MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tcphval Structured version   Visualization version   GIF version

Theorem tcphval 25271
Description: Define a function to augment a subcomplex pre-Hilbert space with norm. (Contributed by Mario Carneiro, 7-Oct-2015.)
Hypotheses
Ref Expression
tcphval.n 𝐺 = (toℂPreHil‘𝑊)
tcphval.v 𝑉 = (Base‘𝑊)
tcphval.h , = (·𝑖𝑊)
Assertion
Ref Expression
tcphval 𝐺 = (𝑊 toNrmGrp (𝑥𝑉 ↦ (√‘(𝑥 , 𝑥))))
Distinct variable groups:   𝑥, ,   𝑥,𝐺   𝑥,𝑉   𝑥,𝑊

Proof of Theorem tcphval
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 tcphval.n . 2 𝐺 = (toℂPreHil‘𝑊)
2 id 22 . . . . 5 (𝑤 = 𝑊𝑤 = 𝑊)
3 fveq2 6920 . . . . . . 7 (𝑤 = 𝑊 → (Base‘𝑤) = (Base‘𝑊))
4 tcphval.v . . . . . . 7 𝑉 = (Base‘𝑊)
53, 4eqtr4di 2798 . . . . . 6 (𝑤 = 𝑊 → (Base‘𝑤) = 𝑉)
6 fveq2 6920 . . . . . . . . 9 (𝑤 = 𝑊 → (·𝑖𝑤) = (·𝑖𝑊))
7 tcphval.h . . . . . . . . 9 , = (·𝑖𝑊)
86, 7eqtr4di 2798 . . . . . . . 8 (𝑤 = 𝑊 → (·𝑖𝑤) = , )
98oveqd 7465 . . . . . . 7 (𝑤 = 𝑊 → (𝑥(·𝑖𝑤)𝑥) = (𝑥 , 𝑥))
109fveq2d 6924 . . . . . 6 (𝑤 = 𝑊 → (√‘(𝑥(·𝑖𝑤)𝑥)) = (√‘(𝑥 , 𝑥)))
115, 10mpteq12dv 5257 . . . . 5 (𝑤 = 𝑊 → (𝑥 ∈ (Base‘𝑤) ↦ (√‘(𝑥(·𝑖𝑤)𝑥))) = (𝑥𝑉 ↦ (√‘(𝑥 , 𝑥))))
122, 11oveq12d 7466 . . . 4 (𝑤 = 𝑊 → (𝑤 toNrmGrp (𝑥 ∈ (Base‘𝑤) ↦ (√‘(𝑥(·𝑖𝑤)𝑥)))) = (𝑊 toNrmGrp (𝑥𝑉 ↦ (√‘(𝑥 , 𝑥)))))
13 df-tcph 25222 . . . 4 toℂPreHil = (𝑤 ∈ V ↦ (𝑤 toNrmGrp (𝑥 ∈ (Base‘𝑤) ↦ (√‘(𝑥(·𝑖𝑤)𝑥)))))
14 ovex 7481 . . . 4 (𝑊 toNrmGrp (𝑥𝑉 ↦ (√‘(𝑥 , 𝑥)))) ∈ V
1512, 13, 14fvmpt 7029 . . 3 (𝑊 ∈ V → (toℂPreHil‘𝑊) = (𝑊 toNrmGrp (𝑥𝑉 ↦ (√‘(𝑥 , 𝑥)))))
16 fvprc 6912 . . . 4 𝑊 ∈ V → (toℂPreHil‘𝑊) = ∅)
17 reldmtng 24672 . . . . 5 Rel dom toNrmGrp
1817ovprc1 7487 . . . 4 𝑊 ∈ V → (𝑊 toNrmGrp (𝑥𝑉 ↦ (√‘(𝑥 , 𝑥)))) = ∅)
1916, 18eqtr4d 2783 . . 3 𝑊 ∈ V → (toℂPreHil‘𝑊) = (𝑊 toNrmGrp (𝑥𝑉 ↦ (√‘(𝑥 , 𝑥)))))
2015, 19pm2.61i 182 . 2 (toℂPreHil‘𝑊) = (𝑊 toNrmGrp (𝑥𝑉 ↦ (√‘(𝑥 , 𝑥))))
211, 20eqtri 2768 1 𝐺 = (𝑊 toNrmGrp (𝑥𝑉 ↦ (√‘(𝑥 , 𝑥))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1537  wcel 2108  Vcvv 3488  c0 4352  cmpt 5249  cfv 6573  (class class class)co 7448  csqrt 15282  Basecbs 17258  ·𝑖cip 17316   toNrmGrp ctng 24612  toℂPreHilctcph 25220
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-iota 6525  df-fun 6575  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-tng 24618  df-tcph 25222
This theorem is referenced by:  tcphbas  25272  tchplusg  25273  tcphmulr  25275  tcphsca  25276  tcphvsca  25277  tcphip  25278  tcphtopn  25279  tchnmfval  25281  tcphds  25284  tcphcph  25290  rrxsca  25449  rrx0  25450  rrxdim  33627
  Copyright terms: Public domain W3C validator