Step | Hyp | Ref
| Expression |
1 | | anass 469 |
. 2
⊢ (((𝑊 ∈ (TopMnd ∩ LMod)
∧ 𝐹 ∈ TopRing)
∧ · ∈ ((𝐾 ×t 𝐽) Cn 𝐽)) ↔ (𝑊 ∈ (TopMnd ∩ LMod) ∧ (𝐹 ∈ TopRing ∧ · ∈
((𝐾 ×t
𝐽) Cn 𝐽)))) |
2 | | df-3an 1088 |
. . . 4
⊢ ((𝑊 ∈ TopMnd ∧ 𝑊 ∈ LMod ∧ 𝐹 ∈ TopRing) ↔ ((𝑊 ∈ TopMnd ∧ 𝑊 ∈ LMod) ∧ 𝐹 ∈
TopRing)) |
3 | | elin 3903 |
. . . . 5
⊢ (𝑊 ∈ (TopMnd ∩ LMod)
↔ (𝑊 ∈ TopMnd
∧ 𝑊 ∈
LMod)) |
4 | 3 | anbi1i 624 |
. . . 4
⊢ ((𝑊 ∈ (TopMnd ∩ LMod)
∧ 𝐹 ∈ TopRing)
↔ ((𝑊 ∈ TopMnd
∧ 𝑊 ∈ LMod) ∧
𝐹 ∈
TopRing)) |
5 | 2, 4 | bitr4i 277 |
. . 3
⊢ ((𝑊 ∈ TopMnd ∧ 𝑊 ∈ LMod ∧ 𝐹 ∈ TopRing) ↔ (𝑊 ∈ (TopMnd ∩ LMod)
∧ 𝐹 ∈
TopRing)) |
6 | 5 | anbi1i 624 |
. 2
⊢ (((𝑊 ∈ TopMnd ∧ 𝑊 ∈ LMod ∧ 𝐹 ∈ TopRing) ∧ · ∈
((𝐾 ×t
𝐽) Cn 𝐽)) ↔ ((𝑊 ∈ (TopMnd ∩ LMod) ∧ 𝐹 ∈ TopRing) ∧ · ∈
((𝐾 ×t
𝐽) Cn 𝐽))) |
7 | | fveq2 6774 |
. . . . . 6
⊢ (𝑤 = 𝑊 → (Scalar‘𝑤) = (Scalar‘𝑊)) |
8 | | istlm.f |
. . . . . 6
⊢ 𝐹 = (Scalar‘𝑊) |
9 | 7, 8 | eqtr4di 2796 |
. . . . 5
⊢ (𝑤 = 𝑊 → (Scalar‘𝑤) = 𝐹) |
10 | 9 | eleq1d 2823 |
. . . 4
⊢ (𝑤 = 𝑊 → ((Scalar‘𝑤) ∈ TopRing ↔ 𝐹 ∈ TopRing)) |
11 | | fveq2 6774 |
. . . . . 6
⊢ (𝑤 = 𝑊 → (
·sf ‘𝑤) = ( ·sf
‘𝑊)) |
12 | | istlm.s |
. . . . . 6
⊢ · = (
·sf ‘𝑊) |
13 | 11, 12 | eqtr4di 2796 |
. . . . 5
⊢ (𝑤 = 𝑊 → (
·sf ‘𝑤) = · ) |
14 | 9 | fveq2d 6778 |
. . . . . . . 8
⊢ (𝑤 = 𝑊 → (TopOpen‘(Scalar‘𝑤)) = (TopOpen‘𝐹)) |
15 | | istlm.k |
. . . . . . . 8
⊢ 𝐾 = (TopOpen‘𝐹) |
16 | 14, 15 | eqtr4di 2796 |
. . . . . . 7
⊢ (𝑤 = 𝑊 → (TopOpen‘(Scalar‘𝑤)) = 𝐾) |
17 | | fveq2 6774 |
. . . . . . . 8
⊢ (𝑤 = 𝑊 → (TopOpen‘𝑤) = (TopOpen‘𝑊)) |
18 | | istlm.j |
. . . . . . . 8
⊢ 𝐽 = (TopOpen‘𝑊) |
19 | 17, 18 | eqtr4di 2796 |
. . . . . . 7
⊢ (𝑤 = 𝑊 → (TopOpen‘𝑤) = 𝐽) |
20 | 16, 19 | oveq12d 7293 |
. . . . . 6
⊢ (𝑤 = 𝑊 → ((TopOpen‘(Scalar‘𝑤)) ×t
(TopOpen‘𝑤)) = (𝐾 ×t 𝐽)) |
21 | 20, 19 | oveq12d 7293 |
. . . . 5
⊢ (𝑤 = 𝑊 → (((TopOpen‘(Scalar‘𝑤)) ×t
(TopOpen‘𝑤)) Cn
(TopOpen‘𝑤)) =
((𝐾 ×t
𝐽) Cn 𝐽)) |
22 | 13, 21 | eleq12d 2833 |
. . . 4
⊢ (𝑤 = 𝑊 → ((
·sf ‘𝑤) ∈ (((TopOpen‘(Scalar‘𝑤)) ×t
(TopOpen‘𝑤)) Cn
(TopOpen‘𝑤)) ↔
·
∈ ((𝐾
×t 𝐽) Cn
𝐽))) |
23 | 10, 22 | anbi12d 631 |
. . 3
⊢ (𝑤 = 𝑊 → (((Scalar‘𝑤) ∈ TopRing ∧ (
·sf ‘𝑤) ∈ (((TopOpen‘(Scalar‘𝑤)) ×t
(TopOpen‘𝑤)) Cn
(TopOpen‘𝑤))) ↔
(𝐹 ∈ TopRing ∧
·
∈ ((𝐾
×t 𝐽) Cn
𝐽)))) |
24 | | df-tlm 23313 |
. . 3
⊢ TopMod =
{𝑤 ∈ (TopMnd ∩
LMod) ∣ ((Scalar‘𝑤) ∈ TopRing ∧ (
·sf ‘𝑤) ∈ (((TopOpen‘(Scalar‘𝑤)) ×t
(TopOpen‘𝑤)) Cn
(TopOpen‘𝑤)))} |
25 | 23, 24 | elrab2 3627 |
. 2
⊢ (𝑊 ∈ TopMod ↔ (𝑊 ∈ (TopMnd ∩ LMod)
∧ (𝐹 ∈ TopRing
∧ · ∈ ((𝐾 ×t 𝐽) Cn 𝐽)))) |
26 | 1, 6, 25 | 3bitr4ri 304 |
1
⊢ (𝑊 ∈ TopMod ↔ ((𝑊 ∈ TopMnd ∧ 𝑊 ∈ LMod ∧ 𝐹 ∈ TopRing) ∧ · ∈
((𝐾 ×t
𝐽) Cn 𝐽))) |