MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  istlm Structured version   Visualization version   GIF version

Theorem istlm 23680
Description: The predicate "π‘Š is a topological left module". (Contributed by Mario Carneiro, 5-Oct-2015.)
Hypotheses
Ref Expression
istlm.s Β· = ( Β·sf β€˜π‘Š)
istlm.j 𝐽 = (TopOpenβ€˜π‘Š)
istlm.f 𝐹 = (Scalarβ€˜π‘Š)
istlm.k 𝐾 = (TopOpenβ€˜πΉ)
Assertion
Ref Expression
istlm (π‘Š ∈ TopMod ↔ ((π‘Š ∈ TopMnd ∧ π‘Š ∈ LMod ∧ 𝐹 ∈ TopRing) ∧ Β· ∈ ((𝐾 Γ—t 𝐽) Cn 𝐽)))

Proof of Theorem istlm
Dummy variable 𝑀 is distinct from all other variables.
StepHypRef Expression
1 anass 469 . 2 (((π‘Š ∈ (TopMnd ∩ LMod) ∧ 𝐹 ∈ TopRing) ∧ Β· ∈ ((𝐾 Γ—t 𝐽) Cn 𝐽)) ↔ (π‘Š ∈ (TopMnd ∩ LMod) ∧ (𝐹 ∈ TopRing ∧ Β· ∈ ((𝐾 Γ—t 𝐽) Cn 𝐽))))
2 df-3an 1089 . . . 4 ((π‘Š ∈ TopMnd ∧ π‘Š ∈ LMod ∧ 𝐹 ∈ TopRing) ↔ ((π‘Š ∈ TopMnd ∧ π‘Š ∈ LMod) ∧ 𝐹 ∈ TopRing))
3 elin 3963 . . . . 5 (π‘Š ∈ (TopMnd ∩ LMod) ↔ (π‘Š ∈ TopMnd ∧ π‘Š ∈ LMod))
43anbi1i 624 . . . 4 ((π‘Š ∈ (TopMnd ∩ LMod) ∧ 𝐹 ∈ TopRing) ↔ ((π‘Š ∈ TopMnd ∧ π‘Š ∈ LMod) ∧ 𝐹 ∈ TopRing))
52, 4bitr4i 277 . . 3 ((π‘Š ∈ TopMnd ∧ π‘Š ∈ LMod ∧ 𝐹 ∈ TopRing) ↔ (π‘Š ∈ (TopMnd ∩ LMod) ∧ 𝐹 ∈ TopRing))
65anbi1i 624 . 2 (((π‘Š ∈ TopMnd ∧ π‘Š ∈ LMod ∧ 𝐹 ∈ TopRing) ∧ Β· ∈ ((𝐾 Γ—t 𝐽) Cn 𝐽)) ↔ ((π‘Š ∈ (TopMnd ∩ LMod) ∧ 𝐹 ∈ TopRing) ∧ Β· ∈ ((𝐾 Γ—t 𝐽) Cn 𝐽)))
7 fveq2 6888 . . . . . 6 (𝑀 = π‘Š β†’ (Scalarβ€˜π‘€) = (Scalarβ€˜π‘Š))
8 istlm.f . . . . . 6 𝐹 = (Scalarβ€˜π‘Š)
97, 8eqtr4di 2790 . . . . 5 (𝑀 = π‘Š β†’ (Scalarβ€˜π‘€) = 𝐹)
109eleq1d 2818 . . . 4 (𝑀 = π‘Š β†’ ((Scalarβ€˜π‘€) ∈ TopRing ↔ 𝐹 ∈ TopRing))
11 fveq2 6888 . . . . . 6 (𝑀 = π‘Š β†’ ( Β·sf β€˜π‘€) = ( Β·sf β€˜π‘Š))
12 istlm.s . . . . . 6 Β· = ( Β·sf β€˜π‘Š)
1311, 12eqtr4di 2790 . . . . 5 (𝑀 = π‘Š β†’ ( Β·sf β€˜π‘€) = Β· )
149fveq2d 6892 . . . . . . . 8 (𝑀 = π‘Š β†’ (TopOpenβ€˜(Scalarβ€˜π‘€)) = (TopOpenβ€˜πΉ))
15 istlm.k . . . . . . . 8 𝐾 = (TopOpenβ€˜πΉ)
