MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  istlm Structured version   Visualization version   GIF version

Theorem istlm 24033
Description: The predicate "π‘Š is a topological left module". (Contributed by Mario Carneiro, 5-Oct-2015.)
Hypotheses
Ref Expression
istlm.s Β· = ( Β·sf β€˜π‘Š)
istlm.j 𝐽 = (TopOpenβ€˜π‘Š)
istlm.f 𝐹 = (Scalarβ€˜π‘Š)
istlm.k 𝐾 = (TopOpenβ€˜πΉ)
Assertion
Ref Expression
istlm (π‘Š ∈ TopMod ↔ ((π‘Š ∈ TopMnd ∧ π‘Š ∈ LMod ∧ 𝐹 ∈ TopRing) ∧ Β· ∈ ((𝐾 Γ—t 𝐽) Cn 𝐽)))

Proof of Theorem istlm
Dummy variable 𝑀 is distinct from all other variables.
StepHypRef Expression
1 anass 468 . 2 (((π‘Š ∈ (TopMnd ∩ LMod) ∧ 𝐹 ∈ TopRing) ∧ Β· ∈ ((𝐾 Γ—t 𝐽) Cn 𝐽)) ↔ (π‘Š ∈ (TopMnd ∩ LMod) ∧ (𝐹 ∈ TopRing ∧ Β· ∈ ((𝐾 Γ—t 𝐽) Cn 𝐽))))
2 df-3an 1086 . . . 4 ((π‘Š ∈ TopMnd ∧ π‘Š ∈ LMod ∧ 𝐹 ∈ TopRing) ↔ ((π‘Š ∈ TopMnd ∧ π‘Š ∈ LMod) ∧ 𝐹 ∈ TopRing))
3 elin 3957 . . . . 5 (π‘Š ∈ (TopMnd ∩ LMod) ↔ (π‘Š ∈ TopMnd ∧ π‘Š ∈ LMod))
43anbi1i 623 . . . 4 ((π‘Š ∈ (TopMnd ∩ LMod) ∧ 𝐹 ∈ TopRing) ↔ ((π‘Š ∈ TopMnd ∧ π‘Š ∈ LMod) ∧ 𝐹 ∈ TopRing))
52, 4bitr4i 278 . . 3 ((π‘Š ∈ TopMnd ∧ π‘Š ∈ LMod ∧ 𝐹 ∈ TopRing) ↔ (π‘Š ∈ (TopMnd ∩ LMod) ∧ 𝐹 ∈ TopRing))
65anbi1i 623 . 2 (((π‘Š ∈ TopMnd ∧ π‘Š ∈ LMod ∧ 𝐹 ∈ TopRing) ∧ Β· ∈ ((𝐾 Γ—t 𝐽) Cn 𝐽)) ↔ ((π‘Š ∈ (TopMnd ∩ LMod) ∧ 𝐹 ∈ TopRing) ∧ Β· ∈ ((𝐾 Γ—t 𝐽) Cn 𝐽)))
7 fveq2 6882 . . . . . 6 (𝑀 = π‘Š β†’ (Scalarβ€˜π‘€) = (Scalarβ€˜π‘Š))
8 istlm.f . . . . . 6 𝐹 = (Scalarβ€˜π‘Š)
97, 8eqtr4di 2782 . . . . 5 (𝑀 = π‘Š β†’ (Scalarβ€˜π‘€) = 𝐹)
109eleq1d 2810 . . . 4 (𝑀 = π‘Š β†’ ((Scalarβ€˜π‘€) ∈ TopRing ↔ 𝐹 ∈ TopRing))
11 fveq2 6882 . . . . . 6 (𝑀 = π‘Š β†’ ( Β·sf β€˜π‘€) = ( Β·sf β€˜π‘Š))
12 istlm.s . . . . . 6 Β· = ( Β·sf β€˜π‘Š)
1311, 12eqtr4di 2782 . . . . 5 (𝑀 = π‘Š β†’ ( Β·sf β€˜π‘€) = Β· )
149fveq2d 6886 . . . . . . . 8 (𝑀 = π‘Š β†’ (TopOpenβ€˜(Scalarβ€˜π‘€)) = (TopOpenβ€˜πΉ))
15 istlm.k . . . . . . . 8 𝐾 = (TopOpenβ€˜πΉ)
1614, 15eqtr4di 2782 . . . . . . 7 (𝑀 = π‘Š β†’ (TopOpenβ€˜(Scalarβ€˜π‘€)) = 𝐾)
