MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tcphcph Structured version   Visualization version   GIF version

Theorem tcphcph 23363
Description: The standard definition of a norm turns any pre-Hilbert space over a subfield of fld closed under square roots of nonnegative reals into a subcomplex pre-Hilbert space (which allows access to a norm, metric, and topology). (Contributed by Mario Carneiro, 11-Oct-2015.)
Hypotheses
Ref Expression
tcphval.n 𝐺 = (toℂPreHil‘𝑊)
tcphcph.v 𝑉 = (Base‘𝑊)
tcphcph.f 𝐹 = (Scalar‘𝑊)
tcphcph.1 (𝜑𝑊 ∈ PreHil)
tcphcph.2 (𝜑𝐹 = (ℂflds 𝐾))
tcphcph.h , = (·𝑖𝑊)
tcphcph.3 ((𝜑 ∧ (𝑥𝐾𝑥 ∈ ℝ ∧ 0 ≤ 𝑥)) → (√‘𝑥) ∈ 𝐾)
tcphcph.4 ((𝜑𝑥𝑉) → 0 ≤ (𝑥 , 𝑥))
Assertion
Ref Expression
tcphcph (𝜑𝐺 ∈ ℂPreHil)
Distinct variable groups:   𝑥, ,   𝑥,𝐹   𝑥,𝐺   𝑥,𝑉   𝜑,𝑥   𝑥,𝑊
Allowed substitution hint:   𝐾(𝑥)

Proof of Theorem tcphcph
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tcphcph.1 . . . 4 (𝜑𝑊 ∈ PreHil)
2 tcphval.n . . . . 5 𝐺 = (toℂPreHil‘𝑊)
32tcphphl 23353 . . . 4 (𝑊 ∈ PreHil ↔ 𝐺 ∈ PreHil)
41, 3sylib 210 . . 3 (𝜑𝐺 ∈ PreHil)
5 tcphcph.v . . . . . . 7 𝑉 = (Base‘𝑊)
6 tcphcph.h . . . . . . 7 , = (·𝑖𝑊)
72, 5, 6tcphval 23344 . . . . . 6 𝐺 = (𝑊 toNrmGrp (𝑥𝑉 ↦ (√‘(𝑥 , 𝑥))))
8 eqid 2799 . . . . . 6 (-g𝑊) = (-g𝑊)
9 eqid 2799 . . . . . 6 (0g𝑊) = (0g𝑊)
10 phllmod 20299 . . . . . . . 8 (𝑊 ∈ PreHil → 𝑊 ∈ LMod)
111, 10syl 17 . . . . . . 7 (𝜑𝑊 ∈ LMod)
12 lmodgrp 19188 . . . . . . 7 (𝑊 ∈ LMod → 𝑊 ∈ Grp)
1311, 12syl 17 . . . . . 6 (𝜑𝑊 ∈ Grp)
14 tcphcph.f . . . . . . . . 9 𝐹 = (Scalar‘𝑊)
15 tcphcph.2 . . . . . . . . 9 (𝜑𝐹 = (ℂflds 𝐾))
162, 5, 14, 1, 15, 6tcphcphlem3 23359 . . . . . . . 8 ((𝜑𝑥𝑉) → (𝑥 , 𝑥) ∈ ℝ)
17 tcphcph.4 . . . . . . . 8 ((𝜑𝑥𝑉) → 0 ≤ (𝑥 , 𝑥))
1816, 17resqrtcld 14497 . . . . . . 7 ((𝜑𝑥𝑉) → (√‘(𝑥 , 𝑥)) ∈ ℝ)
1918fmpttd 6611 . . . . . 6 (𝜑 → (𝑥𝑉 ↦ (√‘(𝑥 , 𝑥))):𝑉⟶ℝ)
20 oveq12 6887 . . . . . . . . . . . 12 ((𝑥 = 𝑦𝑥 = 𝑦) → (𝑥 , 𝑥) = (𝑦 , 𝑦))
2120anidms 563 . . . . . . . . . . 11 (𝑥 = 𝑦 → (𝑥 , 𝑥) = (𝑦 , 𝑦))
2221fveq2d 6415 . . . . . . . . . 10 (𝑥 = 𝑦 → (√‘(𝑥 , 𝑥)) = (√‘(𝑦 , 𝑦)))
23 eqid 2799 . . . . . . . . . 10 (𝑥𝑉 ↦ (√‘(𝑥 , 𝑥))) = (𝑥𝑉 ↦ (√‘(𝑥 , 𝑥)))
24 fvex 6424 . . . . . . . . . 10 (√‘(𝑥 , 𝑥)) ∈ V
2522, 23, 24fvmpt3i 6512 . . . . . . . . 9 (𝑦𝑉 → ((𝑥𝑉 ↦ (√‘(𝑥 , 𝑥)))‘𝑦) = (√‘(𝑦 , 𝑦)))
2625adantl 474 . . . . . . . 8 ((𝜑𝑦𝑉) → ((𝑥𝑉 ↦ (√‘(𝑥 , 𝑥)))‘𝑦) = (√‘(𝑦 , 𝑦)))
2726eqeq1d 2801 . . . . . . 7 ((𝜑𝑦𝑉) → (((𝑥𝑉 ↦ (√‘(𝑥 , 𝑥)))‘𝑦) = 0 ↔ (√‘(𝑦 , 𝑦)) = 0))
