Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > df-tdrg | Structured version Visualization version GIF version |
Description: Define a topological division ring (which differs from a topological field only in being potentially noncommutative), which is a division ring and topological ring such that the unit group of the division ring (which is the set of nonzero elements) is a topological group. (Contributed by Mario Carneiro, 5-Oct-2015.) |
Ref | Expression |
---|---|
df-tdrg | ⊢ TopDRing = {𝑟 ∈ (TopRing ∩ DivRing) ∣ ((mulGrp‘𝑟) ↾s (Unit‘𝑟)) ∈ TopGrp} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ctdrg 23216 | . 2 class TopDRing | |
2 | vr | . . . . . . 7 setvar 𝑟 | |
3 | 2 | cv 1538 | . . . . . 6 class 𝑟 |
4 | cmgp 19635 | . . . . . 6 class mulGrp | |
5 | 3, 4 | cfv 6418 | . . . . 5 class (mulGrp‘𝑟) |
6 | cui 19796 | . . . . . 6 class Unit | |
7 | 3, 6 | cfv 6418 | . . . . 5 class (Unit‘𝑟) |
8 | cress 16867 | . . . . 5 class ↾s | |
9 | 5, 7, 8 | co 7255 | . . . 4 class ((mulGrp‘𝑟) ↾s (Unit‘𝑟)) |
10 | ctgp 23130 | . . . 4 class TopGrp | |
11 | 9, 10 | wcel 2108 | . . 3 wff ((mulGrp‘𝑟) ↾s (Unit‘𝑟)) ∈ TopGrp |
12 | ctrg 23215 | . . . 4 class TopRing | |
13 | cdr 19906 | . . . 4 class DivRing | |
14 | 12, 13 | cin 3882 | . . 3 class (TopRing ∩ DivRing) |
15 | 11, 2, 14 | crab 3067 | . 2 class {𝑟 ∈ (TopRing ∩ DivRing) ∣ ((mulGrp‘𝑟) ↾s (Unit‘𝑟)) ∈ TopGrp} |
16 | 1, 15 | wceq 1539 | 1 wff TopDRing = {𝑟 ∈ (TopRing ∩ DivRing) ∣ ((mulGrp‘𝑟) ↾s (Unit‘𝑟)) ∈ TopGrp} |
Colors of variables: wff setvar class |
This definition is referenced by: istdrg 23225 |
Copyright terms: Public domain | W3C validator |