Home | Metamath
Proof Explorer Theorem List (p. 240 of 466) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | Metamath Proof Explorer
(1-29289) |
Hilbert Space Explorer
(29290-30812) |
Users' Mathboxes
(30813-46532) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | nmoi 23901 | The operator norm achieves the minimum of the set of upper bounds, if the operator is bounded. (Contributed by Mario Carneiro, 18-Oct-2015.) |
⊢ 𝑁 = (𝑆 normOp 𝑇) & ⊢ 𝑉 = (Base‘𝑆) & ⊢ 𝐿 = (norm‘𝑆) & ⊢ 𝑀 = (norm‘𝑇) ⇒ ⊢ ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋 ∈ 𝑉) → (𝑀‘(𝐹‘𝑋)) ≤ ((𝑁‘𝐹) · (𝐿‘𝑋))) | ||
Theorem | nmoix 23902 | The operator norm is a bound on the size of an operator, even when it is infinite (using extended real multiplication). (Contributed by Mario Carneiro, 18-Oct-2015.) |
⊢ 𝑁 = (𝑆 normOp 𝑇) & ⊢ 𝑉 = (Base‘𝑆) & ⊢ 𝐿 = (norm‘𝑆) & ⊢ 𝑀 = (norm‘𝑇) ⇒ ⊢ (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ 𝑋 ∈ 𝑉) → (𝑀‘(𝐹‘𝑋)) ≤ ((𝑁‘𝐹) ·e (𝐿‘𝑋))) | ||
Theorem | nmoi2 23903 | The operator norm is a bound on the growth of a vector under the action of the operator. (Contributed by Mario Carneiro, 19-Oct-2015.) |
⊢ 𝑁 = (𝑆 normOp 𝑇) & ⊢ 𝑉 = (Base‘𝑆) & ⊢ 𝐿 = (norm‘𝑆) & ⊢ 𝑀 = (norm‘𝑇) & ⊢ 0 = (0g‘𝑆) ⇒ ⊢ (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 )) → ((𝑀‘(𝐹‘𝑋)) / (𝐿‘𝑋)) ≤ (𝑁‘𝐹)) | ||
Theorem | nmoleub 23904* | The operator norm, defined as an infimum of upper bounds, can also be defined as a supremum of norms of 𝐹(𝑥) away from zero. (Contributed by Mario Carneiro, 18-Oct-2015.) |
⊢ 𝑁 = (𝑆 normOp 𝑇) & ⊢ 𝑉 = (Base‘𝑆) & ⊢ 𝐿 = (norm‘𝑆) & ⊢ 𝑀 = (norm‘𝑇) & ⊢ 0 = (0g‘𝑆) & ⊢ (𝜑 → 𝑆 ∈ NrmGrp) & ⊢ (𝜑 → 𝑇 ∈ NrmGrp) & ⊢ (𝜑 → 𝐹 ∈ (𝑆 GrpHom 𝑇)) & ⊢ (𝜑 → 𝐴 ∈ ℝ*) & ⊢ (𝜑 → 0 ≤ 𝐴) ⇒ ⊢ (𝜑 → ((𝑁‘𝐹) ≤ 𝐴 ↔ ∀𝑥 ∈ 𝑉 (𝑥 ≠ 0 → ((𝑀‘(𝐹‘𝑥)) / (𝐿‘𝑥)) ≤ 𝐴))) | ||
Theorem | nghmrcl1 23905 | Reverse closure for a normed group homomorphism. (Contributed by Mario Carneiro, 18-Oct-2015.) |
⊢ (𝐹 ∈ (𝑆 NGHom 𝑇) → 𝑆 ∈ NrmGrp) | ||
Theorem | nghmrcl2 23906 | Reverse closure for a normed group homomorphism. (Contributed by Mario Carneiro, 18-Oct-2015.) |
⊢ (𝐹 ∈ (𝑆 NGHom 𝑇) → 𝑇 ∈ NrmGrp) | ||
Theorem | nghmghm 23907 | A normed group homomorphism is a group homomorphism. (Contributed by Mario Carneiro, 18-Oct-2015.) |
⊢ (𝐹 ∈ (𝑆 NGHom 𝑇) → 𝐹 ∈ (𝑆 GrpHom 𝑇)) | ||
Theorem | nmo0 23908 | The operator norm of the zero operator. (Contributed by Mario Carneiro, 20-Oct-2015.) |