28 eqid 2799 . . . . . . . . . . . . . . 15 (Base‘𝐹) = (Base‘𝐹)
29 phllvec 20298 . . . . . . . . . . . . . . . . 17 (𝑊 ∈ PreHil → 𝑊 ∈ LVec)
301, 29syl 17 . . . . . . . . . . . . . . . 16 (𝜑𝑊 ∈ LVec)
3114lvecdrng 19426 . . . . . . . . . . . . . . . 16 (𝑊 ∈ LVec → 𝐹 ∈ DivRing)
3230, 31syl 17 . . . . . . . . . . . . . . 15 (𝜑𝐹 ∈ DivRing)
3328, 15, 32cphsubrglem 23304 . . . . . . . . . . . . . 14 (𝜑 → (𝐹 = (ℂflds (Base‘𝐹)) ∧ (Base‘𝐹) = (𝐾 ∩ ℂ) ∧ (Base‘𝐹) ∈ (SubRing‘ℂfld)))
3433simp2d 1174 . . . . . . . . . . . . 13 (𝜑 → (Base‘𝐹) = (𝐾 ∩ ℂ))
35 inss2 4029 . . . . . . . . . . . . 13 (𝐾 ∩ ℂ) ⊆ ℂ
3634, 35syl6eqss 3851 . . . . . . . . . . . 12 (𝜑 → (Base‘𝐹) ⊆ ℂ)
3736adantr 473 . . . . . . . . . . 11 ((𝜑𝑦𝑉) → (Base‘𝐹) ⊆ ℂ)
3814, 6, 5, 28ipcl 20302 . . . . . . . . . . . . 13 ((𝑊 ∈ PreHil ∧ 𝑦𝑉𝑦𝑉) → (𝑦 , 𝑦) ∈ (Base‘𝐹))
39383anidm23 1545 . . . . . . . . . . . 12 ((𝑊 ∈ PreHil ∧ 𝑦𝑉) → (𝑦 , 𝑦) ∈ (Base‘𝐹))
401, 39sylan 576 . . . . . . . . . . 11 ((𝜑𝑦𝑉) → (𝑦 , 𝑦) ∈ (Base‘𝐹))
4137, 40sseldd 3799 . . . . . . . . . 10 ((𝜑𝑦𝑉) → (𝑦 , 𝑦) ∈ ℂ)
4241sqrtcld 14517 . . . . . . . . 9 ((𝜑𝑦𝑉) → (√‘(𝑦 , 𝑦)) ∈ ℂ)
43 sqeq0 13181 . . . . . . . . 9 ((√‘(𝑦 , 𝑦)) ∈ ℂ → (((√‘(𝑦 , 𝑦))↑2) = 0 ↔ (√‘(𝑦 , 𝑦)) = 0))
4442, 43syl 17 . . . . . . . 8 ((𝜑𝑦𝑉) → (((√‘(𝑦 , 𝑦))↑2) = 0 ↔ (√‘(𝑦 , 𝑦)) = 0))
4541sqsqrtd 14519 . . . . . . . . 9 ((𝜑𝑦𝑉) → ((√‘(𝑦 , 𝑦))↑2) = (𝑦 , 𝑦))
462, 5, 14, 1, 15phclm 23358 . . . . . . . . . . 11 (𝜑𝑊 ∈ ℂMod)
4714clm0 23199 . . . . . . . . . . 11 (𝑊 ∈ ℂMod → 0 = (0g𝐹))
4846, 47syl 17 . . . . . . . . . 10 (𝜑 → 0 = (0g𝐹))
4948adantr 473 . . . . . . . . 9 ((𝜑𝑦𝑉) → 0 = (0g𝐹))
5045, 49eqeq12d 2814 . . . . . . . 8 ((𝜑𝑦𝑉) → (((√‘(𝑦 , 𝑦))↑2) = 0 ↔ (𝑦 , 𝑦) = (0g𝐹)))
5144, 50bitr3d 273 . . . . . . 7 ((𝜑𝑦𝑉) → ((√‘(𝑦 , 𝑦)) = 0 ↔ (𝑦 , 𝑦) = (0g𝐹)))
52 eqid 2799 . . . . . . . . 9 (0g𝐹) = (0g𝐹)
5314, 6, 5, 52, 9ipeq0 20307 . . . . . . . 8 ((𝑊 ∈ PreHil ∧ 𝑦𝑉) → ((𝑦 , 𝑦) = (0g𝐹) ↔ 𝑦 = (0g𝑊)))
541, 53sylan 576 . . . . . . 7 ((𝜑𝑦𝑉) → ((𝑦 , 𝑦) = (0g𝐹) ↔ 𝑦 = (0g𝑊)))
5527, 51, 543bitrd 297 . . . . . 6 ((𝜑𝑦𝑉) → (((𝑥𝑉 ↦ (√‘(𝑥 , 𝑥)))‘𝑦) = 0 ↔ 𝑦 = (0g𝑊)))
561adantr 473 . . . . . . . 8 ((𝜑 ∧ (𝑦𝑉𝑧𝑉)) → 𝑊 ∈ PreHil)
5733simp1d 1173 . . . . . . . . 9 (𝜑𝐹 = (ℂflds (Base‘𝐹)))
5857adantr 473 . . . . . . . 8 ((𝜑 ∧ (𝑦𝑉𝑧𝑉)) → 𝐹 = (ℂflds (Base‘𝐹)))
59 3anass 1117 . . . . . . . . . . 11 ((𝑥 ∈ (Base‘𝐹) ∧ 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ↔ (𝑥 ∈ (Base‘𝐹) ∧ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥)))
