MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  istmd Structured version   Visualization version   GIF version

Theorem istmd 23987
Description: The predicate "is a topological monoid". (Contributed by Mario Carneiro, 19-Sep-2015.)
Hypotheses
Ref Expression
istmd.1 𝐹 = (+𝑓𝐺)
istmd.2 𝐽 = (TopOpen‘𝐺)
Assertion
Ref Expression
istmd (𝐺 ∈ TopMnd ↔ (𝐺 ∈ Mnd ∧ 𝐺 ∈ TopSp ∧ 𝐹 ∈ ((𝐽 ×t 𝐽) Cn 𝐽)))

Proof of Theorem istmd
Dummy variables 𝑓 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elin 3918 . . 3 (𝐺 ∈ (Mnd ∩ TopSp) ↔ (𝐺 ∈ Mnd ∧ 𝐺 ∈ TopSp))
21anbi1i 624 . 2 ((𝐺 ∈ (Mnd ∩ TopSp) ∧ 𝐹 ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) ↔ ((𝐺 ∈ Mnd ∧ 𝐺 ∈ TopSp) ∧ 𝐹 ∈ ((𝐽 ×t 𝐽) Cn 𝐽)))
3 fvexd 6837 . . . 4 (𝑓 = 𝐺 → (TopOpen‘𝑓) ∈ V)
4 simpl 482 . . . . . . 7 ((𝑓 = 𝐺𝑗 = (TopOpen‘𝑓)) → 𝑓 = 𝐺)
54fveq2d 6826 . . . . . 6 ((𝑓 = 𝐺𝑗 = (TopOpen‘𝑓)) → (+𝑓𝑓) = (+𝑓𝐺))
6 istmd.1 . . . . . 6 𝐹 = (+𝑓𝐺)
75, 6eqtr4di 2784 . . . . 5 ((𝑓 = 𝐺𝑗 = (TopOpen‘𝑓)) → (+𝑓𝑓) = 𝐹)
8 id 22 . . . . . . . 8 (𝑗 = (TopOpen‘𝑓) → 𝑗 = (TopOpen‘𝑓))
9 fveq2 6822 . . . . . . . . 9 (𝑓 = 𝐺 → (TopOpen‘𝑓) = (TopOpen‘𝐺))
10 istmd.2 . . . . . . . . 9 𝐽 = (TopOpen‘𝐺)
119, 10eqtr4di 2784 . . . . . . . 8 (𝑓 = 𝐺 → (TopOpen‘𝑓) = 𝐽)
128, 11sylan9eqr 2788 . . . . . . 7 ((𝑓 = 𝐺𝑗 = (TopOpen‘𝑓)) → 𝑗 = 𝐽)
1312, 12oveq12d 7364 . . . . . 6 ((𝑓 = 𝐺𝑗 = (TopOpen‘𝑓)) → (𝑗 ×t 𝑗) = (𝐽 ×t 𝐽))
1413, 12oveq12d 7364 . . . . 5 ((𝑓 = 𝐺𝑗 = (TopOpen‘𝑓)) → ((𝑗 ×t 𝑗) Cn 𝑗) = ((𝐽 ×t 𝐽) Cn 𝐽))
157, 14eleq12d 2825 . . . 4 ((𝑓 = 𝐺𝑗 = (TopOpen‘𝑓)) → ((+𝑓𝑓) ∈ ((𝑗 ×t 𝑗) Cn 𝑗) ↔ 𝐹 ∈ ((𝐽 ×t 𝐽) Cn 𝐽)))
163, 15sbcied 3785 . . 3 (𝑓 = 𝐺 → ([(TopOpen‘𝑓) / 𝑗](+𝑓𝑓) ∈ ((𝑗 ×t 𝑗) Cn 𝑗) ↔ 𝐹 ∈ ((𝐽 ×t 𝐽) Cn 𝐽)))
17 df-tmd 23985 . . 3 TopMnd = {𝑓 ∈ (Mnd ∩ TopSp) ∣ [(TopOpen‘𝑓) / 𝑗](+𝑓𝑓) ∈ ((𝑗 ×t 𝑗) Cn 𝑗)}
1816, 17elrab2 3650 . 2 (𝐺 ∈ TopMnd ↔ (𝐺 ∈ (Mnd ∩ TopSp) ∧ 𝐹 ∈ ((𝐽 ×t 𝐽) Cn 𝐽)))
19 df-3an 1088 . 2 ((𝐺 ∈ Mnd ∧ 𝐺 ∈ TopSp ∧ 𝐹 ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) ↔ ((𝐺 ∈ Mnd ∧ 𝐺 ∈ TopSp) ∧ 𝐹 ∈ ((𝐽 ×t 𝐽) Cn 𝐽)))
202, 18, 193bitr4i 303 1 (𝐺 ∈ TopMnd ↔ (𝐺 ∈ Mnd ∧ 𝐺 ∈ TopSp ∧ 𝐹 ∈ ((𝐽 ×t 𝐽) Cn 𝐽)))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  Vcvv 3436  [wsbc 3741  cin 3901  cfv 6481  (class class class)co 7346  TopOpenctopn 17322  +𝑓cplusf 18542  Mndcmnd 18639  TopSpctps 22845   Cn ccn 23137   ×t ctx 23473  TopMndctmd 23983
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-nul 5244
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-rab 3396  df-v 3438  df-sbc 3742  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-iota 6437  df-fv 6489  df-ov 7349  df-tmd 23985
This theorem is referenced by:  tmdmnd  23988  tmdtps  23989  tmdcn  23996  istgp2  24004  oppgtmd  24010  efmndtmd  24014  submtmd  24017  prdstmdd  24037  nrgtrg  24603  mhmhmeotmd  33935  xrge0tmdALT  33954
  Copyright terms: Public domain W3C validator