MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  istmd Structured version   Visualization version   GIF version

Theorem istmd 23236
Description: The predicate "is a topological monoid". (Contributed by Mario Carneiro, 19-Sep-2015.)
Hypotheses
Ref Expression
istmd.1 𝐹 = (+𝑓𝐺)
istmd.2 𝐽 = (TopOpen‘𝐺)
Assertion
Ref Expression
istmd (𝐺 ∈ TopMnd ↔ (𝐺 ∈ Mnd ∧ 𝐺 ∈ TopSp ∧ 𝐹 ∈ ((𝐽 ×t 𝐽) Cn 𝐽)))

Proof of Theorem istmd
Dummy variables 𝑓 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elin 3908 . . 3 (𝐺 ∈ (Mnd ∩ TopSp) ↔ (𝐺 ∈ Mnd ∧ 𝐺 ∈ TopSp))
21anbi1i 624 . 2 ((𝐺 ∈ (Mnd ∩ TopSp) ∧ 𝐹 ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) ↔ ((𝐺 ∈ Mnd ∧ 𝐺 ∈ TopSp) ∧ 𝐹 ∈ ((𝐽 ×t 𝐽) Cn 𝐽)))
3 fvexd 6786 . . . 4 (𝑓 = 𝐺 → (TopOpen‘𝑓) ∈ V)
4 simpl 483 . . . . . . 7 ((𝑓 = 𝐺𝑗 = (TopOpen‘𝑓)) → 𝑓 = 𝐺)
54fveq2d 6775 . . . . . 6 ((𝑓 = 𝐺𝑗 = (TopOpen‘𝑓)) → (+𝑓𝑓) = (+𝑓𝐺))
6 istmd.1 . . . . . 6 𝐹 = (+𝑓𝐺)
75, 6eqtr4di 2798 . . . . 5 ((𝑓 = 𝐺𝑗 = (TopOpen‘𝑓)) → (+𝑓𝑓) = 𝐹)
8 id 22 . . . . . . . 8 (𝑗 = (TopOpen‘𝑓) → 𝑗 = (TopOpen‘𝑓))
9 fveq2 6771 . . . . . . . . 9 (𝑓 = 𝐺 → (TopOpen‘𝑓) = (TopOpen‘𝐺))
10 istmd.2 . . . . . . . . 9 𝐽 = (TopOpen‘𝐺)
119, 10eqtr4di 2798 . . . . . . . 8 (𝑓 = 𝐺 → (TopOpen‘𝑓) = 𝐽)
128, 11sylan9eqr 2802 . . . . . . 7 ((𝑓 = 𝐺𝑗 = (TopOpen‘𝑓)) → 𝑗 = 𝐽)
1312, 12oveq12d 7290 . . . . . 6 ((𝑓 = 𝐺𝑗 = (TopOpen‘𝑓)) → (𝑗 ×t 𝑗) = (𝐽 ×t 𝐽))
1413, 12oveq12d 7290 . . . . 5 ((𝑓 = 𝐺𝑗 = (TopOpen‘𝑓)) → ((𝑗 ×t 𝑗) Cn 𝑗) = ((𝐽 ×t 𝐽) Cn 𝐽))
157, 14eleq12d 2835 . . . 4 ((𝑓 = 𝐺𝑗 = (TopOpen‘𝑓)) → ((+𝑓𝑓) ∈ ((𝑗 ×t 𝑗) Cn 𝑗) ↔ 𝐹 ∈ ((𝐽 ×t 𝐽) Cn 𝐽)))
163, 15sbcied 3765 . . 3 (𝑓 = 𝐺 → ([(TopOpen‘𝑓) / 𝑗](+𝑓𝑓) ∈ ((𝑗 ×t 𝑗) Cn 𝑗) ↔ 𝐹 ∈ ((𝐽 ×t 𝐽) Cn 𝐽)))
17 df-tmd 23234 . . 3 TopMnd = {𝑓 ∈ (Mnd ∩ TopSp) ∣ [(TopOpen‘𝑓) / 𝑗](+𝑓𝑓) ∈ ((𝑗 ×t 𝑗) Cn 𝑗)}
1816, 17elrab2 3629 . 2 (𝐺 ∈ TopMnd ↔ (𝐺 ∈ (Mnd ∩ TopSp) ∧ 𝐹 ∈ ((𝐽 ×t 𝐽) Cn 𝐽)))
19 df-3an 1088 . 2 ((𝐺 ∈ Mnd ∧ 𝐺 ∈ TopSp ∧ 𝐹 ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) ↔ ((𝐺 ∈ Mnd ∧ 𝐺 ∈ TopSp) ∧ 𝐹 ∈ ((𝐽 ×t 𝐽) Cn 𝐽)))
202, 18, 193bitr4i 303 1 (𝐺 ∈ TopMnd ↔ (𝐺 ∈ Mnd ∧ 𝐺 ∈ TopSp ∧ 𝐹 ∈ ((𝐽 ×t 𝐽) Cn 𝐽)))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396  w3a 1086   = wceq 1542  wcel 2110  Vcvv 3431  [wsbc 3720  cin 3891  cfv 6432  (class class class)co 7272  TopOpenctopn 17143  +𝑓cplusf 18334  Mndcmnd 18396  TopSpctps 22092   Cn ccn 22386   ×t ctx 22722  TopMndctmd 23232
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-nul 5234
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-ral 3071  df-rex 3072  df-rab 3075  df-v 3433  df-sbc 3721  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-br 5080  df-iota 6390  df-fv 6440  df-ov 7275  df-tmd 23234
This theorem is referenced by:  tmdmnd  23237  tmdtps  23238  tmdcn  23245  istgp2  23253  oppgtmd  23259  efmndtmd  23263  submtmd  23266  prdstmdd  23286  nrgtrg  23865  mhmhmeotmd  31886  xrge0tmdALT  31905
  Copyright terms: Public domain W3C validator