℂfld) → (Base‘𝐹) ∈ (SubGrp‘ℂfld))
130107, 129syl 17 . . . . . . . . 9 (𝜑 → (Base‘𝐹) ∈ (SubGrp‘ℂfld))
131 cnfldnm 24682 . . . . . . . . . 10 abs = (norm‘ℂfld)
132 eqid 2729 . . . . . . . . . 10 (norm‘(ℂflds (Base‘𝐹))) = (norm‘(ℂflds (Base‘𝐹)))
133108, 131, 132subgnm2 24538 . . . . . . . . 9 (((Base‘𝐹) ∈ (SubGrp‘ℂfld) ∧ 𝑦 ∈ (Base‘𝐹)) → ((norm‘(ℂflds (Base‘𝐹)))‘𝑦) = (abs‘𝑦))
134130, 118, 133syl2an2r 685 . . . . . . . 8 ((𝜑 ∧ (𝑦 ∈ (Base‘𝐹) ∧ 𝑧𝑉)) → ((norm‘(ℂflds (Base‘𝐹)))‘𝑦) = (abs‘𝑦))
135128, 134eqtrd 2764 . . . . . . 7 ((𝜑 ∧ (𝑦 ∈ (Base‘𝐹) ∧ 𝑧𝑉)) → ((norm‘𝐹)‘𝑦) = (abs‘𝑦))
1362, 124, 5, 6tcphnmval 25145 . . . . . . . 8 ((𝑊 ∈ Grp ∧ 𝑧𝑉) → ((norm‘𝐺)‘𝑧) = (√‘(𝑧 , 𝑧)))
13713, 119, 136syl2an2r 685 . . . . . . 7 ((𝜑 ∧ (𝑦 ∈ (Base‘𝐹) ∧ 𝑧𝑉)) → ((norm‘𝐺)‘𝑧) = (√‘(𝑧 , 𝑧)))
138135, 137oveq12d 7371 . . . . . 6 ((𝜑 ∧ (𝑦 ∈ (Base‘𝐹) ∧ 𝑧𝑉)) → (((norm‘𝐹)‘𝑦) · ((norm‘𝐺)‘𝑧)) = ((abs‘𝑦) · (√‘(𝑧 , 𝑧))))
139120, 126, 1383eqtr4d 2774 . . . . 5 ((𝜑 ∧ (𝑦 ∈ (Base‘𝐹) ∧ 𝑧𝑉)) → ((norm‘𝐺)‘(𝑦( ·𝑠𝑊)𝑧)) = (((norm‘𝐹)‘𝑦) · ((norm‘𝐺)‘𝑧)))
140139ralrimivva 3172 . . . 4 (𝜑 → ∀𝑦 ∈ (Base‘𝐹)∀𝑧𝑉 ((norm‘𝐺)‘(𝑦( ·𝑠𝑊)𝑧)) = (((norm‘𝐹)‘𝑦) · ((norm‘𝐺)‘𝑧)))
1412, 5tcphbas 25135 . . . . 5 𝑉 = (Base‘𝐺)
1422, 117tcphvsca 25140 . . . . 5 ( ·𝑠𝑊) = ( ·𝑠𝐺)
1432, 14tcphsca 25139 . . . . 5 𝐹 = (Scalar‘𝐺)
144 eqid 2729 . . . . 5 (norm‘𝐹) = (norm‘𝐹)
145141, 124, 142, 143, 28, 144isnlm 24579 . . . 4 (𝐺 ∈ NrmMod ↔ ((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ LMod ∧ 𝐹 ∈ NrmRing) ∧ ∀𝑦 ∈ (Base‘𝐹)∀𝑧𝑉 ((norm‘𝐺)‘(𝑦( ·𝑠𝑊)𝑧)) = (((norm‘𝐹)‘𝑦) · ((norm‘𝐺)‘𝑧))))
146112, 140, 145sylanbrc 583 . . 3 (𝜑𝐺 ∈ NrmMod)
1474, 146, 573jca 1128 . 2 (𝜑 → (𝐺 ∈ PreHil ∧ 𝐺 ∈ NrmMod ∧ 𝐹 = (ℂflds (Base‘𝐹))))
148 elin 3921 . . . . . 6 (𝑥 ∈ ((Base‘𝐹) ∩ (0[,)+∞)) ↔ (𝑥 ∈ (Base‘𝐹) ∧ 𝑥 ∈ (0[,)+∞)))
149 elrege0 13375 . . . . . . 7 (𝑥 ∈ (0[,)+∞) ↔ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥))
150149anbi2i 623 . . . . . 6 ((𝑥 ∈ (Base‘𝐹) ∧ 𝑥 ∈ (0[,)+∞)) ↔ (𝑥 ∈ (Base‘𝐹) ∧ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥)))
151148, 150bitri 275 . . . . 5 (𝑥 ∈ ((Base‘𝐹) ∩ (0[,)+∞)) ↔ (𝑥 ∈ (Base‘𝐹) ∧ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥)))
