MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  istmd Structured version   Visualization version   GIF version

Theorem istmd 23133
Description: The predicate "is a topological monoid". (Contributed by Mario Carneiro, 19-Sep-2015.)
Hypotheses
Ref Expression
istmd.1 𝐹 = (+𝑓𝐺)
istmd.2 𝐽 = (TopOpen‘𝐺)
Assertion
Ref Expression
istmd (𝐺 ∈ TopMnd ↔ (𝐺 ∈ Mnd ∧ 𝐺 ∈ TopSp ∧ 𝐹 ∈ ((𝐽 ×t 𝐽) Cn 𝐽)))

Proof of Theorem istmd
Dummy variables 𝑓 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elin 3899 . . 3 (𝐺 ∈ (Mnd ∩ TopSp) ↔ (𝐺 ∈ Mnd ∧ 𝐺 ∈ TopSp))
21anbi1i 623 . 2 ((𝐺 ∈ (Mnd ∩ TopSp) ∧ 𝐹 ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) ↔ ((𝐺 ∈ Mnd ∧ 𝐺 ∈ TopSp) ∧ 𝐹 ∈ ((𝐽 ×t 𝐽) Cn 𝐽)))
3 fvexd 6771 . . . 4 (𝑓 = 𝐺 → (TopOpen‘𝑓) ∈ V)
4 simpl 482 . . . . . . 7 ((𝑓 = 𝐺𝑗 = (TopOpen‘𝑓)) → 𝑓 = 𝐺)
54fveq2d 6760 . . . . . 6 ((𝑓 = 𝐺𝑗 = (TopOpen‘𝑓)) → (+𝑓𝑓) = (+𝑓𝐺))
6 istmd.1 . . . . . 6 𝐹 = (+𝑓𝐺)
75, 6eqtr4di 2797 . . . . 5 ((𝑓 = 𝐺𝑗 = (TopOpen‘𝑓)) → (+𝑓𝑓) = 𝐹)
8 id 22 . . . . . . . 8 (𝑗 = (TopOpen‘𝑓) → 𝑗 = (TopOpen‘𝑓))
9 fveq2 6756 . . . . . . . . 9 (𝑓 = 𝐺 → (TopOpen‘𝑓) = (TopOpen‘𝐺))
10 istmd.2 . . . . . . . . 9 𝐽 = (TopOpen‘𝐺)
119, 10eqtr4di 2797 . . . . . . . 8 (𝑓 = 𝐺 → (TopOpen‘𝑓) = 𝐽)
128, 11sylan9eqr 2801 . . . . . . 7 ((𝑓 = 𝐺𝑗 = (TopOpen‘𝑓)) → 𝑗 = 𝐽)
1312, 12oveq12d 7273 . . . . . 6 ((𝑓 = 𝐺𝑗 = (TopOpen‘𝑓)) → (𝑗 ×t 𝑗) = (𝐽 ×t 𝐽))
1413, 12oveq12d 7273 . . . . 5 ((𝑓 = 𝐺𝑗 = (TopOpen‘𝑓)) → ((𝑗 ×t 𝑗) Cn 𝑗) = ((𝐽 ×t 𝐽) Cn 𝐽))
157, 14eleq12d 2833 . . . 4 ((𝑓 = 𝐺𝑗 = (TopOpen‘𝑓)) → ((+𝑓𝑓) ∈ ((𝑗 ×t 𝑗) Cn 𝑗) ↔ 𝐹 ∈ ((𝐽 ×t 𝐽) Cn 𝐽)))
163, 15sbcied 3756 . . 3 (𝑓 = 𝐺 → ([(TopOpen‘𝑓) / 𝑗](+𝑓𝑓) ∈ ((𝑗 ×t 𝑗) Cn 𝑗) ↔ 𝐹 ∈ ((𝐽 ×t 𝐽) Cn 𝐽)))
17 df-tmd 23131 . . 3 TopMnd = {𝑓 ∈ (Mnd ∩ TopSp) ∣ [(TopOpen‘𝑓) / 𝑗](+𝑓𝑓) ∈ ((𝑗 ×t 𝑗) Cn 𝑗)}
1816, 17elrab2 3620 . 2 (𝐺 ∈ TopMnd ↔ (𝐺 ∈ (Mnd ∩ TopSp) ∧ 𝐹 ∈ ((𝐽 ×t 𝐽) Cn 𝐽)))
19 df-3an 1087 . 2 ((𝐺 ∈ Mnd ∧ 𝐺 ∈ TopSp ∧ 𝐹 ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) ↔ ((𝐺 ∈ Mnd ∧ 𝐺 ∈ TopSp) ∧ 𝐹 ∈ ((𝐽 ×t 𝐽) Cn 𝐽)))
202, 18, 193bitr4i 302 1 (𝐺 ∈ TopMnd ↔ (𝐺 ∈ Mnd ∧ 𝐺 ∈ TopSp ∧ 𝐹 ∈ ((𝐽 ×t 𝐽) Cn 𝐽)))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  Vcvv 3422  [wsbc 3711  cin 3882  cfv 6418  (class class class)co 7255  TopOpenctopn 17049  +𝑓cplusf 18238  Mndcmnd 18300  TopSpctps 21989   Cn ccn 22283   ×t ctx 22619  TopMndctmd 23129
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-nul 5225
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-iota 6376  df-fv 6426  df-ov 7258  df-tmd 23131
This theorem is referenced by:  tmdmnd  23134  tmdtps  23135  tmdcn  23142  istgp2  23150  oppgtmd  23156  efmndtmd  23160  submtmd  23163  prdstmdd  23183  nrgtrg  23760  mhmhmeotmd  31779  xrge0tmdALT  31798
  Copyright terms: Public domain W3C validator