⊢ 𝑁 = (𝑆 normOp 𝑇) & ⊢ 𝑉 = (Base‘𝑆) & ⊢ 0 = (0g‘𝑇) ⇒ ⊢ ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) → (𝑁‘(𝑉 × { 0 })) = 0) | ||
Theorem | nmoeq0 23909 | The operator norm is zero only for the zero operator. (Contributed by Mario Carneiro, 20-Oct-2015.) |
⊢ 𝑁 = (𝑆 normOp 𝑇) & ⊢ 𝑉 = (Base‘𝑆) & ⊢ 0 = (0g‘𝑇) ⇒ ⊢ ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) → ((𝑁‘𝐹) = 0 ↔ 𝐹 = (𝑉 × { 0 }))) | ||
Theorem | nmoco 23910 | An upper bound on the operator norm of a composition. (Contributed by Mario Carneiro, 20-Oct-2015.) |
⊢ 𝑁 = (𝑆 normOp 𝑈) & ⊢ 𝐿 = (𝑇 normOp 𝑈) & ⊢ 𝑀 = (𝑆 normOp 𝑇) ⇒ ⊢ ((𝐹 ∈ (𝑇 NGHom 𝑈) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) → (𝑁‘(𝐹 ∘ 𝐺)) ≤ ((𝐿‘𝐹) · (𝑀‘𝐺))) | ||
Theorem | nghmco 23911 | The composition of normed group homomorphisms is a normed group homomorphism. (Contributed by Mario Carneiro, 20-Oct-2015.) |
⊢ ((𝐹 ∈ (𝑇 NGHom 𝑈) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) → (𝐹 ∘ 𝐺) ∈ (𝑆 NGHom 𝑈)) | ||
Theorem | nmotri 23912 | Triangle inequality for the operator norm. (Contributed by Mario Carneiro, 20-Oct-2015.) |
⊢ 𝑁 = (𝑆 normOp 𝑇) & ⊢ + = (+g‘𝑇) ⇒ ⊢ ((𝑇 ∈ Abel ∧ 𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) → (𝑁‘(𝐹 ∘f + 𝐺)) ≤ ((𝑁‘𝐹) + (𝑁‘𝐺))) | ||
Theorem | nghmplusg 23913 | The sum of two bounded linear operators is bounded linear. (Contributed by Mario Carneiro, 20-Oct-2015.) |
⊢ + = (+g‘𝑇) ⇒ ⊢ ((𝑇 ∈ Abel ∧ 𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) → (𝐹 ∘f + 𝐺) ∈ (𝑆 NGHom 𝑇)) | ||
Theorem | 0nghm 23914 | The zero operator is a normed group homomorphism. (Contributed by Mario Carneiro, 18-Oct-2015.) |
⊢ 𝑉 = (Base‘𝑆) & ⊢ 0 = (0g‘𝑇) ⇒ ⊢ ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) → (𝑉 × { 0 }) ∈ (𝑆 NGHom 𝑇)) | ||
Theorem | nmoid 23915 | The operator norm of the identity function on a nontrivial group. (Contributed by Mario Carneiro, 20-Oct-2015.) |
⊢ 𝑁 = (𝑆 normOp 𝑆) & ⊢ 𝑉 = (Base‘𝑆) & ⊢ 0 = (0g‘𝑆) ⇒ ⊢ ((𝑆 ∈ NrmGrp ∧ { 0 } ⊊ 𝑉) → (𝑁‘( I ↾ 𝑉)) = 1) | ||
Theorem | idnghm 23916 | The identity operator is a normed group homomorphism. (Contributed by Mario Carneiro, 18-Oct-2015.) |
⊢ 𝑉 = (Base‘𝑆) ⇒ ⊢ (𝑆 ∈ NrmGrp → ( I ↾ 𝑉) ∈ (𝑆 NGHom 𝑆)) | ||
Theorem | nmods 23917 | Upper bound for the distance between the values of a bounded linear operator. (Contributed by Mario Carneiro, 22-Oct-2015.) |
