| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | anass 468 | . 2
⊢ (((𝑊 ∈ (TopMnd ∩ LMod)
∧ 𝐹 ∈ TopRing)
∧ · ∈ ((𝐾 ×t 𝐽) Cn 𝐽)) ↔ (𝑊 ∈ (TopMnd ∩ LMod) ∧ (𝐹 ∈ TopRing ∧ · ∈
((𝐾 ×t
𝐽) Cn 𝐽)))) | 
| 2 |  | df-3an 1089 | . . . 4
⊢ ((𝑊 ∈ TopMnd ∧ 𝑊 ∈ LMod ∧ 𝐹 ∈ TopRing) ↔ ((𝑊 ∈ TopMnd ∧ 𝑊 ∈ LMod) ∧ 𝐹 ∈
TopRing)) | 
| 3 |  | elin 3967 | . . . . 5
⊢ (𝑊 ∈ (TopMnd ∩ LMod)
↔ (𝑊 ∈ TopMnd
∧ 𝑊 ∈
LMod)) | 
| 4 | 3 | anbi1i 624 | . . . 4
⊢ ((𝑊 ∈ (TopMnd ∩ LMod)
∧ 𝐹 ∈ TopRing)
↔ ((𝑊 ∈ TopMnd
∧ 𝑊 ∈ LMod) ∧
𝐹 ∈
TopRing)) | 
| 5 | 2, 4 | bitr4i 278 | . . 3
⊢ ((𝑊 ∈ TopMnd ∧ 𝑊 ∈ LMod ∧ 𝐹 ∈ TopRing) ↔ (𝑊 ∈ (TopMnd ∩ LMod)
∧ 𝐹 ∈
TopRing)) | 
| 6 | 5 | anbi1i 624 | . 2
⊢ (((𝑊 ∈ TopMnd ∧ 𝑊 ∈ LMod ∧ 𝐹 ∈ TopRing) ∧ · ∈
((𝐾 ×t
𝐽) Cn 𝐽)) ↔ ((𝑊 ∈ (TopMnd ∩ LMod) ∧ 𝐹 ∈ TopRing) ∧ · ∈
((𝐾 ×t
𝐽) Cn 𝐽))) | 
| 7 |  | fveq2 6906 | . . . . . 6
⊢ (𝑤 = 𝑊 → (Scalar‘𝑤) = (Scalar‘𝑊)) | 
| 8 |  | istlm.f | . . . . . 6
⊢ 𝐹 = (Scalar‘𝑊) | 
| 9 | 7, 8 | eqtr4di 2795 | . . . . 5
⊢ (𝑤 = 𝑊 → (Scalar‘𝑤) = 𝐹) | 
| 10 | 9 | eleq1d 2826 | . . . 4
⊢ (𝑤 = 𝑊 → ((Scalar‘𝑤) ∈ TopRing ↔ 𝐹 ∈ TopRing)) | 
| 11 |  | fveq2 6906 | . . . . . 6
⊢ (𝑤 = 𝑊 → (
·sf ‘𝑤) = ( ·sf
‘𝑊)) | 
| 12 |  | istlm.s | . . . . . 6
⊢  · = (
·sf ‘𝑊) | 
| 13 | 11, 12 | eqtr4di 2795 | . . . . 5
⊢ (𝑤 = 𝑊 → (
·sf ‘𝑤) = · ) | 
| 14 | 9 | fveq2d 6910 | . . . . . . . 8
⊢ (𝑤 = 𝑊 → (TopOpen‘(Scalar‘𝑤)) = (TopOpen‘𝐹)) | 
| 15 |  | istlm.k | . . . . . . . 8
⊢ 𝐾 = (TopOpen‘𝐹) | 
| 16 | 14, 15 | eqtr4di 2795 | . . . . . . 7
⊢ (𝑤 = 𝑊 → (TopOpen‘(Scalar‘𝑤)) = 𝐾) | 
| 17 |  | fveq2 6906 | . . . . . . . 8
⊢ (𝑤 = 𝑊 → (TopOpen‘𝑤) = (TopOpen‘𝑊)) | 
| 18 |  | istlm.j | . . . . . . . 8
⊢ 𝐽 = (TopOpen‘𝑊) | 
| 19 | 17, 18 | eqtr4di 2795 | . . . . . . 7
⊢ (𝑤 = 𝑊 → (TopOpen‘𝑤) = 𝐽) | 
| 20 | 16, 19 | oveq12d 7449 | . . . . . 6
⊢ (𝑤 = 𝑊 → ((TopOpen‘(Scalar‘𝑤)) ×t
(TopOpen‘𝑤)) = (𝐾 ×t 𝐽)) | 
| 21 | 20, 19 | oveq12d 7449 | . . . . 5
⊢ (𝑤 = 𝑊 → (((TopOpen‘(Scalar‘𝑤)) ×t
(TopOpen‘𝑤)) Cn
(TopOpen‘𝑤)) =
((𝐾 ×t
𝐽) Cn 𝐽)) | 
| 22 | 13, 21 | eleq12d 2835 | . . . 4
⊢ (𝑤 = 𝑊 → ((
·sf ‘𝑤) ∈ (((TopOpen‘(Scalar‘𝑤)) ×t
(TopOpen‘𝑤)) Cn
(TopOpen‘𝑤)) ↔
·
∈ ((𝐾
×t 𝐽) Cn
𝐽))) | 
| 23 | 10, 22 | anbi12d 632 | . . 3
⊢ (𝑤 = 𝑊 → (((Scalar‘𝑤) ∈ TopRing ∧ (
·sf ‘𝑤) ∈ (((TopOpen‘(Scalar‘𝑤)) ×t
(TopOpen‘𝑤)) Cn
(TopOpen‘𝑤))) ↔
(𝐹 ∈ TopRing ∧
·
∈ ((𝐾
×t 𝐽) Cn
𝐽)))) | 
| 24 |  | df-tlm 24170 | . . 3
⊢ TopMod =
{𝑤 ∈ (TopMnd ∩
LMod) ∣ ((Scalar‘𝑤) ∈ TopRing ∧ (
·sf ‘𝑤) ∈ (((TopOpen‘(Scalar‘𝑤)) ×t
(TopOpen‘𝑤)) Cn
(TopOpen‘𝑤)))} | 
| 25 | 23, 24 | elrab2 3695 | . 2
⊢ (𝑊 ∈ TopMod ↔ (𝑊 ∈ (TopMnd ∩ LMod)
∧ (𝐹 ∈ TopRing
∧ · ∈ ((𝐾 ×t 𝐽) Cn 𝐽)))) | 
| 26 | 1, 6, 25 | 3bitr4ri 304 | 1
⊢ (𝑊 ∈ TopMod ↔ ((𝑊 ∈ TopMnd ∧ 𝑊 ∈ LMod ∧ 𝐹 ∈ TopRing) ∧ · ∈
((𝐾 ×t
𝐽) Cn 𝐽))) |