| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-tdrg | Structured version Visualization version GIF version | ||
| Description: Define a topological division ring (which differs from a topological field only in being potentially noncommutative), which is a division ring and topological ring such that the unit group of the division ring (which is the set of nonzero elements) is a topological group. (Contributed by Mario Carneiro, 5-Oct-2015.) |
| Ref | Expression |
|---|---|
| df-tdrg | ⊢ TopDRing = {𝑟 ∈ (TopRing ∩ DivRing) ∣ ((mulGrp‘𝑟) ↾s (Unit‘𝑟)) ∈ TopGrp} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ctdrg 24095 | . 2 class TopDRing | |
| 2 | vr | . . . . . . 7 setvar 𝑟 | |
| 3 | 2 | cv 1539 | . . . . . 6 class 𝑟 |
| 4 | cmgp 20100 | . . . . . 6 class mulGrp | |
| 5 | 3, 4 | cfv 6531 | . . . . 5 class (mulGrp‘𝑟) |
| 6 | cui 20315 | . . . . . 6 class Unit | |
| 7 | 3, 6 | cfv 6531 | . . . . 5 class (Unit‘𝑟) |
| 8 | cress 17251 | . . . . 5 class ↾s | |
| 9 | 5, 7, 8 | co 7405 | . . . 4 class ((mulGrp‘𝑟) ↾s (Unit‘𝑟)) |
| 10 | ctgp 24009 | . . . 4 class TopGrp | |
| 11 | 9, 10 | wcel 2108 | . . 3 wff ((mulGrp‘𝑟) ↾s (Unit‘𝑟)) ∈ TopGrp |
| 12 | ctrg 24094 | . . . 4 class TopRing | |
| 13 | cdr 20689 | . . . 4 class DivRing | |
| 14 | 12, 13 | cin 3925 | . . 3 class (TopRing ∩ DivRing) |
| 15 | 11, 2, 14 | crab 3415 | . 2 class {𝑟 ∈ (TopRing ∩ DivRing) ∣ ((mulGrp‘𝑟) ↾s (Unit‘𝑟)) ∈ TopGrp} |
| 16 | 1, 15 | wceq 1540 | 1 wff TopDRing = {𝑟 ∈ (TopRing ∩ DivRing) ∣ ((mulGrp‘𝑟) ↾s (Unit‘𝑟)) ∈ TopGrp} |
| Colors of variables: wff setvar class |
| This definition is referenced by: istdrg 24104 |
| Copyright terms: Public domain | W3C validator |