Detailed syntax breakdown of Definition df-tlm
| Step | Hyp | Ref
| Expression |
| 1 | | ctlm 24166 |
. 2
class
TopMod |
| 2 | | vw |
. . . . . . 7
setvar 𝑤 |
| 3 | 2 | cv 1539 |
. . . . . 6
class 𝑤 |
| 4 | | csca 17300 |
. . . . . 6
class
Scalar |
| 5 | 3, 4 | cfv 6561 |
. . . . 5
class
(Scalar‘𝑤) |
| 6 | | ctrg 24164 |
. . . . 5
class
TopRing |
| 7 | 5, 6 | wcel 2108 |
. . . 4
wff
(Scalar‘𝑤)
∈ TopRing |
| 8 | | cscaf 20859 |
. . . . . 6
class
·sf |
| 9 | 3, 8 | cfv 6561 |
. . . . 5
class (
·sf ‘𝑤) |
| 10 | | ctopn 17466 |
. . . . . . . 8
class
TopOpen |
| 11 | 5, 10 | cfv 6561 |
. . . . . . 7
class
(TopOpen‘(Scalar‘𝑤)) |
| 12 | 3, 10 | cfv 6561 |
. . . . . . 7
class
(TopOpen‘𝑤) |
| 13 | | ctx 23568 |
. . . . . . 7
class
×t |
| 14 | 11, 12, 13 | co 7431 |
. . . . . 6
class
((TopOpen‘(Scalar‘𝑤)) ×t (TopOpen‘𝑤)) |
| 15 | | ccn 23232 |
. . . . . 6
class
Cn |
| 16 | 14, 12, 15 | co 7431 |
. . . . 5
class
(((TopOpen‘(Scalar‘𝑤)) ×t (TopOpen‘𝑤)) Cn (TopOpen‘𝑤)) |
| 17 | 9, 16 | wcel 2108 |
. . . 4
wff (
·sf ‘𝑤) ∈ (((TopOpen‘(Scalar‘𝑤)) ×t
(TopOpen‘𝑤)) Cn
(TopOpen‘𝑤)) |
| 18 | 7, 17 | wa 395 |
. . 3
wff
((Scalar‘𝑤)
∈ TopRing ∧ ( ·sf ‘𝑤) ∈
(((TopOpen‘(Scalar‘𝑤)) ×t (TopOpen‘𝑤)) Cn (TopOpen‘𝑤))) |
| 19 | | ctmd 24078 |
. . . 4
class
TopMnd |
| 20 | | clmod 20858 |
. . . 4
class
LMod |
| 21 | 19, 20 | cin 3950 |
. . 3
class (TopMnd
∩ LMod) |
| 22 | 18, 2, 21 | crab 3436 |
. 2
class {𝑤 ∈ (TopMnd ∩ LMod)
∣ ((Scalar‘𝑤)
∈ TopRing ∧ ( ·sf ‘𝑤) ∈
(((TopOpen‘(Scalar‘𝑤)) ×t (TopOpen‘𝑤)) Cn (TopOpen‘𝑤)))} |
| 23 | 1, 22 | wceq 1540 |
1
wff TopMod =
{𝑤 ∈ (TopMnd ∩
LMod) ∣ ((Scalar‘𝑤) ∈ TopRing ∧ (
·sf ‘𝑤) ∈ (((TopOpen‘(Scalar‘𝑤)) ×t
(TopOpen‘𝑤)) Cn
(TopOpen‘𝑤)))} |