MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  istlm Structured version   Visualization version   GIF version

Theorem istlm 23036
Description: The predicate "𝑊 is a topological left module". (Contributed by Mario Carneiro, 5-Oct-2015.)
Hypotheses
Ref Expression
istlm.s · = ( ·sf𝑊)
istlm.j 𝐽 = (TopOpen‘𝑊)
istlm.f 𝐹 = (Scalar‘𝑊)
istlm.k 𝐾 = (TopOpen‘𝐹)
Assertion
Ref Expression
istlm (𝑊 ∈ TopMod ↔ ((𝑊 ∈ TopMnd ∧ 𝑊 ∈ LMod ∧ 𝐹 ∈ TopRing) ∧ · ∈ ((𝐾 ×t 𝐽) Cn 𝐽)))

Proof of Theorem istlm
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 anass 472 . 2 (((𝑊 ∈ (TopMnd ∩ LMod) ∧ 𝐹 ∈ TopRing) ∧ · ∈ ((𝐾 ×t 𝐽) Cn 𝐽)) ↔ (𝑊 ∈ (TopMnd ∩ LMod) ∧ (𝐹 ∈ TopRing ∧ · ∈ ((𝐾 ×t 𝐽) Cn 𝐽))))
2 df-3an 1091 . . . 4 ((𝑊 ∈ TopMnd ∧ 𝑊 ∈ LMod ∧ 𝐹 ∈ TopRing) ↔ ((𝑊 ∈ TopMnd ∧ 𝑊 ∈ LMod) ∧ 𝐹 ∈ TopRing))
3 elin 3869 . . . . 5 (𝑊 ∈ (TopMnd ∩ LMod) ↔ (𝑊 ∈ TopMnd ∧ 𝑊 ∈ LMod))
43anbi1i 627 . . . 4 ((𝑊 ∈ (TopMnd ∩ LMod) ∧ 𝐹 ∈ TopRing) ↔ ((𝑊 ∈ TopMnd ∧ 𝑊 ∈ LMod) ∧ 𝐹 ∈ TopRing))
52, 4bitr4i 281 . . 3 ((𝑊 ∈ TopMnd ∧ 𝑊 ∈ LMod ∧ 𝐹 ∈ TopRing) ↔ (𝑊 ∈ (TopMnd ∩ LMod) ∧ 𝐹 ∈ TopRing))
65anbi1i 627 . 2 (((𝑊 ∈ TopMnd ∧ 𝑊 ∈ LMod ∧ 𝐹 ∈ TopRing) ∧ · ∈ ((𝐾 ×t 𝐽) Cn 𝐽)) ↔ ((𝑊 ∈ (TopMnd ∩ LMod) ∧ 𝐹 ∈ TopRing) ∧ · ∈ ((𝐾 ×t 𝐽) Cn 𝐽)))
7 fveq2 6695 . . . . . 6 (𝑤 = 𝑊 → (Scalar‘𝑤) = (Scalar‘𝑊))
8 istlm.f . . . . . 6 𝐹 = (Scalar‘𝑊)
97, 8eqtr4di 2789 . . . . 5 (𝑤 = 𝑊 → (Scalar‘𝑤) = 𝐹)
109eleq1d 2815 . . . 4 (𝑤 = 𝑊 → ((Scalar‘𝑤) ∈ TopRing ↔ 𝐹 ∈ TopRing))
11 fveq2 6695 . . . . . 6 (𝑤 = 𝑊 → ( ·sf𝑤) = ( ·sf𝑊))
12 istlm.s . . . . . 6 · = ( ·sf𝑊)
1311, 12eqtr4di 2789 . . . . 5 (𝑤 = 𝑊 → ( ·sf𝑤) = · )
149fveq2d 6699 . . . . . . . 8 (𝑤 = 𝑊 → (TopOpen‘(Scalar‘𝑤)) = (TopOpen‘𝐹))
15 istlm.k . . . . . . . 8 𝐾 = (TopOpen‘𝐹)
1614, 15eqtr4di 2789 . . . . . . 7 (𝑤 = 𝑊 → (TopOpen‘(Scalar‘𝑤)) = 𝐾)
17 fveq2 6695 . . . . . . . 8 (𝑤 = 𝑊 → (TopOpen‘𝑤) = (TopOpen‘𝑊))
