![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tcphval | Structured version Visualization version GIF version |
Description: Define a function to augment a subcomplex pre-Hilbert space with norm. (Contributed by Mario Carneiro, 7-Oct-2015.) |
Ref | Expression |
---|---|
tcphval.n | ⊢ 𝐺 = (toℂPreHil‘𝑊) |
tcphval.v | ⊢ 𝑉 = (Base‘𝑊) |
tcphval.h | ⊢ , = (·𝑖‘𝑊) |
Ref | Expression |
---|---|
tcphval | ⊢ 𝐺 = (𝑊 toNrmGrp (𝑥 ∈ 𝑉 ↦ (√‘(𝑥 , 𝑥)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tcphval.n | . 2 ⊢ 𝐺 = (toℂPreHil‘𝑊) | |
2 | id 22 | . . . . 5 ⊢ (𝑤 = 𝑊 → 𝑤 = 𝑊) | |
3 | fveq2 6920 | . . . . . . 7 ⊢ (𝑤 = 𝑊 → (Base‘𝑤) = (Base‘𝑊)) | |
4 | tcphval.v | . . . . . . 7 ⊢ 𝑉 = (Base‘𝑊) | |
5 | 3, 4 | eqtr4di 2798 | . . . . . 6 ⊢ (𝑤 = 𝑊 → (Base‘𝑤) = 𝑉) |
6 | fveq2 6920 | . . . . . . . . 9 ⊢ (𝑤 = 𝑊 → (·𝑖‘𝑤) = (·𝑖‘𝑊)) | |
7 | tcphval.h | . . . . . . . . 9 ⊢ , = (·𝑖‘𝑊) | |
8 | 6, 7 | eqtr4di 2798 | . . . . . . . 8 ⊢ (𝑤 = 𝑊 → (·𝑖‘𝑤) = , ) |
9 | 8 | oveqd 7465 | . . . . . . 7 ⊢ (𝑤 = 𝑊 → (𝑥(·𝑖‘𝑤)𝑥) = (𝑥 , 𝑥)) |
10 | 9 | fveq2d 6924 | . . . . . 6 ⊢ (𝑤 = 𝑊 → (√‘(𝑥(·𝑖‘𝑤)𝑥)) = (√‘(𝑥 , 𝑥))) |
11 | 5, 10 | mpteq12dv 5257 | . . . . 5 ⊢ (𝑤 = 𝑊 → (𝑥 ∈ (Base‘𝑤) ↦ (√‘(𝑥(·𝑖‘𝑤)𝑥))) = (𝑥 ∈ 𝑉 ↦ (√‘(𝑥 , 𝑥)))) |
12 | 2, 11 | oveq12d 7466 | . . . 4 ⊢ (𝑤 = 𝑊 → (𝑤 toNrmGrp (𝑥 ∈ (Base‘𝑤) ↦ (√‘(𝑥(·𝑖‘𝑤)𝑥)))) = (𝑊 toNrmGrp (𝑥 ∈ 𝑉 ↦ (√‘(𝑥 , 𝑥))))) |
13 | df-tcph 25222 | . . . 4 ⊢ toℂPreHil = (𝑤 ∈ V ↦ (𝑤 toNrmGrp (𝑥 ∈ (Base‘𝑤) ↦ (√‘(𝑥(·𝑖‘𝑤)𝑥))))) | |
14 | ovex 7481 | . . . 4 ⊢ (𝑊 toNrmGrp (𝑥 ∈ 𝑉 ↦ (√‘(𝑥 , 𝑥)))) ∈ V | |
15 | 12, 13, 14 | fvmpt 7029 | . . 3 ⊢ (𝑊 ∈ V → (toℂPreHil‘𝑊) = (𝑊 toNrmGrp (𝑥 ∈ 𝑉 ↦ (√‘(𝑥 , 𝑥))))) |
16 | fvprc 6912 | . . . 4 ⊢ (¬ 𝑊 ∈ V → (toℂPreHil‘𝑊) = ∅) | |
17 | reldmtng 24672 | . . . . 5 ⊢ Rel dom toNrmGrp | |
18 | 17 | ovprc1 7487 | . . . 4 ⊢ (¬ 𝑊 ∈ V → (𝑊 toNrmGrp (𝑥 ∈ 𝑉 ↦ (√‘(𝑥 , 𝑥)))) = ∅) |
19 | 16, 18 | eqtr4d 2783 | . . 3 ⊢ (¬ 𝑊 ∈ V → (toℂPreHil‘𝑊) = (𝑊 toNrmGrp (𝑥 ∈ 𝑉 ↦ (√‘(𝑥 , 𝑥))))) |
20 | 15, 19 | pm2.61i 182 | . 2 ⊢ (toℂPreHil‘𝑊) = (𝑊 toNrmGrp (𝑥 ∈ 𝑉 ↦ (√‘(𝑥 , 𝑥)))) |
21 | 1, 20 | eqtri 2768 | 1 ⊢ 𝐺 = (𝑊 toNrmGrp (𝑥 ∈ 𝑉 ↦ (√‘(𝑥 , 𝑥)))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1537 ∈ wcel 2108 Vcvv 3488 ∅c0 4352 ↦ cmpt 5249 ‘cfv 6573 (class class class)co 7448 √csqrt 15282 Basecbs 17258 ·𝑖cip 17316 toNrmGrp ctng 24612 toℂPreHilctcph 25220 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-iota 6525 df-fun 6575 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-tng 24618 df-tcph 25222 |
This theorem is referenced by: tcphbas 25272 tchplusg 25273 tcphmulr 25275 tcphsca 25276 tcphvsca 25277 tcphip 25278 tcphtopn 25279 tchnmfval 25281 tcphds 25284 tcphcph 25290 rrxsca 25449 rrx0 25450 rrxdim 33627 |
Copyright terms: Public domain | W3C validator |