MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-tmd Structured version   Visualization version   GIF version

Definition df-tmd 23131
Description: Define the class of all topological monoids. A topological monoid is a monoid whose operation is continuous. (Contributed by Mario Carneiro, 19-Sep-2015.)
Assertion
Ref Expression
df-tmd TopMnd = {𝑓 ∈ (Mnd ∩ TopSp) ∣ [(TopOpen‘𝑓) / 𝑗](+𝑓𝑓) ∈ ((𝑗 ×t 𝑗) Cn 𝑗)}
Distinct variable group:   𝑓,𝑗

Detailed syntax breakdown of Definition df-tmd
StepHypRef Expression
1 ctmd 23129 . 2 class TopMnd
2 vf . . . . . . 7 setvar 𝑓
32cv 1538 . . . . . 6 class 𝑓
4 cplusf 18238 . . . . . 6 class +𝑓
53, 4cfv 6418 . . . . 5 class (+𝑓𝑓)
6 vj . . . . . . . 8 setvar 𝑗
76cv 1538 . . . . . . 7 class 𝑗
8 ctx 22619 . . . . . . 7 class ×t
97, 7, 8co 7255 . . . . . 6 class (𝑗 ×t 𝑗)
10 ccn 22283 . . . . . 6 class Cn
119, 7, 10co 7255 . . . . 5 class ((𝑗 ×t 𝑗) Cn 𝑗)
125, 11wcel 2108 . . . 4 wff (+𝑓𝑓) ∈ ((𝑗 ×t 𝑗) Cn 𝑗)
13 ctopn 17049 . . . . 5 class TopOpen
143, 13cfv 6418 . . . 4 class (TopOpen‘𝑓)
1512, 6, 14wsbc 3711 . . 3 wff [(TopOpen‘𝑓) / 𝑗](+𝑓𝑓) ∈ ((𝑗 ×t 𝑗) Cn 𝑗)
16 cmnd 18300 . . . 4 class Mnd
17 ctps 21989 . . . 4 class TopSp
1816, 17cin 3882 . . 3 class (Mnd ∩ TopSp)
1915, 2, 18crab 3067 . 2 class {𝑓 ∈ (Mnd ∩ TopSp) ∣ [(TopOpen‘𝑓) / 𝑗](+𝑓𝑓) ∈ ((𝑗 ×t 𝑗) Cn 𝑗)}
201, 19wceq 1539 1 wff TopMnd = {𝑓 ∈ (Mnd ∩ TopSp) ∣ [(TopOpen‘𝑓) / 𝑗](+𝑓𝑓) ∈ ((𝑗 ×t 𝑗) Cn 𝑗)}
Colors of variables: wff setvar class
This definition is referenced by:  istmd  23133
  Copyright terms: Public domain W3C validator