60 tcphcph.3 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥𝐾𝑥 ∈ ℝ ∧ 0 ≤ 𝑥)) → (√‘𝑥) ∈ 𝐾)
61 simpr2 1251 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑥𝐾𝑥 ∈ ℝ ∧ 0 ≤ 𝑥)) → 𝑥 ∈ ℝ)
6261recnd 10357 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑥𝐾𝑥 ∈ ℝ ∧ 0 ≤ 𝑥)) → 𝑥 ∈ ℂ)
6362sqrtcld 14517 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥𝐾𝑥 ∈ ℝ ∧ 0 ≤ 𝑥)) → (√‘𝑥) ∈ ℂ)
6460, 63jca 508 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥𝐾𝑥 ∈ ℝ ∧ 0 ≤ 𝑥)) → ((√‘𝑥) ∈ 𝐾 ∧ (√‘𝑥) ∈ ℂ))
6564ex 402 . . . . . . . . . . . 12 (𝜑 → ((𝑥𝐾𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) → ((√‘𝑥) ∈ 𝐾 ∧ (√‘𝑥) ∈ ℂ)))
6634eleq2d 2864 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑥 ∈ (Base‘𝐹) ↔ 𝑥 ∈ (𝐾 ∩ ℂ)))
67 recn 10314 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ℝ → 𝑥 ∈ ℂ)
68 elin 3994 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ (𝐾 ∩ ℂ) ↔ (𝑥𝐾𝑥 ∈ ℂ))
6968rbaib 535 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ℂ → (𝑥 ∈ (𝐾 ∩ ℂ) ↔ 𝑥𝐾))
7067, 69syl 17 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ℝ → (𝑥 ∈ (𝐾 ∩ ℂ) ↔ 𝑥𝐾))
7166, 70sylan9bb 506 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ ℝ) → (𝑥 ∈ (Base‘𝐹) ↔ 𝑥𝐾))
7271adantrr 709 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥)) → (𝑥 ∈ (Base‘𝐹) ↔ 𝑥𝐾))
7372ex 402 . . . . . . . . . . . . . 14 (𝜑 → ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) → (𝑥 ∈ (Base‘𝐹) ↔ 𝑥𝐾)))
7473pm5.32rd 574 . . . . . . . . . . . . 13 (𝜑 → ((𝑥 ∈ (Base‘𝐹) ∧ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥)) ↔ (𝑥𝐾 ∧ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥))))
75 3anass 1117 . . . . . . . . . . . . 13 ((𝑥𝐾𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ↔ (𝑥𝐾 ∧ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥)))
7674, 75syl6bbr 281 . . . . . . . . . . . 12 (𝜑 → ((𝑥 ∈ (Base‘𝐹) ∧ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥)) ↔ (𝑥𝐾𝑥 ∈ ℝ ∧ 0 ≤ 𝑥)))
7734eleq2d 2864 . . . . . . . . . . . . 13 (𝜑 → ((√‘𝑥) ∈ (Base‘𝐹) ↔ (√‘𝑥) ∈ (𝐾 ∩ ℂ)))
78 elin 3994 . . . . . . . . . . . . 13 ((√‘𝑥) ∈ (𝐾 ∩ ℂ) ↔ ((√‘𝑥) ∈ 𝐾 ∧ (√‘𝑥) ∈ ℂ))
7977, 78syl6bb 279 . . . . . . . . . . . 12 (𝜑 → ((√‘𝑥) ∈ (Base‘𝐹) ↔ ((√‘𝑥) ∈ 𝐾 ∧ (√‘𝑥) ∈ ℂ)))
8065, 76, 793imtr4d 286 . . . . . . . . . . 11 (𝜑 → ((𝑥 ∈ (Base‘𝐹) ∧ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥)) → (√‘𝑥) ∈ (Base‘𝐹)))
8159, 80syl5bi 234 . . . . . . . . . 10 (𝜑 → ((𝑥 ∈ (Base‘𝐹) ∧ 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) → (√‘𝑥) ∈ (Base‘𝐹)))
