Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > tcphval | Structured version Visualization version GIF version |
Description: Define a function to augment a subcomplex pre-Hilbert space with norm. (Contributed by Mario Carneiro, 7-Oct-2015.) |
Ref | Expression |
---|---|
tcphval.n | ⊢ 𝐺 = (toℂPreHil‘𝑊) |
tcphval.v | ⊢ 𝑉 = (Base‘𝑊) |
tcphval.h | ⊢ , = (·𝑖‘𝑊) |
Ref | Expression |
---|---|
tcphval | ⊢ 𝐺 = (𝑊 toNrmGrp (𝑥 ∈ 𝑉 ↦ (√‘(𝑥 , 𝑥)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tcphval.n | . 2 ⊢ 𝐺 = (toℂPreHil‘𝑊) | |
2 | id 22 | . . . . 5 ⊢ (𝑤 = 𝑊 → 𝑤 = 𝑊) | |
3 | fveq2 6774 | . . . . . . 7 ⊢ (𝑤 = 𝑊 → (Base‘𝑤) = (Base‘𝑊)) | |
4 | tcphval.v | . . . . . . 7 ⊢ 𝑉 = (Base‘𝑊) | |
5 | 3, 4 | eqtr4di 2796 | . . . . . 6 ⊢ (𝑤 = 𝑊 → (Base‘𝑤) = 𝑉) |
6 | fveq2 6774 | . . . . . . . . 9 ⊢ (𝑤 = 𝑊 → (·𝑖‘𝑤) = (·𝑖‘𝑊)) | |
7 | tcphval.h | . . . . . . . . 9 ⊢ , = (·𝑖‘𝑊) | |
8 | 6, 7 | eqtr4di 2796 | . . . . . . . 8 ⊢ (𝑤 = 𝑊 → (·𝑖‘𝑤) = , ) |
9 | 8 | oveqd 7292 | . . . . . . 7 ⊢ (𝑤 = 𝑊 → (𝑥(·𝑖‘𝑤)𝑥) = (𝑥 , 𝑥)) |
10 | 9 | fveq2d 6778 | . . . . . 6 ⊢ (𝑤 = 𝑊 → (√‘(𝑥(·𝑖‘𝑤)𝑥)) = (√‘(𝑥 , 𝑥))) |
11 | 5, 10 | mpteq12dv 5165 | . . . . 5 ⊢ (𝑤 = 𝑊 → (𝑥 ∈ (Base‘𝑤) ↦ (√‘(𝑥(·𝑖‘𝑤)𝑥))) = (𝑥 ∈ 𝑉 ↦ (√‘(𝑥 , 𝑥)))) |
12 | 2, 11 | oveq12d 7293 | . . . 4 ⊢ (𝑤 = 𝑊 → (𝑤 toNrmGrp (𝑥 ∈ (Base‘𝑤) ↦ (√‘(𝑥(·𝑖‘𝑤)𝑥)))) = (𝑊 toNrmGrp (𝑥 ∈ 𝑉 ↦ (√‘(𝑥 , 𝑥))))) |
13 | df-tcph 24333 | . . . 4 ⊢ toℂPreHil = (𝑤 ∈ V ↦ (𝑤 toNrmGrp (𝑥 ∈ (Base‘𝑤) ↦ (√‘(𝑥(·𝑖‘𝑤)𝑥))))) | |
14 | ovex 7308 | . . . 4 ⊢ (𝑊 toNrmGrp (𝑥 ∈ 𝑉 ↦ (√‘(𝑥 , 𝑥)))) ∈ V | |
15 | 12, 13, 14 | fvmpt 6875 | . . 3 ⊢ (𝑊 ∈ V → (toℂPreHil‘𝑊) = (𝑊 toNrmGrp (𝑥 ∈ 𝑉 ↦ (√‘(𝑥 , 𝑥))))) |
16 | fvprc 6766 | . . . 4 ⊢ (¬ 𝑊 ∈ V → (toℂPreHil‘𝑊) = ∅) | |
17 | reldmtng 23794 | . . . . 5 ⊢ Rel dom toNrmGrp | |
18 | 17 | ovprc1 7314 | . . . 4 ⊢ (¬ 𝑊 ∈ V → (𝑊 toNrmGrp (𝑥 ∈ 𝑉 ↦ (√‘(𝑥 , 𝑥)))) = ∅) |
19 | 16, 18 | eqtr4d 2781 | . . 3 ⊢ (¬ 𝑊 ∈ V → (toℂPreHil‘𝑊) = (𝑊 toNrmGrp (𝑥 ∈ 𝑉 ↦ (√‘(𝑥 , 𝑥))))) |
20 | 15, 19 | pm2.61i 182 | . 2 ⊢ (toℂPreHil‘𝑊) = (𝑊 toNrmGrp (𝑥 ∈ 𝑉 ↦ (√‘(𝑥 , 𝑥)))) |
21 | 1, 20 | eqtri 2766 | 1 ⊢ 𝐺 = (𝑊 toNrmGrp (𝑥 ∈ 𝑉 ↦ (√‘(𝑥 , 𝑥)))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1539 ∈ wcel 2106 Vcvv 3432 ∅c0 4256 ↦ cmpt 5157 ‘cfv 6433 (class class class)co 7275 √csqrt 14944 Basecbs 16912 ·𝑖cip 16967 toNrmGrp ctng 23734 toℂPreHilctcph 24331 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-iota 6391 df-fun 6435 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-tng 23740 df-tcph 24333 |
This theorem is referenced by: tcphbas 24383 tchplusg 24384 tcphmulr 24386 tcphsca 24387 tcphvsca 24388 tcphip 24389 tcphtopn 24390 tchnmfval 24392 tcphds 24395 tcphcph 24401 rrxsca 24560 rrx0 24561 rrxdim 31697 |
Copyright terms: Public domain | W3C validator |