Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > istmd | Structured version Visualization version GIF version |
Description: The predicate "is a topological monoid". (Contributed by Mario Carneiro, 19-Sep-2015.) |
Ref | Expression |
---|---|
istmd.1 | ⊢ 𝐹 = (+𝑓‘𝐺) |
istmd.2 | ⊢ 𝐽 = (TopOpen‘𝐺) |
Ref | Expression |
---|---|
istmd | ⊢ (𝐺 ∈ TopMnd ↔ (𝐺 ∈ Mnd ∧ 𝐺 ∈ TopSp ∧ 𝐹 ∈ ((𝐽 ×t 𝐽) Cn 𝐽))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elin 3908 | . . 3 ⊢ (𝐺 ∈ (Mnd ∩ TopSp) ↔ (𝐺 ∈ Mnd ∧ 𝐺 ∈ TopSp)) | |
2 | 1 | anbi1i 624 | . 2 ⊢ ((𝐺 ∈ (Mnd ∩ TopSp) ∧ 𝐹 ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) ↔ ((𝐺 ∈ Mnd ∧ 𝐺 ∈ TopSp) ∧ 𝐹 ∈ ((𝐽 ×t 𝐽) Cn 𝐽))) |
3 | fvexd 6786 | . . . 4 ⊢ (𝑓 = 𝐺 → (TopOpen‘𝑓) ∈ V) | |
4 | simpl 483 | . . . . . . 7 ⊢ ((𝑓 = 𝐺 ∧ 𝑗 = (TopOpen‘𝑓)) → 𝑓 = 𝐺) | |
5 | 4 | fveq2d 6775 | . . . . . 6 ⊢ ((𝑓 = 𝐺 ∧ 𝑗 = (TopOpen‘𝑓)) → (+𝑓‘𝑓) = (+𝑓‘𝐺)) |
6 | istmd.1 | . . . . . 6 ⊢ 𝐹 = (+𝑓‘𝐺) | |
7 | 5, 6 | eqtr4di 2798 | . . . . 5 ⊢ ((𝑓 = 𝐺 ∧ 𝑗 = (TopOpen‘𝑓)) → (+𝑓‘𝑓) = 𝐹) |
8 | id 22 | . . . . . . . 8 ⊢ (𝑗 = (TopOpen‘𝑓) → 𝑗 = (TopOpen‘𝑓)) | |
9 | fveq2 6771 | . . . . . . . . 9 ⊢ (𝑓 = 𝐺 → (TopOpen‘𝑓) = (TopOpen‘𝐺)) | |
10 | istmd.2 | . . . . . . . . 9 ⊢ 𝐽 = (TopOpen‘𝐺) | |
11 | 9, 10 | eqtr4di 2798 | . . . . . . . 8 ⊢ (𝑓 = 𝐺 → (TopOpen‘𝑓) = 𝐽) |
12 | 8, 11 | sylan9eqr 2802 | . . . . . . 7 ⊢ ((𝑓 = 𝐺 ∧ 𝑗 = (TopOpen‘𝑓)) → 𝑗 = 𝐽) |
13 | 12, 12 | oveq12d 7290 | . . . . . 6 ⊢ ((𝑓 = 𝐺 ∧ 𝑗 = (TopOpen‘𝑓)) → (𝑗 ×t 𝑗) = (𝐽 ×t 𝐽)) |
14 | 13, 12 | oveq12d 7290 | . . . . 5 ⊢ ((𝑓 = 𝐺 ∧ 𝑗 = (TopOpen‘𝑓)) → ((𝑗 ×t 𝑗) Cn 𝑗) = ((𝐽 ×t 𝐽) Cn 𝐽)) |
15 | 7, 14 | eleq12d 2835 | . . . 4 ⊢ ((𝑓 = 𝐺 ∧ 𝑗 = (TopOpen‘𝑓)) → ((+𝑓‘𝑓) ∈ ((𝑗 ×t 𝑗) Cn 𝑗) ↔ 𝐹 ∈ ((𝐽 ×t 𝐽) Cn 𝐽))) |
16 | 3, 15 | sbcied 3765 | . . 3 ⊢ (𝑓 = 𝐺 → ([(TopOpen‘𝑓) / 𝑗](+𝑓‘𝑓) ∈ ((𝑗 ×t 𝑗) Cn 𝑗) ↔ 𝐹 ∈ ((𝐽 ×t 𝐽) Cn 𝐽))) |
17 | df-tmd 23234 | . . 3 ⊢ TopMnd = {𝑓 ∈ (Mnd ∩ TopSp) ∣ [(TopOpen‘𝑓) / 𝑗](+𝑓‘𝑓) ∈ ((𝑗 ×t 𝑗) Cn 𝑗)} | |
18 | 16, 17 | elrab2 3629 | . 2 ⊢ (𝐺 ∈ TopMnd ↔ (𝐺 ∈ (Mnd ∩ TopSp) ∧ 𝐹 ∈ ((𝐽 ×t 𝐽) Cn 𝐽))) |
19 | df-3an 1088 | . 2 ⊢ ((𝐺 ∈ Mnd ∧ 𝐺 ∈ TopSp ∧ 𝐹 ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) ↔ ((𝐺 ∈ Mnd ∧ 𝐺 ∈ TopSp) ∧ 𝐹 ∈ ((𝐽 ×t 𝐽) Cn 𝐽))) | |
20 | 2, 18, 19 | 3bitr4i 303 | 1 ⊢ (𝐺 ∈ TopMnd ↔ (𝐺 ∈ Mnd ∧ 𝐺 ∈ TopSp ∧ 𝐹 ∈ ((𝐽 ×t 𝐽) Cn 𝐽))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 ∧ w3a 1086 = wceq 1542 ∈ wcel 2110 Vcvv 3431 [wsbc 3720 ∩ cin 3891 ‘cfv 6432 (class class class)co 7272 TopOpenctopn 17143 +𝑓cplusf 18334 Mndcmnd 18396 TopSpctps 22092 Cn ccn 22386 ×t ctx 22722 TopMndctmd 23232 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-nul 5234 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-ral 3071 df-rex 3072 df-rab 3075 df-v 3433 df-sbc 3721 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-br 5080 df-iota 6390 df-fv 6440 df-ov 7275 df-tmd 23234 |
This theorem is referenced by: tmdmnd 23237 tmdtps 23238 tmdcn 23245 istgp2 23253 oppgtmd 23259 efmndtmd 23263 submtmd 23266 prdstmdd 23286 nrgtrg 23865 mhmhmeotmd 31886 xrge0tmdALT 31905 |
Copyright terms: Public domain | W3C validator |