17 fveq2 6882 . . . . . . . 8 (𝑀 = π‘Š β†’ (TopOpenβ€˜π‘€) = (TopOpenβ€˜π‘Š))
18 istlm.j . . . . . . . 8 𝐽 = (TopOpenβ€˜π‘Š)
1917, 18eqtr4di 2782 . . . . . . 7 (𝑀 = π‘Š β†’ (TopOpenβ€˜π‘€) = 𝐽)
2016, 19oveq12d 7420 . . . . . 6 (𝑀 = π‘Š β†’ ((TopOpenβ€˜(Scalarβ€˜π‘€)) Γ—t (TopOpenβ€˜π‘€)) = (𝐾 Γ—t 𝐽))
2120, 19oveq12d 7420 . . . . 5 (𝑀 = π‘Š β†’ (((TopOpenβ€˜(Scalarβ€˜π‘€)) Γ—t (TopOpenβ€˜π‘€)) Cn (TopOpenβ€˜π‘€)) = ((𝐾 Γ—t 𝐽) Cn 𝐽))
2213, 21eleq12d 2819 . . . 4 (𝑀 = π‘Š β†’ (( Β·sf β€˜π‘€) ∈ (((TopOpenβ€˜(Scalarβ€˜π‘€)) Γ—t (TopOpenβ€˜π‘€)) Cn (TopOpenβ€˜π‘€)) ↔ Β· ∈ ((𝐾 Γ—t 𝐽) Cn 𝐽)))
2310, 22anbi12d 630 . . 3 (𝑀 = π‘Š β†’ (((Scalarβ€˜π‘€) ∈ TopRing ∧ ( Β·sf β€˜π‘€) ∈ (((TopOpenβ€˜(Scalarβ€˜π‘€)) Γ—t (TopOpenβ€˜π‘€)) Cn (TopOpenβ€˜π‘€))) ↔ (𝐹 ∈ TopRing ∧ Β· ∈ ((𝐾 Γ—t 𝐽) Cn 𝐽))))
24 df-tlm 24010 . . 3 TopMod = {𝑀 ∈ (TopMnd ∩ LMod) ∣ ((Scalarβ€˜π‘€) ∈ TopRing ∧ ( Β·sf β€˜π‘€) ∈ (((TopOpenβ€˜(Scalarβ€˜π‘€)) Γ—t (TopOpenβ€˜π‘€)) Cn (TopOpenβ€˜π‘€)))}
2523, 24elrab2 3679 . 2 (π‘Š ∈ TopMod ↔ (π‘Š ∈ (TopMnd ∩ LMod) ∧ (𝐹 ∈ TopRing ∧ Β· ∈ ((𝐾 Γ—t 𝐽) Cn 𝐽))))
261, 6, 253bitr4ri 304 1 (π‘Š ∈ TopMod ↔ ((π‘Š ∈ TopMnd ∧ π‘Š ∈ LMod ∧ 𝐹 ∈ TopRing) ∧ Β· ∈ ((𝐾 Γ—t 𝐽) Cn 𝐽)))
Colors of variables: wff setvar class
Syntax hints:   ↔ wb 205   ∧ wa 395   ∧ w3a 1084   = wceq 1533   ∈ wcel 2098   ∩ cin 3940  β€˜cfv 6534  (class class class)co 7402  Scalarcsca 17205  TopOpenctopn 17372  LModclmod 20702   Β·sf cscaf 20703   Cn ccn 23072   Γ—t ctx 23408  TopMndctmd 23918  TopRingctrg 24004  TopModctlm 24006
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2695
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2702  df-cleq 2716  df-clel 2802  df-rab 3425  df-v 3468  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-nul 4316  df-if 4522  df-sn 4622  df-pr 4624  df-op 4628  df-uni 4901  df-br 5140  df-iota 6486  df-fv 6542  df-ov 7405  df-tlm 24010
This theorem is referenced by:  vscacn  24034  tlmtmd  24035  tlmlmod  24037  tlmtrg  24038  nlmtlm  24555
  Copyright terms: Public domain W3C validator