152151, 80biimtrid 242 . . . 4 (𝜑 → (𝑥 ∈ ((Base‘𝐹) ∩ (0[,)+∞)) → (√‘𝑥) ∈ (Base‘𝐹)))
153152ralrimiv 3120 . . 3 (𝜑 → ∀𝑥 ∈ ((Base‘𝐹) ∩ (0[,)+∞))(√‘𝑥) ∈ (Base‘𝐹))
154 sqrtf 15289 . . . . 5 √:ℂ⟶ℂ
155 ffun 6659 . . . . 5 (√:ℂ⟶ℂ → Fun √)
156154, 155ax-mp 5 . . . 4 Fun √
157 inss1 4190 . . . . . 6 ((Base‘𝐹) ∩ (0[,)+∞)) ⊆ (Base‘𝐹)
158157, 36sstrid 3949 . . . . 5 (𝜑 → ((Base‘𝐹) ∩ (0[,)+∞)) ⊆ ℂ)
159154fdmi 6667 . . . . 5 dom √ = ℂ
160158, 159sseqtrrdi 3979 . . . 4 (𝜑 → ((Base‘𝐹) ∩ (0[,)+∞)) ⊆ dom √)
161 funimass4 6891 . . . 4 ((Fun √ ∧ ((Base‘𝐹) ∩ (0[,)+∞)) ⊆ dom √) → ((√ “ ((Base‘𝐹) ∩ (0[,)+∞))) ⊆ (Base‘𝐹) ↔ ∀𝑥 ∈ ((Base‘𝐹) ∩ (0[,)+∞))(√‘𝑥) ∈ (Base‘𝐹)))
162156, 160, 161sylancr 587 . . 3 (𝜑 → ((√ “ ((Base‘𝐹) ∩ (0[,)+∞))) ⊆ (Base‘𝐹) ↔ ∀𝑥 ∈ ((Base‘𝐹) ∩ (0[,)+∞))(√‘𝑥) ∈ (Base‘𝐹)))
163153, 162mpbird 257 . 2 (𝜑 → (√ “ ((Base‘𝐹) ∩ (0[,)+∞))) ⊆ (Base‘𝐹))
16442fmpttd 7053 . . . 4 (𝜑 → (𝑦𝑉 ↦ (√‘(𝑦 , 𝑦))):𝑉⟶ℂ)
1652, 5, 6tcphval 25134 . . . . 5 𝐺 = (𝑊 toNrmGrp (𝑦𝑉 ↦ (√‘(𝑦 , 𝑦))))
166 cnex 11109 . . . . 5 ℂ ∈ V
167165, 5, 166tngnm 24555 . . . 4 ((𝑊 ∈ Grp ∧ (𝑦𝑉 ↦ (√‘(𝑦 , 𝑦))):𝑉⟶ℂ) → (𝑦𝑉 ↦ (√‘(𝑦 , 𝑦))) = (norm‘𝐺))
16813, 164, 167syl2anc 584 . . 3 (𝜑 → (𝑦𝑉 ↦ (√‘(𝑦 , 𝑦))) = (norm‘𝐺))
169168eqcomd 2735 . 2 (𝜑 → (norm‘𝐺) = (𝑦𝑉 ↦ (√‘(𝑦 , 𝑦))))
1702, 6tcphip 25141 . . 3 , = (·𝑖𝐺)
171141, 170, 124, 143, 28iscph 25086 . 2 (𝐺 ∈ ℂPreHil ↔ ((𝐺 ∈ PreHil ∧ 𝐺 ∈ NrmMod ∧ 𝐹 = (ℂflds (Base‘𝐹))) ∧ (√ “ ((Base‘𝐹) ∩ (0[,)+∞))) ⊆ (Base‘𝐹) ∧ (norm‘𝐺) = (𝑦𝑉 ↦ (√‘(𝑦 , 𝑦)))))
172147, 163, 169, 171syl3anbrc 1344 1 (𝜑𝐺 ∈ ℂPreHil)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  cin 3904  wss 3905   class class class wbr 5095  cmpt 5176  dom cdm 5623  cima 5626  Fun wfun 6480  wf 6482  cfv 6486  (class class class)co 7353  cc 11026  cr 11027  0cc0 11028   + caddc 11031   · cmul 11033  +∞cpnf 11165  cle 11169  2c2 12201  [,)cico 13268  cexp 13986  csqrt 15158  abscabs 15159  Basecbs 17138  s cress 17159  Scalarcsca 17182   ·𝑠 cvsca 17183  ·𝑖cip 17184  0gc0g 17361  Grpcgrp 18830  -gcsg 18832  SubGrpcsubg 19017  SubRingcsubrg 20472  DivRingcdr 20632  LModclmod 20781  LVecclvec 21024  fldccnfld 21279  PreHilcphl 21549  normcnm 24480  NrmGrpcngp 24481  NrmRingcnrg 24483  NrmModcnlm 24484  ℂModcclm 24978  ℂPreHilccph 25082  toℂPreHilctcph 25083
