MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tcphval Structured version   Visualization version   GIF version

Theorem tcphval 23822
Description: Define a function to augment a subcomplex pre-Hilbert space with norm. (Contributed by Mario Carneiro, 7-Oct-2015.)
Hypotheses
Ref Expression
tcphval.n 𝐺 = (toℂPreHil‘𝑊)
tcphval.v 𝑉 = (Base‘𝑊)
tcphval.h , = (·𝑖𝑊)
Assertion
Ref Expression
tcphval 𝐺 = (𝑊 toNrmGrp (𝑥𝑉 ↦ (√‘(𝑥 , 𝑥))))
Distinct variable groups:   𝑥, ,   𝑥,𝐺   𝑥,𝑉   𝑥,𝑊

Proof of Theorem tcphval
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 tcphval.n . 2 𝐺 = (toℂPreHil‘𝑊)
2 id 22 . . . . 5 (𝑤 = 𝑊𝑤 = 𝑊)
3 fveq2 6645 . . . . . . 7 (𝑤 = 𝑊 → (Base‘𝑤) = (Base‘𝑊))
4 tcphval.v . . . . . . 7 𝑉 = (Base‘𝑊)
53, 4eqtr4di 2851 . . . . . 6 (𝑤 = 𝑊 → (Base‘𝑤) = 𝑉)
6 fveq2 6645 . . . . . . . . 9 (𝑤 = 𝑊 → (·𝑖𝑤) = (·𝑖𝑊))
7 tcphval.h . . . . . . . . 9 , = (·𝑖𝑊)
86, 7eqtr4di 2851 . . . . . . . 8 (𝑤 = 𝑊 → (·𝑖𝑤) = , )
98oveqd 7152 . . . . . . 7 (𝑤 = 𝑊 → (𝑥(·𝑖𝑤)𝑥) = (𝑥 , 𝑥))
109fveq2d 6649 . . . . . 6 (𝑤 = 𝑊 → (√‘(𝑥(·𝑖𝑤)𝑥)) = (√‘(𝑥 , 𝑥)))
115, 10mpteq12dv 5115 . . . . 5 (𝑤 = 𝑊 → (𝑥 ∈ (Base‘𝑤) ↦ (√‘(𝑥(·𝑖𝑤)𝑥))) = (𝑥𝑉 ↦ (√‘(𝑥 , 𝑥))))
122, 11oveq12d 7153 . . . 4 (𝑤 = 𝑊 → (𝑤 toNrmGrp (𝑥 ∈ (Base‘𝑤) ↦ (√‘(𝑥(·𝑖𝑤)𝑥)))) = (𝑊 toNrmGrp (𝑥𝑉 ↦ (√‘(𝑥 , 𝑥)))))
13 df-tcph 23774 . . . 4 toℂPreHil = (𝑤 ∈ V ↦ (𝑤 toNrmGrp (𝑥 ∈ (Base‘𝑤) ↦ (√‘(𝑥(·𝑖𝑤)𝑥)))))
14 ovex 7168 . . . 4 (𝑊 toNrmGrp (𝑥𝑉 ↦ (√‘(𝑥 , 𝑥)))) ∈ V
1512, 13, 14fvmpt 6745 . . 3 (𝑊 ∈ V → (toℂPreHil‘𝑊) = (𝑊 toNrmGrp (𝑥𝑉 ↦ (√‘(𝑥 , 𝑥)))))
16 fvprc 6638 . . . 4 𝑊 ∈ V → (toℂPreHil‘𝑊) = ∅)
17 reldmtng 23244 . . . . 5 Rel dom toNrmGrp
1817ovprc1 7174 . . . 4 𝑊 ∈ V → (𝑊 toNrmGrp (𝑥𝑉 ↦ (√‘(𝑥 , 𝑥)))) = ∅)
1916, 18eqtr4d 2836 . . 3 𝑊 ∈ V → (toℂPreHil‘𝑊) = (𝑊 toNrmGrp (𝑥𝑉 ↦ (√‘(𝑥 , 𝑥)))))
2015, 19pm2.61i 185 . 2 (toℂPreHil‘𝑊) = (𝑊 toNrmGrp (𝑥𝑉 ↦ (√‘(𝑥 , 𝑥))))
211, 20eqtri 2821 1 𝐺 = (𝑊 toNrmGrp (𝑥𝑉 ↦ (√‘(𝑥 , 𝑥))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1538  wcel 2111  Vcvv 3441  c0 4243  cmpt 5110  cfv 6324  (class class class)co 7135  csqrt 14584  Basecbs 16475  ·𝑖cip 16562   toNrmGrp ctng 23185  toℂPreHilctcph 23772
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ral 3111  df-rex 3112  df-v 3443  df-sbc 3721  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-iota 6283  df-fun 6326  df-fv 6332  df-ov 7138  df-oprab 7139  df-mpo 7140  df-tng 23191  df-tcph 23774
This theorem is referenced by:  tcphbas  23823  tchplusg  23824  tcphmulr  23826  tcphsca  23827  tcphvsca  23828  tcphip  23829  tcphtopn  23830  tchnmfval  23832  tcphds  23835  tcphcph  23841  rrxsca  24000  rrx0  24001  rrxdim  31100
  Copyright terms: Public domain W3C validator