Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  istlm Structured version   Visualization version   GIF version

Theorem istlm 22790
 Description: The predicate "𝑊 is a topological left module". (Contributed by Mario Carneiro, 5-Oct-2015.)
Hypotheses
Ref Expression
istlm.s · = ( ·sf𝑊)
istlm.j 𝐽 = (TopOpen‘𝑊)
istlm.f 𝐹 = (Scalar‘𝑊)
istlm.k 𝐾 = (TopOpen‘𝐹)
Assertion
Ref Expression
istlm (𝑊 ∈ TopMod ↔ ((𝑊 ∈ TopMnd ∧ 𝑊 ∈ LMod ∧ 𝐹 ∈ TopRing) ∧ · ∈ ((𝐾 ×t 𝐽) Cn 𝐽)))

Proof of Theorem istlm
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 anass 472 . 2 (((𝑊 ∈ (TopMnd ∩ LMod) ∧ 𝐹 ∈ TopRing) ∧ · ∈ ((𝐾 ×t 𝐽) Cn 𝐽)) ↔ (𝑊 ∈ (TopMnd ∩ LMod) ∧ (𝐹 ∈ TopRing ∧ · ∈ ((𝐾 ×t 𝐽) Cn 𝐽))))
2 df-3an 1086 . . . 4 ((𝑊 ∈ TopMnd ∧ 𝑊 ∈ LMod ∧ 𝐹 ∈ TopRing) ↔ ((𝑊 ∈ TopMnd ∧ 𝑊 ∈ LMod) ∧ 𝐹 ∈ TopRing))
3 elin 3897 . . . . 5 (𝑊 ∈ (TopMnd ∩ LMod) ↔ (𝑊 ∈ TopMnd ∧ 𝑊 ∈ LMod))
43anbi1i 626 . . . 4 ((𝑊 ∈ (TopMnd ∩ LMod) ∧ 𝐹 ∈ TopRing) ↔ ((𝑊 ∈ TopMnd ∧ 𝑊 ∈ LMod) ∧ 𝐹 ∈ TopRing))
52, 4bitr4i 281 . . 3 ((𝑊 ∈ TopMnd ∧ 𝑊 ∈ LMod ∧ 𝐹 ∈ TopRing) ↔ (𝑊 ∈ (TopMnd ∩ LMod) ∧ 𝐹 ∈ TopRing))
65anbi1i 626 . 2 (((𝑊 ∈ TopMnd ∧ 𝑊 ∈ LMod ∧ 𝐹 ∈ TopRing) ∧ · ∈ ((𝐾 ×t 𝐽) Cn 𝐽)) ↔ ((𝑊 ∈ (TopMnd ∩ LMod) ∧ 𝐹 ∈ TopRing) ∧ · ∈ ((𝐾 ×t 𝐽) Cn 𝐽)))
7 fveq2 6645 . . . . . 6 (𝑤 = 𝑊 → (Scalar‘𝑤) = (Scalar‘𝑊))
8 istlm.f . . . . . 6 𝐹 = (Scalar‘𝑊)
97, 8eqtr4di 2851 . . . . 5 (𝑤 = 𝑊 → (Scalar‘𝑤) = 𝐹)
109eleq1d 2874 . . . 4 (𝑤 = 𝑊 → ((Scalar‘𝑤) ∈ TopRing ↔ 𝐹 ∈ TopRing))
11 fveq2 6645 . . . . . 6 (𝑤 = 𝑊 → ( ·sf𝑤) = ( ·sf𝑊))
12 istlm.s . . . . . 6 · = ( ·sf𝑊)
1311, 12eqtr4di 2851 . . . . 5 (𝑤 = 𝑊 → ( ·sf𝑤) = · )
149fveq2d 6649 . . . . . . . 8 (𝑤 = 𝑊 → (TopOpen‘(Scalar‘𝑤)) = (TopOpen‘𝐹))
15 istlm.k . . . . . . . 8 𝐾 = (TopOpen‘𝐹)
1614, 15eqtr4di 2851 . . . . . . 7 (𝑤 = 𝑊 → (TopOpen‘(Scalar‘𝑤)) = 𝐾)
17 fveq2 6645 . . . . . . . 8 (𝑤 = 𝑊 → (TopOpen‘𝑤) = (TopOpen‘𝑊))
18 istlm.j . . . . . . . 8 𝐽 = (TopOpen‘𝑊)
1917, 18eqtr4di 2851 . . . . . . 7 (𝑤 = 𝑊 → (TopOpen‘𝑤) = 𝐽)
2016, 19oveq12d 7153 . . . . . 6 (𝑤 = 𝑊 → ((TopOpen‘(Scalar‘𝑤)) ×t (TopOpen‘𝑤)) = (𝐾 ×t 𝐽))
2120, 19oveq12d 7153 . . . . 5 (𝑤 = 𝑊 → (((TopOpen‘(Scalar‘𝑤)) ×t (TopOpen‘𝑤)) Cn (TopOpen‘𝑤)) = ((𝐾 ×t 𝐽) Cn 𝐽))
2213, 21eleq12d 2884 . . . 4 (𝑤 = 𝑊 → (( ·sf𝑤) ∈ (((TopOpen‘(Scalar‘𝑤)) ×t (TopOpen‘𝑤)) Cn (TopOpen‘𝑤)) ↔ · ∈ ((𝐾 ×t 𝐽) Cn 𝐽)))
2310, 22anbi12d 633 . . 3 (𝑤 = 𝑊 → (((Scalar‘𝑤) ∈ TopRing ∧ ( ·sf𝑤) ∈ (((TopOpen‘(Scalar‘𝑤)) ×t (TopOpen‘𝑤)) Cn (TopOpen‘𝑤))) ↔ (𝐹 ∈ TopRing ∧ · ∈ ((𝐾 ×t 𝐽) Cn 𝐽))))
24 df-tlm 22767 . . 3 TopMod = {𝑤 ∈ (TopMnd ∩ LMod) ∣ ((Scalar‘𝑤) ∈ TopRing ∧ ( ·sf𝑤) ∈ (((TopOpen‘(Scalar‘𝑤)) ×t (TopOpen‘𝑤)) Cn (TopOpen‘𝑤)))}
2523, 24elrab2 3631 . 2 (𝑊 ∈ TopMod ↔ (𝑊 ∈ (TopMnd ∩ LMod) ∧ (𝐹 ∈ TopRing ∧ · ∈ ((𝐾 ×t 𝐽) Cn 𝐽))))
261, 6, 253bitr4ri 307 1 (𝑊 ∈ TopMod ↔ ((𝑊 ∈ TopMnd ∧ 𝑊 ∈ LMod ∧ 𝐹 ∈ TopRing) ∧ · ∈ ((𝐾 ×t 𝐽) Cn 𝐽)))
 Colors of variables: wff setvar class Syntax hints:   ↔ wb 209   ∧ wa 399   ∧ w3a 1084   = wceq 1538   ∈ wcel 2111   ∩ cin 3880  ‘cfv 6324  (class class class)co 7135  Scalarcsca 16560  TopOpenctopn 16687  LModclmod 19627   ·sf cscaf 19628   Cn ccn 21829   ×t ctx 22165  TopMndctmd 22675  TopRingctrg 22761  TopModctlm 22763 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-rab 3115  df-v 3443  df-un 3886  df-in 3888  df-ss 3898  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-br 5031  df-iota 6283  df-fv 6332  df-ov 7138  df-tlm 22767 This theorem is referenced by:  vscacn  22791  tlmtmd  22792  tlmlmod  22794  tlmtrg  22795  nlmtlm  23300
 Copyright terms: Public domain W3C validator