1614, 15eqtr4di 2790 . . . . . . 7 (𝑀 = π‘Š β†’ (TopOpenβ€˜(Scalarβ€˜π‘€)) = 𝐾)
17 fveq2 6888 . . . . . . . 8 (𝑀 = π‘Š β†’ (TopOpenβ€˜π‘€) = (TopOpenβ€˜π‘Š))
18 istlm.j . . . . . . . 8 𝐽 = (TopOpenβ€˜π‘Š)
1917, 18eqtr4di 2790 . . . . . . 7 (𝑀 = π‘Š β†’ (TopOpenβ€˜π‘€) = 𝐽)
2016, 19oveq12d 7423 . . . . . 6 (𝑀 = π‘Š β†’ ((TopOpenβ€˜(Scalarβ€˜π‘€)) Γ—t (TopOpenβ€˜π‘€)) = (𝐾 Γ—t 𝐽))
2120, 19oveq12d 7423 . . . . 5 (𝑀 = π‘Š β†’ (((TopOpenβ€˜(Scalarβ€˜π‘€)) Γ—t (TopOpenβ€˜π‘€)) Cn (TopOpenβ€˜π‘€)) = ((𝐾 Γ—t 𝐽) Cn 𝐽))
2213, 21eleq12d 2827 . . . 4 (𝑀 = π‘Š β†’ (( Β·sf β€˜π‘€) ∈ (((TopOpenβ€˜(Scalarβ€˜π‘€)) Γ—t (TopOpenβ€˜π‘€)) Cn (TopOpenβ€˜π‘€)) ↔ Β· ∈ ((𝐾 Γ—t 𝐽) Cn 𝐽)))
2310, 22anbi12d 631 . . 3 (𝑀 = π‘Š β†’ (((Scalarβ€˜π‘€) ∈ TopRing ∧ ( Β·sf β€˜π‘€) ∈ (((TopOpenβ€˜(Scalarβ€˜π‘€)) Γ—t (TopOpenβ€˜π‘€)) Cn (TopOpenβ€˜π‘€))) ↔ (𝐹 ∈ TopRing ∧ Β· ∈ ((𝐾 Γ—t 𝐽) Cn 𝐽))))
24 df-tlm 23657 . . 3 TopMod = {𝑀 ∈ (TopMnd ∩ LMod) ∣ ((Scalarβ€˜π‘€) ∈ TopRing ∧ ( Β·sf β€˜π‘€) ∈ (((TopOpenβ€˜(Scalarβ€˜π‘€)) Γ—t (TopOpenβ€˜π‘€)) Cn (TopOpenβ€˜π‘€)))}
2523, 24elrab2 3685 . 2 (π‘Š ∈ TopMod ↔ (π‘Š ∈ (TopMnd ∩ LMod) ∧ (𝐹 ∈ TopRing ∧ Β· ∈ ((𝐾 Γ—t 𝐽) Cn 𝐽))))
261, 6, 253bitr4ri 303 1 (π‘Š ∈ TopMod ↔ ((π‘Š ∈ TopMnd ∧ π‘Š ∈ LMod ∧ 𝐹 ∈ TopRing) ∧ Β· ∈ ((𝐾 Γ—t 𝐽) Cn 𝐽)))
Colors of variables: wff setvar class
Syntax hints:   ↔ wb 205   ∧ wa 396   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106   ∩ cin 3946  β€˜cfv 6540  (class class class)co 7405  Scalarcsca 17196  TopOpenctopn 17363  LModclmod 20463   Β·sf cscaf 20464   Cn ccn 22719   Γ—t ctx 23055  TopMndctmd 23565  TopRingctrg 23651  TopModctlm 23653
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-rab 3433  df-v 3476  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-iota 6492  df-fv 6548  df-ov 7408  df-tlm 23657
This theorem is referenced by:  vscacn  23681  tlmtmd  23682  tlmlmod  23684  tlmtrg  23685  nlmtlm  24202
  Copyright terms: Public domain W3C validator