MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  istlm Structured version   Visualization version   GIF version

Theorem istlm 23336
Description: The predicate "𝑊 is a topological left module". (Contributed by Mario Carneiro, 5-Oct-2015.)
Hypotheses
Ref Expression
istlm.s · = ( ·sf𝑊)
istlm.j 𝐽 = (TopOpen‘𝑊)
istlm.f 𝐹 = (Scalar‘𝑊)
istlm.k 𝐾 = (TopOpen‘𝐹)
Assertion
Ref Expression
istlm (𝑊 ∈ TopMod ↔ ((𝑊 ∈ TopMnd ∧ 𝑊 ∈ LMod ∧ 𝐹 ∈ TopRing) ∧ · ∈ ((𝐾 ×t 𝐽) Cn 𝐽)))

Proof of Theorem istlm
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 anass 469 . 2 (((𝑊 ∈ (TopMnd ∩ LMod) ∧ 𝐹 ∈ TopRing) ∧ · ∈ ((𝐾 ×t 𝐽) Cn 𝐽)) ↔ (𝑊 ∈ (TopMnd ∩ LMod) ∧ (𝐹 ∈ TopRing ∧ · ∈ ((𝐾 ×t 𝐽) Cn 𝐽))))
2 df-3an 1088 . . . 4 ((𝑊 ∈ TopMnd ∧ 𝑊 ∈ LMod ∧ 𝐹 ∈ TopRing) ↔ ((𝑊 ∈ TopMnd ∧ 𝑊 ∈ LMod) ∧ 𝐹 ∈ TopRing))
3 elin 3903 . . . . 5 (𝑊 ∈ (TopMnd ∩ LMod) ↔ (𝑊 ∈ TopMnd ∧ 𝑊 ∈ LMod))
43anbi1i 624 . . . 4 ((𝑊 ∈ (TopMnd ∩ LMod) ∧ 𝐹 ∈ TopRing) ↔ ((𝑊 ∈ TopMnd ∧ 𝑊 ∈ LMod) ∧ 𝐹 ∈ TopRing))
52, 4bitr4i 277 . . 3 ((𝑊 ∈ TopMnd ∧ 𝑊 ∈ LMod ∧ 𝐹 ∈ TopRing) ↔ (𝑊 ∈ (TopMnd ∩ LMod) ∧ 𝐹 ∈ TopRing))
65anbi1i 624 . 2 (((𝑊 ∈ TopMnd ∧ 𝑊 ∈ LMod ∧ 𝐹 ∈ TopRing) ∧ · ∈ ((𝐾 ×t 𝐽) Cn 𝐽)) ↔ ((𝑊 ∈ (TopMnd ∩ LMod) ∧ 𝐹 ∈ TopRing) ∧ · ∈ ((𝐾 ×t 𝐽) Cn 𝐽)))
7 fveq2 6774 . . . . . 6 (𝑤 = 𝑊 → (Scalar‘𝑤) = (Scalar‘𝑊))
8 istlm.f . . . . . 6 𝐹 = (Scalar‘𝑊)
97, 8eqtr4di 2796 . . . . 5 (𝑤 = 𝑊 → (Scalar‘𝑤) = 𝐹)
109eleq1d 2823 . . . 4 (𝑤 = 𝑊 → ((Scalar‘𝑤) ∈ TopRing ↔ 𝐹 ∈ TopRing))
11 fveq2 6774 . . . . . 6 (𝑤 = 𝑊 → ( ·sf𝑤) = ( ·sf𝑊))
12 istlm.s . . . . . 6 · = ( ·sf𝑊)
1311, 12eqtr4di 2796 . . . . 5 (𝑤 = 𝑊 → ( ·sf𝑤) = · )
149fveq2d 6778 . . . . . . . 8 (𝑤 = 𝑊 → (TopOpen‘(Scalar‘𝑤)) = (TopOpen‘𝐹))
15 istlm.k . . . . . . . 8 𝐾 = (TopOpen‘𝐹)
1614, 15eqtr4di 2796 . . . . . . 7 (𝑤 = 𝑊 → (TopOpen‘(Scalar‘𝑤)) = 𝐾)
17 fveq2 6774 . . . . . . . 8 (𝑤 = 𝑊 → (TopOpen‘𝑤) = (TopOpen‘𝑊))
18 istlm.j . . . . . . . 8 𝐽 = (TopOpen‘𝑊)
1917, 18eqtr4di 2796 . . . . . . 7 (𝑤 = 𝑊 → (TopOpen‘𝑤) = 𝐽)
2016, 19oveq12d 7293 . . . . . 6 (𝑤 = 𝑊 → ((TopOpen‘(Scalar‘𝑤)) ×t (TopOpen‘𝑤)) = (𝐾 ×t 𝐽))
2120, 19oveq12d 7293 . . . . 5 (𝑤 = 𝑊 → (((TopOpen‘(Scalar‘𝑤)) ×t (TopOpen‘𝑤)) Cn (TopOpen‘𝑤)) = ((𝐾 ×t 𝐽) Cn 𝐽))
2213, 21eleq12d 2833 . . . 4 (𝑤 = 𝑊 → (( ·sf𝑤) ∈ (((TopOpen‘(Scalar‘𝑤)) ×t (TopOpen‘𝑤)) Cn (TopOpen‘𝑤)) ↔ · ∈ ((𝐾 ×t 𝐽) Cn 𝐽)))
2310, 22anbi12d 631 . . 3 (𝑤 = 𝑊 → (((Scalar‘𝑤) ∈ TopRing ∧ ( ·sf𝑤) ∈ (((TopOpen‘(Scalar‘𝑤)) ×t (TopOpen‘𝑤)) Cn (TopOpen‘𝑤))) ↔ (𝐹 ∈ TopRing ∧ · ∈ ((𝐾 ×t 𝐽) Cn 𝐽))))
24 df-tlm 23313 . . 3 TopMod = {𝑤 ∈ (TopMnd ∩ LMod) ∣ ((Scalar‘𝑤) ∈ TopRing ∧ ( ·sf𝑤) ∈ (((TopOpen‘(Scalar‘𝑤)) ×t (TopOpen‘𝑤)) Cn (TopOpen‘𝑤)))}
2523, 24elrab2 3627 . 2 (𝑊 ∈ TopMod ↔ (𝑊 ∈ (TopMnd ∩ LMod) ∧ (𝐹 ∈ TopRing ∧ · ∈ ((𝐾 ×t 𝐽) Cn 𝐽))))
261, 6, 253bitr4ri 304 1 (𝑊 ∈ TopMod ↔ ((𝑊 ∈ TopMnd ∧ 𝑊 ∈ LMod ∧ 𝐹 ∈ TopRing) ∧ · ∈ ((𝐾 ×t 𝐽) Cn 𝐽)))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  cin 3886  cfv 6433  (class class class)co 7275  Scalarcsca 16965  TopOpenctopn 17132  LModclmod 20123   ·sf cscaf 20124   Cn ccn 22375   ×t ctx 22711  TopMndctmd 23221  TopRingctrg 23307  TopModctlm 23309
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-iota 6391  df-fv 6441  df-ov 7278  df-tlm 23313
This theorem is referenced by:  vscacn  23337  tlmtmd  23338  tlmlmod  23340  tlmtrg  23341  nlmtlm  23858
  Copyright terms: Public domain W3C validator