MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  istmd Structured version   Visualization version   GIF version

Theorem istmd 24008
Description: The predicate "is a topological monoid". (Contributed by Mario Carneiro, 19-Sep-2015.)
Hypotheses
Ref Expression
istmd.1 𝐹 = (+π‘“β€˜πΊ)
istmd.2 𝐽 = (TopOpenβ€˜πΊ)
Assertion
Ref Expression
istmd (𝐺 ∈ TopMnd ↔ (𝐺 ∈ Mnd ∧ 𝐺 ∈ TopSp ∧ 𝐹 ∈ ((𝐽 Γ—t 𝐽) Cn 𝐽)))

Proof of Theorem istmd
Dummy variables 𝑓 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elin 3961 . . 3 (𝐺 ∈ (Mnd ∩ TopSp) ↔ (𝐺 ∈ Mnd ∧ 𝐺 ∈ TopSp))
21anbi1i 622 . 2 ((𝐺 ∈ (Mnd ∩ TopSp) ∧ 𝐹 ∈ ((𝐽 Γ—t 𝐽) Cn 𝐽)) ↔ ((𝐺 ∈ Mnd ∧ 𝐺 ∈ TopSp) ∧ 𝐹 ∈ ((𝐽 Γ—t 𝐽) Cn 𝐽)))
3 fvexd 6909 . . . 4 (𝑓 = 𝐺 β†’ (TopOpenβ€˜π‘“) ∈ V)
4 simpl 481 . . . . . . 7 ((𝑓 = 𝐺 ∧ 𝑗 = (TopOpenβ€˜π‘“)) β†’ 𝑓 = 𝐺)
54fveq2d 6898 . . . . . 6 ((𝑓 = 𝐺 ∧ 𝑗 = (TopOpenβ€˜π‘“)) β†’ (+π‘“β€˜π‘“) = (+π‘“β€˜πΊ))
6 istmd.1 . . . . . 6 𝐹 = (+π‘“β€˜πΊ)
75, 6eqtr4di 2783 . . . . 5 ((𝑓 = 𝐺 ∧ 𝑗 = (TopOpenβ€˜π‘“)) β†’ (+π‘“β€˜π‘“) = 𝐹)
8 id 22 . . . . . . . 8 (𝑗 = (TopOpenβ€˜π‘“) β†’ 𝑗 = (TopOpenβ€˜π‘“))
9 fveq2 6894 . . . . . . . . 9 (𝑓 = 𝐺 β†’ (TopOpenβ€˜π‘“) = (TopOpenβ€˜πΊ))
10 istmd.2 . . . . . . . . 9 𝐽 = (TopOpenβ€˜πΊ)
119, 10eqtr4di 2783 . . . . . . . 8 (𝑓 = 𝐺 β†’ (TopOpenβ€˜π‘“) = 𝐽)
128, 11sylan9eqr 2787 . . . . . . 7 ((𝑓 = 𝐺 ∧ 𝑗 = (TopOpenβ€˜π‘“)) β†’ 𝑗 = 𝐽)
1312, 12oveq12d 7435 . . . . . 6 ((𝑓 = 𝐺 ∧ 𝑗 = (TopOpenβ€˜π‘“)) β†’ (𝑗 Γ—t 𝑗) = (𝐽 Γ—t 𝐽))
1413, 12oveq12d 7435 . . . . 5 ((𝑓 = 𝐺 ∧ 𝑗 = (TopOpenβ€˜π‘“)) β†’ ((𝑗 Γ—t 𝑗) Cn 𝑗) = ((𝐽 Γ—t 𝐽) Cn 𝐽))
157, 14eleq12d 2819 . . . 4 ((𝑓 = 𝐺 ∧ 𝑗 = (TopOpenβ€˜π‘“)) β†’ ((+π‘“β€˜π‘“) ∈ ((𝑗 Γ—t 𝑗) Cn 𝑗) ↔ 𝐹 ∈ ((𝐽 Γ—t 𝐽) Cn 𝐽)))
163, 15sbcied 3820 . . 3 (𝑓 = 𝐺 β†’ ([(TopOpenβ€˜π‘“) / 𝑗](+π‘“β€˜π‘“) ∈ ((𝑗 Γ—t 𝑗) Cn 𝑗) ↔ 𝐹 ∈ ((𝐽 Γ—t 𝐽) Cn 𝐽)))
17 df-tmd 24006 . . 3 TopMnd = {𝑓 ∈ (Mnd ∩ TopSp) ∣ [(TopOpenβ€˜π‘“) / 𝑗](+π‘“β€˜π‘“) ∈ ((𝑗 Γ—t 𝑗) Cn 𝑗)}
1816, 17elrab2 3683 . 2 (𝐺 ∈ TopMnd ↔ (𝐺 ∈ (Mnd ∩ TopSp) ∧ 𝐹 ∈ ((𝐽 Γ—t 𝐽) Cn 𝐽)))
19 df-3an 1086 . 2 ((𝐺 ∈ Mnd ∧ 𝐺 ∈ TopSp ∧ 𝐹 ∈ ((𝐽 Γ—t 𝐽) Cn 𝐽)) ↔ ((𝐺 ∈ Mnd ∧ 𝐺 ∈ TopSp) ∧ 𝐹 ∈ ((𝐽 Γ—t 𝐽) Cn 𝐽)))
202, 18, 193bitr4i 302 1 (𝐺 ∈ TopMnd ↔ (𝐺 ∈ Mnd ∧ 𝐺 ∈ TopSp ∧ 𝐹 ∈ ((𝐽 Γ—t 𝐽) Cn 𝐽)))
Colors of variables: wff setvar class
Syntax hints:   ↔ wb 205   ∧ wa 394   ∧ w3a 1084   = wceq 1533   ∈ wcel 2098  Vcvv 3463  [wsbc 3774   ∩ cin 3944  β€˜cfv 6547  (class class class)co 7417  TopOpenctopn 17402  +𝑓cplusf 18596  Mndcmnd 18693  TopSpctps 22864   Cn ccn 23158   Γ—t ctx 23494  TopMndctmd 24004
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2696  ax-nul 5306
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2703  df-cleq 2717  df-clel 2802  df-ne 2931  df-rab 3420  df-v 3465  df-sbc 3775  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-br 5149  df-iota 6499  df-fv 6555  df-ov 7420  df-tmd 24006
This theorem is referenced by:  tmdmnd  24009  tmdtps  24010  tmdcn  24017  istgp2  24025  oppgtmd  24031  efmndtmd  24035  submtmd  24038  prdstmdd  24058  nrgtrg  24637  mhmhmeotmd  33598  xrge0tmdALT  33617
  Copyright terms: Public domain W3C validator