| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tcphval | Structured version Visualization version GIF version | ||
| Description: Define a function to augment a subcomplex pre-Hilbert space with norm. (Contributed by Mario Carneiro, 7-Oct-2015.) |
| Ref | Expression |
|---|---|
| tcphval.n | ⊢ 𝐺 = (toℂPreHil‘𝑊) |
| tcphval.v | ⊢ 𝑉 = (Base‘𝑊) |
| tcphval.h | ⊢ , = (·𝑖‘𝑊) |
| Ref | Expression |
|---|---|
| tcphval | ⊢ 𝐺 = (𝑊 toNrmGrp (𝑥 ∈ 𝑉 ↦ (√‘(𝑥 , 𝑥)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tcphval.n | . 2 ⊢ 𝐺 = (toℂPreHil‘𝑊) | |
| 2 | id 22 | . . . . 5 ⊢ (𝑤 = 𝑊 → 𝑤 = 𝑊) | |
| 3 | fveq2 6858 | . . . . . . 7 ⊢ (𝑤 = 𝑊 → (Base‘𝑤) = (Base‘𝑊)) | |
| 4 | tcphval.v | . . . . . . 7 ⊢ 𝑉 = (Base‘𝑊) | |
| 5 | 3, 4 | eqtr4di 2782 | . . . . . 6 ⊢ (𝑤 = 𝑊 → (Base‘𝑤) = 𝑉) |
| 6 | fveq2 6858 | . . . . . . . . 9 ⊢ (𝑤 = 𝑊 → (·𝑖‘𝑤) = (·𝑖‘𝑊)) | |
| 7 | tcphval.h | . . . . . . . . 9 ⊢ , = (·𝑖‘𝑊) | |
| 8 | 6, 7 | eqtr4di 2782 | . . . . . . . 8 ⊢ (𝑤 = 𝑊 → (·𝑖‘𝑤) = , ) |
| 9 | 8 | oveqd 7404 | . . . . . . 7 ⊢ (𝑤 = 𝑊 → (𝑥(·𝑖‘𝑤)𝑥) = (𝑥 , 𝑥)) |
| 10 | 9 | fveq2d 6862 | . . . . . 6 ⊢ (𝑤 = 𝑊 → (√‘(𝑥(·𝑖‘𝑤)𝑥)) = (√‘(𝑥 , 𝑥))) |
| 11 | 5, 10 | mpteq12dv 5194 | . . . . 5 ⊢ (𝑤 = 𝑊 → (𝑥 ∈ (Base‘𝑤) ↦ (√‘(𝑥(·𝑖‘𝑤)𝑥))) = (𝑥 ∈ 𝑉 ↦ (√‘(𝑥 , 𝑥)))) |
| 12 | 2, 11 | oveq12d 7405 | . . . 4 ⊢ (𝑤 = 𝑊 → (𝑤 toNrmGrp (𝑥 ∈ (Base‘𝑤) ↦ (√‘(𝑥(·𝑖‘𝑤)𝑥)))) = (𝑊 toNrmGrp (𝑥 ∈ 𝑉 ↦ (√‘(𝑥 , 𝑥))))) |
| 13 | df-tcph 25069 | . . . 4 ⊢ toℂPreHil = (𝑤 ∈ V ↦ (𝑤 toNrmGrp (𝑥 ∈ (Base‘𝑤) ↦ (√‘(𝑥(·𝑖‘𝑤)𝑥))))) | |
| 14 | ovex 7420 | . . . 4 ⊢ (𝑊 toNrmGrp (𝑥 ∈ 𝑉 ↦ (√‘(𝑥 , 𝑥)))) ∈ V | |
| 15 | 12, 13, 14 | fvmpt 6968 | . . 3 ⊢ (𝑊 ∈ V → (toℂPreHil‘𝑊) = (𝑊 toNrmGrp (𝑥 ∈ 𝑉 ↦ (√‘(𝑥 , 𝑥))))) |
| 16 | fvprc 6850 | . . . 4 ⊢ (¬ 𝑊 ∈ V → (toℂPreHil‘𝑊) = ∅) | |
| 17 | reldmtng 24526 | . . . . 5 ⊢ Rel dom toNrmGrp | |
| 18 | 17 | ovprc1 7426 | . . . 4 ⊢ (¬ 𝑊 ∈ V → (𝑊 toNrmGrp (𝑥 ∈ 𝑉 ↦ (√‘(𝑥 , 𝑥)))) = ∅) |
| 19 | 16, 18 | eqtr4d 2767 | . . 3 ⊢ (¬ 𝑊 ∈ V → (toℂPreHil‘𝑊) = (𝑊 toNrmGrp (𝑥 ∈ 𝑉 ↦ (√‘(𝑥 , 𝑥))))) |
| 20 | 15, 19 | pm2.61i 182 | . 2 ⊢ (toℂPreHil‘𝑊) = (𝑊 toNrmGrp (𝑥 ∈ 𝑉 ↦ (√‘(𝑥 , 𝑥)))) |
| 21 | 1, 20 | eqtri 2752 | 1 ⊢ 𝐺 = (𝑊 toNrmGrp (𝑥 ∈ 𝑉 ↦ (√‘(𝑥 , 𝑥)))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1540 ∈ wcel 2109 Vcvv 3447 ∅c0 4296 ↦ cmpt 5188 ‘cfv 6511 (class class class)co 7387 √csqrt 15199 Basecbs 17179 ·𝑖cip 17225 toNrmGrp ctng 24466 toℂPreHilctcph 25067 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-iota 6464 df-fun 6513 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-tng 24472 df-tcph 25069 |
| This theorem is referenced by: tcphbas 25119 tchplusg 25120 tcphmulr 25122 tcphsca 25123 tcphvsca 25124 tcphip 25125 tcphtopn 25126 tchnmfval 25128 tcphds 25131 tcphcph 25137 rrxsca 25296 rrx0 25297 rrxdim 33610 |
| Copyright terms: Public domain | W3C validator |