MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-tdrg Structured version   Visualization version   GIF version

Definition df-tdrg 23312
Description: Define a topological division ring (which differs from a topological field only in being potentially noncommutative), which is a division ring and topological ring such that the unit group of the division ring (which is the set of nonzero elements) is a topological group. (Contributed by Mario Carneiro, 5-Oct-2015.)
Assertion
Ref Expression
df-tdrg TopDRing = {𝑟 ∈ (TopRing ∩ DivRing) ∣ ((mulGrp‘𝑟) ↾s (Unit‘𝑟)) ∈ TopGrp}

Detailed syntax breakdown of Definition df-tdrg
StepHypRef Expression
1 ctdrg 23308 . 2 class TopDRing
2 vr . . . . . . 7 setvar 𝑟
32cv 1538 . . . . . 6 class 𝑟
4 cmgp 19720 . . . . . 6 class mulGrp
53, 4cfv 6433 . . . . 5 class (mulGrp‘𝑟)
6 cui 19881 . . . . . 6 class Unit
73, 6cfv 6433 . . . . 5 class (Unit‘𝑟)
8 cress 16941 . . . . 5 class s
95, 7, 8co 7275 . . . 4 class ((mulGrp‘𝑟) ↾s (Unit‘𝑟))
10 ctgp 23222 . . . 4 class TopGrp
119, 10wcel 2106 . . 3 wff ((mulGrp‘𝑟) ↾s (Unit‘𝑟)) ∈ TopGrp
12 ctrg 23307 . . . 4 class TopRing
13 cdr 19991 . . . 4 class DivRing
1412, 13cin 3886 . . 3 class (TopRing ∩ DivRing)
1511, 2, 14crab 3068 . 2 class {𝑟 ∈ (TopRing ∩ DivRing) ∣ ((mulGrp‘𝑟) ↾s (Unit‘𝑟)) ∈ TopGrp}
161, 15wceq 1539 1 wff TopDRing = {𝑟 ∈ (TopRing ∩ DivRing) ∣ ((mulGrp‘𝑟) ↾s (Unit‘𝑟)) ∈ TopGrp}
Colors of variables: wff setvar class
This definition is referenced by:  istdrg  23317
  Copyright terms: Public domain W3C validator