8281imp 396 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥)) → (√‘𝑥) ∈ (Base‘𝐹))
8382adantlr 707 . . . . . . . 8 (((𝜑 ∧ (𝑦𝑉𝑧𝑉)) ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥)) → (√‘𝑥) ∈ (Base‘𝐹))
8417adantlr 707 . . . . . . . 8 (((𝜑 ∧ (𝑦𝑉𝑧𝑉)) ∧ 𝑥𝑉) → 0 ≤ (𝑥 , 𝑥))
85 simprl 788 . . . . . . . 8 ((𝜑 ∧ (𝑦𝑉𝑧𝑉)) → 𝑦𝑉)
86 simprr 790 . . . . . . . 8 ((𝜑 ∧ (𝑦𝑉𝑧𝑉)) → 𝑧𝑉)
872, 5, 14, 56, 58, 6, 83, 84, 28, 8, 85, 86tcphcphlem1 23361 . . . . . . 7 ((𝜑 ∧ (𝑦𝑉𝑧𝑉)) → (√‘((𝑦(-g𝑊)𝑧) , (𝑦(-g𝑊)𝑧))) ≤ ((√‘(𝑦 , 𝑦)) + (√‘(𝑧 , 𝑧))))
885, 8grpsubcl 17811 . . . . . . . . . 10 ((𝑊 ∈ Grp ∧ 𝑦𝑉𝑧𝑉) → (𝑦(-g𝑊)𝑧) ∈ 𝑉)
89883expb 1150 . . . . . . . . 9 ((𝑊 ∈ Grp ∧ (𝑦𝑉𝑧𝑉)) → (𝑦(-g𝑊)𝑧) ∈ 𝑉)
9013, 89sylan 576 . . . . . . . 8 ((𝜑 ∧ (𝑦𝑉𝑧𝑉)) → (𝑦(-g𝑊)𝑧) ∈ 𝑉)
91 oveq12 6887 . . . . . . . . . . 11 ((𝑥 = (𝑦(-g𝑊)𝑧) ∧ 𝑥 = (𝑦(-g𝑊)𝑧)) → (𝑥 , 𝑥) = ((𝑦(-g𝑊)𝑧) , (𝑦(-g𝑊)𝑧)))
9291anidms 563 . . . . . . . . . 10 (𝑥 = (𝑦(-g𝑊)𝑧) → (𝑥 , 𝑥) = ((𝑦(-g𝑊)𝑧) , (𝑦(-g𝑊)𝑧)))
9392fveq2d 6415 . . . . . . . . 9 (𝑥 = (𝑦(-g𝑊)𝑧) → (√‘(𝑥 , 𝑥)) = (√‘((𝑦(-g𝑊)𝑧) , (𝑦(-g𝑊)𝑧))))
9493, 23, 24fvmpt3i 6512 . . . . . . . 8 ((𝑦(-g𝑊)𝑧) ∈ 𝑉 → ((𝑥𝑉 ↦ (√‘(𝑥 , 𝑥)))‘(𝑦(-g𝑊)𝑧)) = (√‘((𝑦(-g𝑊)𝑧) , (𝑦(-g𝑊)𝑧))))
9590, 94syl 17 . . . . . . 7 ((𝜑 ∧ (𝑦𝑉𝑧𝑉)) → ((𝑥𝑉 ↦ (√‘(𝑥 , 𝑥)))‘(𝑦(-g𝑊)𝑧)) = (√‘((𝑦(-g𝑊)𝑧) , (𝑦(-g𝑊)𝑧))))
96 oveq12 6887 . . . . . . . . . . . 12 ((𝑥 = 𝑧𝑥 = 𝑧) → (𝑥 , 𝑥) = (𝑧 , 𝑧))
9796anidms 563 . . . . . . . . . . 11 (𝑥 = 𝑧 → (𝑥 , 𝑥) = (𝑧 , 𝑧))
9897fveq2d 6415 . . . . . . . . . 10 (𝑥 = 𝑧 → (√‘(𝑥 , 𝑥)) = (√‘(𝑧 , 𝑧)))
9998, 23, 24fvmpt3i 6512 . . . . . . . . 9 (𝑧𝑉 → ((𝑥𝑉 ↦ (√‘(𝑥 , 𝑥)))‘𝑧) = (√‘(𝑧 , 𝑧)))
10025, 99oveqan12d 6897 . . . . . . . 8 ((𝑦𝑉𝑧𝑉) → (((𝑥𝑉 ↦ (√‘(𝑥 , 𝑥)))‘𝑦) + ((𝑥𝑉 ↦ (√‘(𝑥 , 𝑥)))‘𝑧)) = ((√‘(𝑦 , 𝑦)) + (√‘(𝑧 , 𝑧))))
101100adantl 474 . . . . . . 7 ((𝜑 ∧ (𝑦𝑉𝑧𝑉)) → (((𝑥𝑉 ↦ (√‘(𝑥 , 𝑥)))‘𝑦) + ((𝑥𝑉 ↦ (√‘(𝑥 , 𝑥)))‘𝑧)) = ((√‘(𝑦 , 𝑦)) + (√‘(𝑧 , 𝑧))))
10287, 95, 1013brtr4d 4875 . . . . . 6 ((𝜑 ∧ (𝑦𝑉𝑧𝑉)) → ((𝑥𝑉 ↦ (√‘(𝑥 , 𝑥)))‘(𝑦(-g𝑊)𝑧)) ≤ (((𝑥𝑉 ↦ (√‘(𝑥 , 𝑥)))‘𝑦) + ((𝑥𝑉 ↦ (√‘(𝑥 , 𝑥)))‘𝑧)))
1037, 5, 8, 9, 13, 19, 55, 102tngngpd 22785 . . . . 5 (𝜑𝐺 ∈ NrmGrp)
104 phllmod 20299 . . . . . 6 (𝐺 ∈ PreHil → 𝐺 ∈ LMod)
1054, 104syl 17 . . . . 5 (𝜑𝐺 ∈ LMod)
106 cnnrg 22912 . . . . . . 7 fld ∈ NrmRing
10733simp3d 1175 . . . . . . 7 (𝜑 → (Base‘𝐹) ∈ (SubRing‘ℂfld))
108 eqid 2799 . . . . . . . 8 (ℂflds (Base‘𝐹)) = (ℂflds (Base‘𝐹))
109108subrgnrg 22805 . . . . . . 7 ((ℂfld ∈ NrmRing ∧ (Base‘𝐹) ∈ (SubRing‘ℂfld)) → (ℂflds (Base‘𝐹)) ∈ NrmRing)
