| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-tvc | Structured version Visualization version GIF version | ||
| Description: Define a topological left vector space, which is a topological module over a topological division ring. (Contributed by Mario Carneiro, 5-Oct-2015.) |
| Ref | Expression |
|---|---|
| df-tvc | ⊢ TopVec = {𝑤 ∈ TopMod ∣ (Scalar‘𝑤) ∈ TopDRing} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ctvc 24097 | . 2 class TopVec | |
| 2 | vw | . . . . . 6 setvar 𝑤 | |
| 3 | 2 | cv 1539 | . . . . 5 class 𝑤 |
| 4 | csca 17274 | . . . . 5 class Scalar | |
| 5 | 3, 4 | cfv 6531 | . . . 4 class (Scalar‘𝑤) |
| 6 | ctdrg 24095 | . . . 4 class TopDRing | |
| 7 | 5, 6 | wcel 2108 | . . 3 wff (Scalar‘𝑤) ∈ TopDRing |
| 8 | ctlm 24096 | . . 3 class TopMod | |
| 9 | 7, 2, 8 | crab 3415 | . 2 class {𝑤 ∈ TopMod ∣ (Scalar‘𝑤) ∈ TopDRing} |
| 10 | 1, 9 | wceq 1540 | 1 wff TopVec = {𝑤 ∈ TopMod ∣ (Scalar‘𝑤) ∈ TopDRing} |
| Colors of variables: wff setvar class |
| This definition is referenced by: istvc 24130 |
| Copyright terms: Public domain | W3C validator |