18 istlm.j . . . . . . . 8 𝐽 = (TopOpen‘𝑊)
1917, 18eqtr4di 2789 . . . . . . 7 (𝑤 = 𝑊 → (TopOpen‘𝑤) = 𝐽)
2016, 19oveq12d 7209 . . . . . 6 (𝑤 = 𝑊 → ((TopOpen‘(Scalar‘𝑤)) ×t (TopOpen‘𝑤)) = (𝐾 ×t 𝐽))
2120, 19oveq12d 7209 . . . . 5 (𝑤 = 𝑊 → (((TopOpen‘(Scalar‘𝑤)) ×t (TopOpen‘𝑤)) Cn (TopOpen‘𝑤)) = ((𝐾 ×t 𝐽) Cn 𝐽))
2213, 21eleq12d 2825 . . . 4 (𝑤 = 𝑊 → (( ·sf𝑤) ∈ (((TopOpen‘(Scalar‘𝑤)) ×t (TopOpen‘𝑤)) Cn (TopOpen‘𝑤)) ↔ · ∈ ((𝐾 ×t 𝐽) Cn 𝐽)))
2310, 22anbi12d 634 . . 3 (𝑤 = 𝑊 → (((Scalar‘𝑤) ∈ TopRing ∧ ( ·sf𝑤) ∈ (((TopOpen‘(Scalar‘𝑤)) ×t (TopOpen‘𝑤)) Cn (TopOpen‘𝑤))) ↔ (𝐹 ∈ TopRing ∧ · ∈ ((𝐾 ×t 𝐽) Cn 𝐽))))
24 df-tlm 23013 . . 3 TopMod = {𝑤 ∈ (TopMnd ∩ LMod) ∣ ((Scalar‘𝑤) ∈ TopRing ∧ ( ·sf𝑤) ∈ (((TopOpen‘(Scalar‘𝑤)) ×t (TopOpen‘𝑤)) Cn (TopOpen‘𝑤)))}
2523, 24elrab2 3594 . 2 (𝑊 ∈ TopMod ↔ (𝑊 ∈ (TopMnd ∩ LMod) ∧ (𝐹 ∈ TopRing ∧ · ∈ ((𝐾 ×t 𝐽) Cn 𝐽))))
261, 6, 253bitr4ri 307 1 (𝑊 ∈ TopMod ↔ ((𝑊 ∈ TopMnd ∧ 𝑊 ∈ LMod ∧ 𝐹 ∈ TopRing) ∧ · ∈ ((𝐾 ×t 𝐽) Cn 𝐽)))
Colors of variables: wff setvar class
Syntax hints:  wb 209  wa 399  w3a 1089   = wceq 1543  wcel 2112  cin 3852  cfv 6358  (class class class)co 7191  Scalarcsca 16752  TopOpenctopn 16880  LModclmod 19853   ·sf cscaf 19854   Cn ccn 22075   ×t ctx 22411  TopMndctmd 22921  TopRingctrg 23007  TopModctlm 23009
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-ext 2708
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-sb 2073  df-clab 2715  df-cleq 2728  df-clel 2809  df-rab 3060  df-v 3400  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-nul 4224  df-if 4426  df-sn 4528  df-pr 4530  df-op 4534  df-uni 4806  df-br 5040  df-iota 6316  df-fv 6366  df-ov 7194  df-tlm 23013
This theorem is referenced by:  vscacn  23037  tlmtmd  23038  tlmlmod  23040  tlmtrg  23041  nlmtlm  23546
  Copyright terms: Public domain W3C validator