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106  ax-addf 11107  ax-mulf 11108
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-tpos 8166  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-er 8632  df-map 8762  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-sup 9351  df-inf 9352  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-3 12210  df-4 12211  df-5 12212  df-6 12213  df-7 12214  df-8 12215  df-9 12216  df-n0 12403  df-z 12490  df-dec 12610  df-uz 12754  df-q 12868  df-rp 12912  df-xneg 13032  df-xadd 13033  df-xmul 13034  df-ico 13272  df-fz 13429  df-seq 13927  df-exp 13987  df-cj 15024  df-re 15025  df-im 15026  df-sqrt 15160  df-abs 15161  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17139  df-ress 17160  df-plusg 17192  df-mulr 17193  df-starv 17194  df-sca 17195  df-vsca 17196  df-ip 17197  df-tset 17198  df-ple 17199  df-ds 17201  df-unif 17202  df-rest 17344  df-topn 17345  df-0g 17363  df-topgen 17365  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-mhm 18675  df-grp 18833  df-minusg 18834  df-sbg 18835  df-subg 19020  df-ghm 19110  df-cmn 19679  df-abl 19680  df-mgp 20044  df-rng 20056  df-ur 20085  df-ring 20138  df-cring 20139  df-oppr 20240  df-dvdsr 20260  df-unit 20261  df-invr 20291  df-dvr 20304  df-rhm 20375  df-subrng 20449  df-subrg 20473  df-drng 20634  df-abv 20712  df-staf 20742  df-srng 20743  df-lmod 20783  df-lmhm 20944  df-lvec 21025  df-sra 21095  df-rgmod 21096  df-psmet 21271  df-xmet 21272  df-met 21273  df-bl 21274  df-mopn 21275  df-cnfld 21280  df-phl 21551  df-top 22797  df-topon 22814  df-topsp 22836  df-bases 22849  df-xms 24224  df-ms 24225  df-nm 24486  df-ngp 24487  df-tng 24488  df-nrg 24489  df-nlm 24490  df-clm 24979  df-cph 25084  df-tcph 25085
This theorem is referenced by:  rrxcph  25308
  Copyright terms: Public domain W3C validator