MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-tgp Structured version   Visualization version   GIF version

Definition df-tgp 23132
Description: Define the class of all topological groups. A topological group is a group whose operation and inverse function are continuous. (Contributed by FL, 18-Apr-2010.)
Assertion
Ref Expression
df-tgp TopGrp = {𝑓 ∈ (Grp ∩ TopMnd) ∣ [(TopOpen‘𝑓) / 𝑗](invg𝑓) ∈ (𝑗 Cn 𝑗)}
Distinct variable group:   𝑓,𝑗

Detailed syntax breakdown of Definition df-tgp
StepHypRef Expression
1 ctgp 23130 . 2 class TopGrp
2 vf . . . . . . 7 setvar 𝑓
32cv 1538 . . . . . 6 class 𝑓
4 cminusg 18493 . . . . . 6 class invg
53, 4cfv 6418 . . . . 5 class (invg𝑓)
6 vj . . . . . . 7 setvar 𝑗
76cv 1538 . . . . . 6 class 𝑗
8 ccn 22283 . . . . . 6 class Cn
97, 7, 8co 7255 . . . . 5 class (𝑗 Cn 𝑗)
105, 9wcel 2108 . . . 4 wff (invg𝑓) ∈ (𝑗 Cn 𝑗)
11 ctopn 17049 . . . . 5 class TopOpen
123, 11cfv 6418 . . . 4 class (TopOpen‘𝑓)
1310, 6, 12wsbc 3711 . . 3 wff [(TopOpen‘𝑓) / 𝑗](invg𝑓) ∈ (𝑗 Cn 𝑗)
14 cgrp 18492 . . . 4 class Grp
15 ctmd 23129 . . . 4 class TopMnd
1614, 15cin 3882 . . 3 class (Grp ∩ TopMnd)
1713, 2, 16crab 3067 . 2 class {𝑓 ∈ (Grp ∩ TopMnd) ∣ [(TopOpen‘𝑓) / 𝑗](invg𝑓) ∈ (𝑗 Cn 𝑗)}
181, 17wceq 1539 1 wff TopGrp = {𝑓 ∈ (Grp ∩ TopMnd) ∣ [(TopOpen‘𝑓) / 𝑗](invg𝑓) ∈ (𝑗 Cn 𝑗)}
Colors of variables: wff setvar class
This definition is referenced by:  istgp  23136
  Copyright terms: Public domain W3C validator