110106, 107, 109sylancr 582 . . . . . 6 (𝜑 → (ℂflds (Base‘𝐹)) ∈ NrmRing)
11157, 110eqeltrd 2878 . . . . 5 (𝜑𝐹 ∈ NrmRing)
112103, 105, 1113jca 1159 . . . 4 (𝜑 → (𝐺 ∈ NrmGrp ∧ 𝐺 ∈ LMod ∧ 𝐹 ∈ NrmRing))
1131adantr 473 . . . . . . 7 ((𝜑 ∧ (𝑦 ∈ (Base‘𝐹) ∧ 𝑧𝑉)) → 𝑊 ∈ PreHil)
11457adantr 473 . . . . . . 7 ((𝜑 ∧ (𝑦 ∈ (Base‘𝐹) ∧ 𝑧𝑉)) → 𝐹 = (ℂflds (Base‘𝐹)))
11582adantlr 707 . . . . . . 7 (((𝜑 ∧ (𝑦 ∈ (Base‘𝐹) ∧ 𝑧𝑉)) ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥)) → (√‘𝑥) ∈ (Base‘𝐹))
11617adantlr 707 . . . . . . 7 (((𝜑 ∧ (𝑦 ∈ (Base‘𝐹) ∧ 𝑧𝑉)) ∧ 𝑥𝑉) → 0 ≤ (𝑥 , 𝑥))
117 eqid 2799 . . . . . . 7 ( ·𝑠𝑊) = ( ·𝑠𝑊)
118 simprl 788 . . . . . . 7 ((𝜑 ∧ (𝑦 ∈ (Base‘𝐹) ∧ 𝑧𝑉)) → 𝑦 ∈ (Base‘𝐹))
119 simprr 790 . . . . . . 7 ((𝜑 ∧ (𝑦 ∈ (Base‘𝐹) ∧ 𝑧𝑉)) → 𝑧𝑉)
1202, 5, 14, 113, 114, 6, 115, 116, 28, 117, 118, 119tcphcphlem2 23362 . . . . . 6 ((𝜑 ∧ (𝑦 ∈ (Base‘𝐹) ∧ 𝑧𝑉)) → (√‘((𝑦( ·𝑠𝑊)𝑧) , (𝑦( ·𝑠𝑊)𝑧))) = ((abs‘𝑦) · (√‘(𝑧 , 𝑧))))
12113adantr 473 . . . . . . 7 ((𝜑 ∧ (𝑦 ∈ (Base‘𝐹) ∧ 𝑧𝑉)) → 𝑊 ∈ Grp)
1225, 14, 117, 28lmodvscl 19198 . . . . . . . . 9 ((𝑊 ∈ LMod ∧ 𝑦 ∈ (Base‘𝐹) ∧ 𝑧𝑉) → (𝑦( ·𝑠𝑊)𝑧) ∈ 𝑉)
1231223expb 1150 . . . . . . . 8 ((𝑊 ∈ LMod ∧ (𝑦 ∈ (Base‘𝐹) ∧ 𝑧𝑉)) → (𝑦( ·𝑠𝑊)𝑧) ∈ 𝑉)
12411, 123sylan 576 . . . . . . 7 ((𝜑 ∧ (𝑦 ∈ (Base‘𝐹) ∧ 𝑧𝑉)) → (𝑦( ·𝑠𝑊)𝑧) ∈ 𝑉)
125 eqid 2799 . . . . . . . 8 (norm‘𝐺) = (norm‘𝐺)
1262, 125, 5, 6tcphnmval 23355 . . . . . . 7 ((𝑊 ∈ Grp ∧ (𝑦( ·𝑠𝑊)𝑧) ∈ 𝑉) → ((norm‘𝐺)‘(𝑦( ·𝑠𝑊)𝑧)) = (√‘((𝑦( ·𝑠𝑊)𝑧) , (𝑦( ·𝑠𝑊)𝑧))))
127121, 124, 126syl2anc 580 . . . . . 6 ((𝜑 ∧ (𝑦 ∈ (Base‘𝐹) ∧ 𝑧𝑉)) → ((norm‘𝐺)‘(𝑦( ·𝑠𝑊)𝑧)) = (√‘((𝑦( ·𝑠𝑊)𝑧) , (𝑦( ·𝑠𝑊)𝑧))))
128114fveq2d 6415 . . . . . . . . 9 ((𝜑 ∧ (𝑦 ∈ (Base‘𝐹) ∧ 𝑧𝑉)) → (norm‘𝐹) = (norm‘(ℂflds (Base‘𝐹))))
129128fveq1d 6413 . . . . . . . 8 ((𝜑 ∧ (𝑦 ∈ (Base‘𝐹) ∧ 𝑧𝑉)) → ((norm‘𝐹)‘𝑦) = ((norm‘(ℂflds (Base‘𝐹)))‘𝑦))
130 subrgsubg 19104 . . . . . . . . . . 11 ((Base‘𝐹) ∈ (SubRing‘ℂfld) → (Base‘𝐹) ∈ (SubGrp‘ℂfld))
131107, 130syl 17 . . . . . . . . . 10 (𝜑 → (Base‘𝐹) ∈ (SubGrp‘ℂfld))
132131adantr 473 . . . . . . . . 9 ((𝜑 ∧ (𝑦 ∈ (Base‘𝐹) ∧ 𝑧𝑉)) → (Base‘𝐹) ∈ (SubGrp‘ℂfld))
133 cnfldnm 22910 . . . . . . . . . 10 abs = (norm‘ℂfld)
134 eqid 2799 . . . . . . . . . 10 (norm‘(ℂflds (Base‘𝐹))) = (norm‘(ℂflds (Base‘𝐹)))
135108, 133, 134subgnm2 22766 . . . . . . . . 9 (((Base‘𝐹) ∈ (SubGrp‘ℂfld) ∧ 𝑦 ∈ (Base‘𝐹)) → ((norm‘(ℂflds (Base‘𝐹)))‘𝑦) = (abs‘𝑦))
136132, 118, 135syl2anc 580 . . . . . . . 8 ((𝜑 ∧ (𝑦 ∈ (Base‘𝐹) ∧ 𝑧𝑉)) → ((norm‘(ℂflds (Base‘𝐹)))‘𝑦) = (abs‘𝑦))
