![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > istmd | Structured version Visualization version GIF version |
Description: The predicate "is a topological monoid". (Contributed by Mario Carneiro, 19-Sep-2015.) |
Ref | Expression |
---|---|
istmd.1 | ⊢ 𝐹 = (+𝑓‘𝐺) |
istmd.2 | ⊢ 𝐽 = (TopOpen‘𝐺) |
Ref | Expression |
---|---|
istmd | ⊢ (𝐺 ∈ TopMnd ↔ (𝐺 ∈ Mnd ∧ 𝐺 ∈ TopSp ∧ 𝐹 ∈ ((𝐽 ×t 𝐽) Cn 𝐽))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elin 4023 | . . 3 ⊢ (𝐺 ∈ (Mnd ∩ TopSp) ↔ (𝐺 ∈ Mnd ∧ 𝐺 ∈ TopSp)) | |
2 | 1 | anbi1i 619 | . 2 ⊢ ((𝐺 ∈ (Mnd ∩ TopSp) ∧ 𝐹 ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) ↔ ((𝐺 ∈ Mnd ∧ 𝐺 ∈ TopSp) ∧ 𝐹 ∈ ((𝐽 ×t 𝐽) Cn 𝐽))) |
3 | fvexd 6448 | . . . 4 ⊢ (𝑓 = 𝐺 → (TopOpen‘𝑓) ∈ V) | |
4 | simpl 476 | . . . . . . 7 ⊢ ((𝑓 = 𝐺 ∧ 𝑗 = (TopOpen‘𝑓)) → 𝑓 = 𝐺) | |
5 | 4 | fveq2d 6437 | . . . . . 6 ⊢ ((𝑓 = 𝐺 ∧ 𝑗 = (TopOpen‘𝑓)) → (+𝑓‘𝑓) = (+𝑓‘𝐺)) |
6 | istmd.1 | . . . . . 6 ⊢ 𝐹 = (+𝑓‘𝐺) | |
7 | 5, 6 | syl6eqr 2879 | . . . . 5 ⊢ ((𝑓 = 𝐺 ∧ 𝑗 = (TopOpen‘𝑓)) → (+𝑓‘𝑓) = 𝐹) |
8 | id 22 | . . . . . . . 8 ⊢ (𝑗 = (TopOpen‘𝑓) → 𝑗 = (TopOpen‘𝑓)) | |
9 | fveq2 6433 | . . . . . . . . 9 ⊢ (𝑓 = 𝐺 → (TopOpen‘𝑓) = (TopOpen‘𝐺)) | |
10 | istmd.2 | . . . . . . . . 9 ⊢ 𝐽 = (TopOpen‘𝐺) | |
11 | 9, 10 | syl6eqr 2879 | . . . . . . . 8 ⊢ (𝑓 = 𝐺 → (TopOpen‘𝑓) = 𝐽) |
12 | 8, 11 | sylan9eqr 2883 | . . . . . . 7 ⊢ ((𝑓 = 𝐺 ∧ 𝑗 = (TopOpen‘𝑓)) → 𝑗 = 𝐽) |
13 | 12, 12 | oveq12d 6923 | . . . . . 6 ⊢ ((𝑓 = 𝐺 ∧ 𝑗 = (TopOpen‘𝑓)) → (𝑗 ×t 𝑗) = (𝐽 ×t 𝐽)) |
14 | 13, 12 | oveq12d 6923 | . . . . 5 ⊢ ((𝑓 = 𝐺 ∧ 𝑗 = (TopOpen‘𝑓)) → ((𝑗 ×t 𝑗) Cn 𝑗) = ((𝐽 ×t 𝐽) Cn 𝐽)) |
15 | 7, 14 | eleq12d 2900 | . . . 4 ⊢ ((𝑓 = 𝐺 ∧ 𝑗 = (TopOpen‘𝑓)) → ((+𝑓‘𝑓) ∈ ((𝑗 ×t 𝑗) Cn 𝑗) ↔ 𝐹 ∈ ((𝐽 ×t 𝐽) Cn 𝐽))) |
16 | 3, 15 | sbcied 3699 | . . 3 ⊢ (𝑓 = 𝐺 → ([(TopOpen‘𝑓) / 𝑗](+𝑓‘𝑓) ∈ ((𝑗 ×t 𝑗) Cn 𝑗) ↔ 𝐹 ∈ ((𝐽 ×t 𝐽) Cn 𝐽))) |
17 | df-tmd 22246 | . . 3 ⊢ TopMnd = {𝑓 ∈ (Mnd ∩ TopSp) ∣ [(TopOpen‘𝑓) / 𝑗](+𝑓‘𝑓) ∈ ((𝑗 ×t 𝑗) Cn 𝑗)} | |
18 | 16, 17 | elrab2 3589 | . 2 ⊢ (𝐺 ∈ TopMnd ↔ (𝐺 ∈ (Mnd ∩ TopSp) ∧ 𝐹 ∈ ((𝐽 ×t 𝐽) Cn 𝐽))) |
19 | df-3an 1115 | . 2 ⊢ ((𝐺 ∈ Mnd ∧ 𝐺 ∈ TopSp ∧ 𝐹 ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) ↔ ((𝐺 ∈ Mnd ∧ 𝐺 ∈ TopSp) ∧ 𝐹 ∈ ((𝐽 ×t 𝐽) Cn 𝐽))) | |
20 | 2, 18, 19 | 3bitr4i 295 | 1 ⊢ (𝐺 ∈ TopMnd ↔ (𝐺 ∈ Mnd ∧ 𝐺 ∈ TopSp ∧ 𝐹 ∈ ((𝐽 ×t 𝐽) Cn 𝐽))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 198 ∧ wa 386 ∧ w3a 1113 = wceq 1658 ∈ wcel 2166 Vcvv 3414 [wsbc 3662 ∩ cin 3797 ‘cfv 6123 (class class class)co 6905 TopOpenctopn 16435 +𝑓cplusf 17592 Mndcmnd 17647 TopSpctps 21107 Cn ccn 21399 ×t ctx 21734 TopMndctmd 22244 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2391 ax-ext 2803 ax-nul 5013 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3an 1115 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ral 3122 df-rex 3123 df-rab 3126 df-v 3416 df-sbc 3663 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-nul 4145 df-if 4307 df-sn 4398 df-pr 4400 df-op 4404 df-uni 4659 df-br 4874 df-iota 6086 df-fv 6131 df-ov 6908 df-tmd 22246 |
This theorem is referenced by: tmdmnd 22249 tmdtps 22250 tmdcn 22257 istgp2 22265 oppgtmd 22271 symgtgp 22275 submtmd 22278 prdstmdd 22297 nrgtrg 22864 mhmhmeotmd 30518 xrge0tmdOLD 30536 |
Copyright terms: Public domain | W3C validator |