|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > df-tvc | Structured version Visualization version GIF version | ||
| Description: Define a topological left vector space, which is a topological module over a topological division ring. (Contributed by Mario Carneiro, 5-Oct-2015.) | 
| Ref | Expression | 
|---|---|
| df-tvc | ⊢ TopVec = {𝑤 ∈ TopMod ∣ (Scalar‘𝑤) ∈ TopDRing} | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ctvc 24167 | . 2 class TopVec | |
| 2 | vw | . . . . . 6 setvar 𝑤 | |
| 3 | 2 | cv 1539 | . . . . 5 class 𝑤 | 
| 4 | csca 17300 | . . . . 5 class Scalar | |
| 5 | 3, 4 | cfv 6561 | . . . 4 class (Scalar‘𝑤) | 
| 6 | ctdrg 24165 | . . . 4 class TopDRing | |
| 7 | 5, 6 | wcel 2108 | . . 3 wff (Scalar‘𝑤) ∈ TopDRing | 
| 8 | ctlm 24166 | . . 3 class TopMod | |
| 9 | 7, 2, 8 | crab 3436 | . 2 class {𝑤 ∈ TopMod ∣ (Scalar‘𝑤) ∈ TopDRing} | 
| 10 | 1, 9 | wceq 1540 | 1 wff TopVec = {𝑤 ∈ TopMod ∣ (Scalar‘𝑤) ∈ TopDRing} | 
| Colors of variables: wff setvar class | 
| This definition is referenced by: istvc 24200 | 
| Copyright terms: Public domain | W3C validator |