137129, 136eqtrd 2833 . . . . . . 7 ((𝜑 ∧ (𝑦 ∈ (Base‘𝐹) ∧ 𝑧𝑉)) → ((norm‘𝐹)‘𝑦) = (abs‘𝑦))
1382, 125, 5, 6tcphnmval 23355 . . . . . . . 8 ((𝑊 ∈ Grp ∧ 𝑧𝑉) → ((norm‘𝐺)‘𝑧) = (√‘(𝑧 , 𝑧)))
139121, 119, 138syl2anc 580 . . . . . . 7 ((𝜑 ∧ (𝑦 ∈ (Base‘𝐹) ∧ 𝑧𝑉)) → ((norm‘𝐺)‘𝑧) = (√‘(𝑧 , 𝑧)))
140137, 139oveq12d 6896 . . . . . 6 ((𝜑 ∧ (𝑦 ∈ (Base‘𝐹) ∧ 𝑧𝑉)) → (((norm‘𝐹)‘𝑦) · ((norm‘𝐺)‘𝑧)) = ((abs‘𝑦) · (√‘(𝑧 , 𝑧))))
141120, 127, 1403eqtr4d 2843 . . . . 5 ((𝜑 ∧ (𝑦 ∈ (Base‘𝐹) ∧ 𝑧𝑉)) → ((norm‘𝐺)‘(𝑦( ·𝑠𝑊)𝑧)) = (((norm‘𝐹)‘𝑦) · ((norm‘𝐺)‘𝑧)))
142141ralrimivva 3152 . . . 4 (𝜑 → ∀𝑦 ∈ (Base‘𝐹)∀𝑧𝑉 ((norm‘𝐺)‘(𝑦( ·𝑠𝑊)𝑧)) = (((norm‘𝐹)‘𝑦) · ((norm‘𝐺)‘𝑧)))
1432, 5tcphbas 23345 . . . . 5 𝑉 = (Base‘𝐺)
1442, 117tcphvsca 23350 . . . . 5 ( ·𝑠𝑊) = ( ·𝑠𝐺)
1452, 14tcphsca 23349 . . . . 5 𝐹 = (Scalar‘𝐺)
146 eqid 2799 . . . . 5 (norm‘𝐹) = (norm‘𝐹)
147143, 125, 144, 145, 28, 146isnlm 22807 . . . 4 (𝐺 ∈ NrmMod ↔ ((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ LMod ∧ 𝐹 ∈ NrmRing) ∧ ∀𝑦 ∈ (Base‘𝐹)∀𝑧𝑉 ((norm‘𝐺)‘(𝑦( ·𝑠𝑊)𝑧)) = (((norm‘𝐹)‘𝑦) · ((norm‘𝐺)‘𝑧))))
148112, 142, 147sylanbrc 579 . . 3 (𝜑𝐺 ∈ NrmMod)
1494, 148, 573jca 1159 . 2 (𝜑 → (𝐺 ∈ PreHil ∧ 𝐺 ∈ NrmMod ∧ 𝐹 = (ℂflds (Base‘𝐹))))
150 elin 3994 . . . . . 6 (𝑥 ∈ ((Base‘𝐹) ∩ (0[,)+∞)) ↔ (𝑥 ∈ (Base‘𝐹) ∧ 𝑥 ∈ (0[,)+∞)))
151 elrege0 12529 . . . . . . 7 (𝑥 ∈ (0[,)+∞) ↔ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥))
152151anbi2i 617 . . . . . 6 ((𝑥 ∈ (Base‘𝐹) ∧ 𝑥 ∈ (0[,)+∞)) ↔ (𝑥 ∈ (Base‘𝐹) ∧ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥)))
153150, 152bitri 267 . . . . 5 (𝑥 ∈ ((Base‘𝐹) ∩ (0[,)+∞)) ↔ (𝑥 ∈ (Base‘𝐹) ∧ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥)))
154153, 80syl5bi 234 . . . 4 (𝜑 → (𝑥 ∈ ((Base‘𝐹) ∩ (0[,)+∞)) → (√‘𝑥) ∈ (Base‘𝐹)))
155154ralrimiv 3146 . . 3 (𝜑 → ∀𝑥 ∈ ((Base‘𝐹) ∩ (0[,)+∞))(√‘𝑥) ∈ (Base‘𝐹))
156 sqrtf 14444 . . . . 5 √:ℂ⟶ℂ
157 ffun 6259 . . . . 5 (√:ℂ⟶ℂ → Fun √)
158156, 157ax-mp 5 . . . 4 Fun √
159 inss1 4028 . . . . . 6 ((Base‘𝐹) ∩ (0[,)+∞)) ⊆ (Base‘𝐹)
160159, 36syl5ss 3809 . . . . 5 (𝜑 → ((Base‘𝐹) ∩ (0[,)+∞)) ⊆ ℂ)
161156fdmi 6266 . . . . 5 dom √ = ℂ
162160, 161syl6sseqr 3848 . . . 4 (𝜑 → ((Base‘𝐹) ∩ (0[,)+∞)) ⊆ dom √)
163 funimass4 6472 . . . 4 ((Fun √ ∧ ((Base‘𝐹) ∩ (0[,)+∞)) ⊆ dom √) → ((√ “ ((Base‘𝐹) ∩ (0[,)+∞))) ⊆ (Base‘𝐹) ↔ ∀𝑥 ∈ ((Base‘𝐹) ∩ (0[,)+∞))(√‘𝑥) ∈ (Base‘𝐹)))
164158, 162, 163sylancr 582 . . 3 (𝜑 → ((√ “ ((Base‘𝐹) ∩ (0[,)+∞))) ⊆ (Base‘𝐹) ↔ ∀𝑥 ∈ ((Base‘𝐹) ∩ (0[,)+∞))(√‘𝑥) ∈ (Base‘𝐹)))
