Detailed syntax breakdown of Definition df-tgp
| Step | Hyp | Ref
| Expression |
| 1 | | ctgp 24079 |
. 2
class
TopGrp |
| 2 | | vf |
. . . . . . 7
setvar 𝑓 |
| 3 | 2 | cv 1539 |
. . . . . 6
class 𝑓 |
| 4 | | cminusg 18952 |
. . . . . 6
class
invg |
| 5 | 3, 4 | cfv 6561 |
. . . . 5
class
(invg‘𝑓) |
| 6 | | vj |
. . . . . . 7
setvar 𝑗 |
| 7 | 6 | cv 1539 |
. . . . . 6
class 𝑗 |
| 8 | | ccn 23232 |
. . . . . 6
class
Cn |
| 9 | 7, 7, 8 | co 7431 |
. . . . 5
class (𝑗 Cn 𝑗) |
| 10 | 5, 9 | wcel 2108 |
. . . 4
wff
(invg‘𝑓) ∈ (𝑗 Cn 𝑗) |
| 11 | | ctopn 17466 |
. . . . 5
class
TopOpen |
| 12 | 3, 11 | cfv 6561 |
. . . 4
class
(TopOpen‘𝑓) |
| 13 | 10, 6, 12 | wsbc 3788 |
. . 3
wff
[(TopOpen‘𝑓) / 𝑗](invg‘𝑓) ∈ (𝑗 Cn 𝑗) |
| 14 | | cgrp 18951 |
. . . 4
class
Grp |
| 15 | | ctmd 24078 |
. . . 4
class
TopMnd |
| 16 | 14, 15 | cin 3950 |
. . 3
class (Grp
∩ TopMnd) |
| 17 | 13, 2, 16 | crab 3436 |
. 2
class {𝑓 ∈ (Grp ∩ TopMnd)
∣ [(TopOpen‘𝑓) / 𝑗](invg‘𝑓) ∈ (𝑗 Cn 𝑗)} |
| 18 | 1, 17 | wceq 1540 |
1
wff TopGrp =
{𝑓 ∈ (Grp ∩
TopMnd) ∣ [(TopOpen‘𝑓) / 𝑗](invg‘𝑓) ∈ (𝑗 Cn 𝑗)} |