| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tcphval | Structured version Visualization version GIF version | ||
| Description: Define a function to augment a subcomplex pre-Hilbert space with norm. (Contributed by Mario Carneiro, 7-Oct-2015.) |
| Ref | Expression |
|---|---|
| tcphval.n | ⊢ 𝐺 = (toℂPreHil‘𝑊) |
| tcphval.v | ⊢ 𝑉 = (Base‘𝑊) |
| tcphval.h | ⊢ , = (·𝑖‘𝑊) |
| Ref | Expression |
|---|---|
| tcphval | ⊢ 𝐺 = (𝑊 toNrmGrp (𝑥 ∈ 𝑉 ↦ (√‘(𝑥 , 𝑥)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tcphval.n | . 2 ⊢ 𝐺 = (toℂPreHil‘𝑊) | |
| 2 | id 22 | . . . . 5 ⊢ (𝑤 = 𝑊 → 𝑤 = 𝑊) | |
| 3 | fveq2 6822 | . . . . . . 7 ⊢ (𝑤 = 𝑊 → (Base‘𝑤) = (Base‘𝑊)) | |
| 4 | tcphval.v | . . . . . . 7 ⊢ 𝑉 = (Base‘𝑊) | |
| 5 | 3, 4 | eqtr4di 2784 | . . . . . 6 ⊢ (𝑤 = 𝑊 → (Base‘𝑤) = 𝑉) |
| 6 | fveq2 6822 | . . . . . . . . 9 ⊢ (𝑤 = 𝑊 → (·𝑖‘𝑤) = (·𝑖‘𝑊)) | |
| 7 | tcphval.h | . . . . . . . . 9 ⊢ , = (·𝑖‘𝑊) | |
| 8 | 6, 7 | eqtr4di 2784 | . . . . . . . 8 ⊢ (𝑤 = 𝑊 → (·𝑖‘𝑤) = , ) |
| 9 | 8 | oveqd 7363 | . . . . . . 7 ⊢ (𝑤 = 𝑊 → (𝑥(·𝑖‘𝑤)𝑥) = (𝑥 , 𝑥)) |
| 10 | 9 | fveq2d 6826 | . . . . . 6 ⊢ (𝑤 = 𝑊 → (√‘(𝑥(·𝑖‘𝑤)𝑥)) = (√‘(𝑥 , 𝑥))) |
| 11 | 5, 10 | mpteq12dv 5178 | . . . . 5 ⊢ (𝑤 = 𝑊 → (𝑥 ∈ (Base‘𝑤) ↦ (√‘(𝑥(·𝑖‘𝑤)𝑥))) = (𝑥 ∈ 𝑉 ↦ (√‘(𝑥 , 𝑥)))) |
| 12 | 2, 11 | oveq12d 7364 | . . . 4 ⊢ (𝑤 = 𝑊 → (𝑤 toNrmGrp (𝑥 ∈ (Base‘𝑤) ↦ (√‘(𝑥(·𝑖‘𝑤)𝑥)))) = (𝑊 toNrmGrp (𝑥 ∈ 𝑉 ↦ (√‘(𝑥 , 𝑥))))) |
| 13 | df-tcph 25094 | . . . 4 ⊢ toℂPreHil = (𝑤 ∈ V ↦ (𝑤 toNrmGrp (𝑥 ∈ (Base‘𝑤) ↦ (√‘(𝑥(·𝑖‘𝑤)𝑥))))) | |
| 14 | ovex 7379 | . . . 4 ⊢ (𝑊 toNrmGrp (𝑥 ∈ 𝑉 ↦ (√‘(𝑥 , 𝑥)))) ∈ V | |
| 15 | 12, 13, 14 | fvmpt 6929 | . . 3 ⊢ (𝑊 ∈ V → (toℂPreHil‘𝑊) = (𝑊 toNrmGrp (𝑥 ∈ 𝑉 ↦ (√‘(𝑥 , 𝑥))))) |
| 16 | fvprc 6814 | . . . 4 ⊢ (¬ 𝑊 ∈ V → (toℂPreHil‘𝑊) = ∅) | |
| 17 | reldmtng 24551 | . . . . 5 ⊢ Rel dom toNrmGrp | |
| 18 | 17 | ovprc1 7385 | . . . 4 ⊢ (¬ 𝑊 ∈ V → (𝑊 toNrmGrp (𝑥 ∈ 𝑉 ↦ (√‘(𝑥 , 𝑥)))) = ∅) |
| 19 | 16, 18 | eqtr4d 2769 | . . 3 ⊢ (¬ 𝑊 ∈ V → (toℂPreHil‘𝑊) = (𝑊 toNrmGrp (𝑥 ∈ 𝑉 ↦ (√‘(𝑥 , 𝑥))))) |
| 20 | 15, 19 | pm2.61i 182 | . 2 ⊢ (toℂPreHil‘𝑊) = (𝑊 toNrmGrp (𝑥 ∈ 𝑉 ↦ (√‘(𝑥 , 𝑥)))) |
| 21 | 1, 20 | eqtri 2754 | 1 ⊢ 𝐺 = (𝑊 toNrmGrp (𝑥 ∈ 𝑉 ↦ (√‘(𝑥 , 𝑥)))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ∅c0 4283 ↦ cmpt 5172 ‘cfv 6481 (class class class)co 7346 √csqrt 15137 Basecbs 17117 ·𝑖cip 17163 toNrmGrp ctng 24491 toℂPreHilctcph 25092 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-iota 6437 df-fun 6483 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-tng 24497 df-tcph 25094 |
| This theorem is referenced by: tcphbas 25144 tchplusg 25145 tcphmulr 25147 tcphsca 25148 tcphvsca 25149 tcphip 25150 tcphtopn 25151 tchnmfval 25153 tcphds 25156 tcphcph 25162 rrxsca 25321 rrx0 25322 rrxdim 33622 |
| Copyright terms: Public domain | W3C validator |