Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > df-tvc | Structured version Visualization version GIF version |
Description: Define a topological left vector space, which is a topological module over a topological division ring. (Contributed by Mario Carneiro, 5-Oct-2015.) |
Ref | Expression |
---|---|
df-tvc | ⊢ TopVec = {𝑤 ∈ TopMod ∣ (Scalar‘𝑤) ∈ TopDRing} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ctvc 23416 | . 2 class TopVec | |
2 | vw | . . . . . 6 setvar 𝑤 | |
3 | 2 | cv 1539 | . . . . 5 class 𝑤 |
4 | csca 17062 | . . . . 5 class Scalar | |
5 | 3, 4 | cfv 6479 | . . . 4 class (Scalar‘𝑤) |
6 | ctdrg 23414 | . . . 4 class TopDRing | |
7 | 5, 6 | wcel 2105 | . . 3 wff (Scalar‘𝑤) ∈ TopDRing |
8 | ctlm 23415 | . . 3 class TopMod | |
9 | 7, 2, 8 | crab 3403 | . 2 class {𝑤 ∈ TopMod ∣ (Scalar‘𝑤) ∈ TopDRing} |
10 | 1, 9 | wceq 1540 | 1 wff TopVec = {𝑤 ∈ TopMod ∣ (Scalar‘𝑤) ∈ TopDRing} |
Colors of variables: wff setvar class |
This definition is referenced by: istvc 23449 |
Copyright terms: Public domain | W3C validator |