165155, 164mpbird 249 . 2 (𝜑 → (√ “ ((Base‘𝐹) ∩ (0[,)+∞))) ⊆ (Base‘𝐹))
16642fmpttd 6611 . . . 4 (𝜑 → (𝑦𝑉 ↦ (√‘(𝑦 , 𝑦))):𝑉⟶ℂ)
1672, 5, 6tcphval 23344 . . . . 5 𝐺 = (𝑊 toNrmGrp (𝑦𝑉 ↦ (√‘(𝑦 , 𝑦))))
168 cnex 10305 . . . . 5 ℂ ∈ V
169167, 5, 168tngnm 22783 . . . 4 ((𝑊 ∈ Grp ∧ (𝑦𝑉 ↦ (√‘(𝑦 , 𝑦))):𝑉⟶ℂ) → (𝑦𝑉 ↦ (√‘(𝑦 , 𝑦))) = (norm‘𝐺))
17013, 166, 169syl2anc 580 . . 3 (𝜑 → (𝑦𝑉 ↦ (√‘(𝑦 , 𝑦))) = (norm‘𝐺))
171170eqcomd 2805 . 2 (𝜑 → (norm‘𝐺) = (𝑦𝑉 ↦ (√‘(𝑦 , 𝑦))))
1722, 6tcphip 23351 . . 3 , = (·𝑖𝐺)
173143, 172, 125, 145, 28iscph 23297 . 2 (𝐺 ∈ ℂPreHil ↔ ((𝐺 ∈ PreHil ∧ 𝐺 ∈ NrmMod ∧ 𝐹 = (ℂflds (Base‘𝐹))) ∧ (√ “ ((Base‘𝐹) ∩ (0[,)+∞))) ⊆ (Base‘𝐹) ∧ (norm‘𝐺) = (𝑦𝑉 ↦ (√‘(𝑦 , 𝑦)))))
174149, 165, 171, 173syl3anbrc 1444 1 (𝜑𝐺 ∈ ℂPreHil)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 385  w3a 1108   = wceq 1653  wcel 2157  wral 3089  cin 3768  wss 3769   class class class wbr 4843  cmpt 4922  dom cdm 5312  cima 5315  Fun wfun 6095  wf 6097  cfv 6101  (class class class)co 6878  cc 10222  cr 10223  0cc0 10224   + caddc 10227   · cmul 10229  +∞cpnf 10360  cle 10364  2c2 11368  [,)cico 12426  cexp 13114  csqrt 14314  abscabs 14315  Basecbs 16184  s cress 16185  Scalarcsca 16270   ·𝑠 cvsca 16271  ·𝑖cip 16272  0gc0g 16415  Grpcgrp 17738  -gcsg 17740  SubGrpcsubg 17901  DivRingcdr 19065  SubRingcsubrg 19094  LModclmod 19181  LVecclvec 19423  fldccnfld 20068  PreHilcphl 20293  normcnm 22709  NrmGrpcngp 22710  NrmRingcnrg 22712  NrmModcnlm 22713  ℂModcclm 23189  ℂPreHilccph 23293  toℂPreHilctcph 23294
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2777  ax-rep 4964  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5097  ax-un 7183  ax-cnex 10280  ax-resscn 10281  ax-1cn 10282  ax-icn 10283  ax-addcl 10284  ax-addrcl 10285  ax-mulcl 10286  ax-mulrcl 10287  ax-mulcom 10288  ax-addass 10289  ax-mulass 10290  ax-distr 10291  ax-i2m1 10292  ax-1ne0 10293  ax-1rid 10294  ax-rnegex 10295  ax-rrecex 10296  ax-cnre 10297  ax-pre-lttri 10298  ax-pre-lttrn 10299  ax-pre-ltadd 10300  ax-pre-mulgt0 10301  ax-pre-sup 10302  ax-addf 10303  ax-mulf 10304
