Detailed syntax breakdown of Definition df-tgp
Step | Hyp | Ref
| Expression |
1 | | ctgp 23130 |
. 2
class
TopGrp |
2 | | vf |
. . . . . . 7
setvar 𝑓 |
3 | 2 | cv 1538 |
. . . . . 6
class 𝑓 |
4 | | cminusg 18493 |
. . . . . 6
class
invg |
5 | 3, 4 | cfv 6418 |
. . . . 5
class
(invg‘𝑓) |
6 | | vj |
. . . . . . 7
setvar 𝑗 |
7 | 6 | cv 1538 |
. . . . . 6
class 𝑗 |
8 | | ccn 22283 |
. . . . . 6
class
Cn |
9 | 7, 7, 8 | co 7255 |
. . . . 5
class (𝑗 Cn 𝑗) |
10 | 5, 9 | wcel 2108 |
. . . 4
wff
(invg‘𝑓) ∈ (𝑗 Cn 𝑗) |
11 | | ctopn 17049 |
. . . . 5
class
TopOpen |
12 | 3, 11 | cfv 6418 |
. . . 4
class
(TopOpen‘𝑓) |
13 | 10, 6, 12 | wsbc 3711 |
. . 3
wff
[(TopOpen‘𝑓) / 𝑗](invg‘𝑓) ∈ (𝑗 Cn 𝑗) |
14 | | cgrp 18492 |
. . . 4
class
Grp |
15 | | ctmd 23129 |
. . . 4
class
TopMnd |
16 | 14, 15 | cin 3882 |
. . 3
class (Grp
∩ TopMnd) |
17 | 13, 2, 16 | crab 3067 |
. 2
class {𝑓 ∈ (Grp ∩ TopMnd)
∣ [(TopOpen‘𝑓) / 𝑗](invg‘𝑓) ∈ (𝑗 Cn 𝑗)} |
18 | 1, 17 | wceq 1539 |
1
wff TopGrp =
{𝑓 ∈ (Grp ∩
TopMnd) ∣ [(TopOpen‘𝑓) / 𝑗](invg‘𝑓) ∈ (𝑗 Cn 𝑗)} |