MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tcphval Structured version   Visualization version   GIF version

Theorem tcphval 23824
Description: Define a function to augment a subcomplex pre-Hilbert space with norm. (Contributed by Mario Carneiro, 7-Oct-2015.)
Hypotheses
Ref Expression
tcphval.n 𝐺 = (toℂPreHil‘𝑊)
tcphval.v 𝑉 = (Base‘𝑊)
tcphval.h , = (·𝑖𝑊)
Assertion
Ref Expression
tcphval 𝐺 = (𝑊 toNrmGrp (𝑥𝑉 ↦ (√‘(𝑥 , 𝑥))))
Distinct variable groups:   𝑥, ,   𝑥,𝐺   𝑥,𝑉   𝑥,𝑊

Proof of Theorem tcphval
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 tcphval.n . 2 𝐺 = (toℂPreHil‘𝑊)
2 id 22 . . . . 5 (𝑤 = 𝑊𝑤 = 𝑊)
3 fveq2 6673 . . . . . . 7 (𝑤 = 𝑊 → (Base‘𝑤) = (Base‘𝑊))
4 tcphval.v . . . . . . 7 𝑉 = (Base‘𝑊)
53, 4syl6eqr 2877 . . . . . 6 (𝑤 = 𝑊 → (Base‘𝑤) = 𝑉)
6 fveq2 6673 . . . . . . . . 9 (𝑤 = 𝑊 → (·𝑖𝑤) = (·𝑖𝑊))
7 tcphval.h . . . . . . . . 9 , = (·𝑖𝑊)
86, 7syl6eqr 2877 . . . . . . . 8 (𝑤 = 𝑊 → (·𝑖𝑤) = , )
98oveqd 7176 . . . . . . 7 (𝑤 = 𝑊 → (𝑥(·𝑖𝑤)𝑥) = (𝑥 , 𝑥))
109fveq2d 6677 . . . . . 6 (𝑤 = 𝑊 → (√‘(𝑥(·𝑖𝑤)𝑥)) = (√‘(𝑥 , 𝑥)))
115, 10mpteq12dv 5154 . . . . 5 (𝑤 = 𝑊 → (𝑥 ∈ (Base‘𝑤) ↦ (√‘(𝑥(·𝑖𝑤)𝑥))) = (𝑥𝑉 ↦ (√‘(𝑥 , 𝑥))))
122, 11oveq12d 7177 . . . 4 (𝑤 = 𝑊 → (𝑤 toNrmGrp (𝑥 ∈ (Base‘𝑤) ↦ (√‘(𝑥(·𝑖𝑤)𝑥)))) = (𝑊 toNrmGrp (𝑥𝑉 ↦ (√‘(𝑥 , 𝑥)))))
13 df-tcph 23776 . . . 4 toℂPreHil = (𝑤 ∈ V ↦ (𝑤 toNrmGrp (𝑥 ∈ (Base‘𝑤) ↦ (√‘(𝑥(·𝑖𝑤)𝑥)))))
14 ovex 7192 . . . 4 (𝑊 toNrmGrp (𝑥𝑉 ↦ (√‘(𝑥 , 𝑥)))) ∈ V
1512, 13, 14fvmpt 6771 . . 3 (𝑊 ∈ V → (toℂPreHil‘𝑊) = (𝑊 toNrmGrp (𝑥𝑉 ↦ (√‘(𝑥 , 𝑥)))))
16 fvprc 6666 . . . 4 𝑊 ∈ V → (toℂPreHil‘𝑊) = ∅)
17 reldmtng 23250 . . . . 5 Rel dom toNrmGrp
1817ovprc1 7198 . . . 4 𝑊 ∈ V → (𝑊 toNrmGrp (𝑥𝑉 ↦ (√‘(𝑥 , 𝑥)))) = ∅)
1916, 18eqtr4d 2862 . . 3 𝑊 ∈ V → (toℂPreHil‘𝑊) = (𝑊 toNrmGrp (𝑥𝑉 ↦ (√‘(𝑥 , 𝑥)))))
2015, 19pm2.61i 184 . 2 (toℂPreHil‘𝑊) = (𝑊 toNrmGrp (𝑥𝑉 ↦ (√‘(𝑥 , 𝑥))))
211, 20eqtri 2847 1 𝐺 = (𝑊 toNrmGrp (𝑥𝑉 ↦ (√‘(𝑥 , 𝑥))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1536  wcel 2113  Vcvv 3497  c0 4294  cmpt 5149  cfv 6358  (class class class)co 7159  csqrt 14595  Basecbs 16486  ·𝑖cip 16573   toNrmGrp ctng 23191  toℂPreHilctcph 23774
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ral 3146  df-rex 3147  df-rab 3150  df-v 3499  df-sbc 3776  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-nul 4295  df-if 4471  df-sn 4571  df-pr 4573  df-op 4577  df-uni 4842  df-br 5070  df-opab 5132  df-mpt 5150  df-id 5463  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-iota 6317  df-fun 6360  df-fv 6366  df-ov 7162  df-oprab 7163  df-mpo 7164  df-tng 23197  df-tcph 23776
This theorem is referenced by:  tcphbas  23825  tchplusg  23826  tcphmulr  23828  tcphsca  23829  tcphvsca  23830  tcphip  23831  tcphtopn  23832  tchnmfval  23834  tcphds  23837  tcphcph  23843  rrxsca  24002  rrx0  24003  rrxdim  31016
  Copyright terms: Public domain W3C validator