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2591  df-eu 2609  df-clab 2786  df-cleq 2792  df-clel 2795  df-nfc 2930  df-ne 2972  df-nel 3075  df-ral 3094  df-rex 3095  df-reu 3096  df-rmo 3097  df-rab 3098  df-v 3387  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-pss 3785  df-nul 4116  df-if 4278  df-pw 4351  df-sn 4369  df-pr 4371  df-tp 4373  df-op 4375  df-uni 4629  df-int 4668  df-iun 4712  df-br 4844  df-opab 4906  df-mpt 4923  df-tr 4946  df-id 5220  df-eprel 5225  df-po 5233  df-so 5234  df-fr 5271  df-we 5273  df-xp 5318  df-rel 5319  df-cnv 5320  df-co 5321  df-dm 5322  df-rn 5323  df-res 5324  df-ima 5325  df-pred 5898  df-ord 5944  df-on 5945  df-lim 5946  df-suc 5947  df-iota 6064  df-fun 6103  df-fn 6104  df-f 6105  df-f1 6106  df-fo 6107  df-f1o 6108  df-fv 6109  df-riota 6839  df-ov 6881  df-oprab 6882  df-mpt2 6883  df-om 7300  df-1st 7401  df-2nd 7402  df-tpos 7590  df-wrecs 7645  df-recs 7707  df-rdg 7745  df-1o 7799  df-oadd 7803  df-er 7982  df-map 8097  df-en 8196  df-dom 8197  df-sdom 8198  df-fin 8199  df-sup 8590  df-inf 8591  df-pnf 10365  df-mnf 10366  df-xr 10367  df-ltxr 10368  df-le 10369  df-sub 10558  df-neg 10559  df-div 10977  df-nn 11313  df-2 11376  df-3 11377  df-4 11378  df-5 11379  df-6 11380  df-7 11381  df-8 11382  df-9 11383  df-n0 11581  df-z 11667  df-dec 11784  df-uz 11931  df-q 12034  df-rp 12075  df-xneg 12193  df-xadd 12194  df-xmul 12195  df-ico 12430  df-fz 12581  df-seq 13056  df-exp 13115  df-cj 14180  df-re 14181  df-im 14182  df-sqrt 14316  df-abs 14317  df-struct 16186  df-ndx 16187  df-slot 16188  df-base 16190  df-sets 16191  df-ress 16192  df-plusg 16280  df-mulr 16281  df-starv 16282  df-sca 16283  df-vsca 16284  df-ip 16285  df-tset 16286  df-ple 16287  df-ds 16289  df-unif 16290  df-rest 16398  df-topn 16399  df-0g 16417  df-topgen 16419  df-mgm 17557  df-sgrp 17599  df-mnd 17610  df-mhm 17650  df-grp 17741  df-minusg 17742  df-sbg 17743  df-subg 17904  df-ghm 17971  df-cmn 18510  df-abl 18511  df-mgp 18806  df-ur 18818  df-ring 18865  df-cring 18866  df-oppr 18939  df-dvdsr 18957  df-unit 18958  df-invr 18988  df-dvr 18999  df-rnghom 19033  df-drng 19067  df-subrg 19096  df-abv 19135  df-staf 19163  df-srng 19164  df-lmod 19183  df-lmhm 19343  df-lvec 19424  df-sra 19495  df-rgmod 19496  df-psmet 20060  df-xmet 20061  df-met 20062  df-bl 20063  df-mopn 20064  df-cnfld 20069  df-phl 20295  df-top 21027  df-topon 21044  df-topsp 21066  df-bases 21079  df-xms 22453  df-ms 22454  df-nm 22715  df-ngp 22716  df-tng 22717  df-nrg 22718  df-nlm 22719  df-clm 23190  df-cph 23295  df-tcph 23296
This theorem is referenced by:  rrxcph  23518
  Copyright terms: Public domain W3C validator