⊢ 𝑁 = (𝑆 normOp 𝑇) & ⊢ 𝑉 = (Base‘𝑆) & ⊢ 𝐶 = (dist‘𝑆) & ⊢ 𝐷 = (dist‘𝑇) ⇒ ⊢ ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → ((𝐹‘𝐴)𝐷(𝐹‘𝐵)) ≤ ((𝑁‘𝐹) · (𝐴𝐶𝐵))) | ||
Theorem | nghmcn 23918 | A normed group homomorphism is a continuous function. (Contributed by Mario Carneiro, 20-Oct-2015.) |
⊢ 𝐽 = (TopOpen‘𝑆) & ⊢ 𝐾 = (TopOpen‘𝑇) ⇒ ⊢ (𝐹 ∈ (𝑆 NGHom 𝑇) → 𝐹 ∈ (𝐽 Cn 𝐾)) | ||
Theorem | isnmhm 23919 | A normed module homomorphism is a left module homomorphism which is also a normed group homomorphism. (Contributed by Mario Carneiro, 18-Oct-2015.) |
⊢ (𝐹 ∈ (𝑆 NMHom 𝑇) ↔ ((𝑆 ∈ NrmMod ∧ 𝑇 ∈ NrmMod) ∧ (𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐹 ∈ (𝑆 NGHom 𝑇)))) | ||
Theorem | nmhmrcl1 23920 | Reverse closure for a normed module homomorphism. (Contributed by Mario Carneiro, 18-Oct-2015.) |
⊢ (𝐹 ∈ (𝑆 NMHom 𝑇) → 𝑆 ∈ NrmMod) | ||
Theorem | nmhmrcl2 23921 | Reverse closure for a normed module homomorphism. (Contributed by Mario Carneiro, 18-Oct-2015.) |
⊢ (𝐹 ∈ (𝑆 NMHom 𝑇) → 𝑇 ∈ NrmMod) | ||
Theorem | nmhmlmhm 23922 | A normed module homomorphism is a left module homomorphism (a linear operator). (Contributed by Mario Carneiro, 18-Oct-2015.) |
⊢ (𝐹 ∈ (𝑆 NMHom 𝑇) → 𝐹 ∈ (𝑆 LMHom 𝑇)) | ||
Theorem | nmhmnghm 23923 | A normed module homomorphism is a normed group homomorphism. (Contributed by Mario Carneiro, 18-Oct-2015.) |
⊢ (𝐹 ∈ (𝑆 NMHom 𝑇) → 𝐹 ∈ (𝑆 NGHom 𝑇)) | ||
Theorem | nmhmghm 23924 | A normed module homomorphism is a group homomorphism. (Contributed by Mario Carneiro, 18-Oct-2015.) |
⊢ (𝐹 ∈ (𝑆 NMHom 𝑇) → 𝐹 ∈ (𝑆 GrpHom 𝑇)) | ||
Theorem | isnmhm2 23925 | A normed module homomorphism is a left module homomorphism with bounded norm (a bounded linear operator). (Contributed by Mario Carneiro, 18-Oct-2015.) |
⊢ 𝑁 = (𝑆 normOp 𝑇) ⇒ ⊢ ((𝑆 ∈ NrmMod ∧ 𝑇 ∈ NrmMod ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) → (𝐹 ∈ (𝑆 NMHom 𝑇) ↔ (𝑁‘𝐹) ∈ ℝ)) | ||
Theorem | nmhmcl 23926 | A normed module homomorphism has a real operator norm. (Contributed by Mario Carneiro, 18-Oct-2015.) |
⊢ 𝑁 = (𝑆 normOp 𝑇) ⇒ ⊢ (𝐹 ∈ (𝑆 NMHom 𝑇) → (𝑁‘𝐹) ∈ ℝ) | ||
Theorem | idnmhm 23927 | The identity operator is a bounded linear operator. (Contributed by Mario Carneiro, 20-Oct-2015.) |
⊢ 𝑉 = (Base‘𝑆) ⇒ ⊢ (𝑆 ∈ NrmMod → ( I ↾ 𝑉) ∈ (𝑆 NMHom 𝑆)) | ||
Theorem | 0nmhm 23928 | The zero operator is a bounded linear operator. (Contributed by Mario Carneiro, 20-Oct-2015.) |
⊢ 𝑉 = (Base‘𝑆) & ⊢ 0 = (0g‘𝑇) & ⊢ 𝐹 = (Scalar‘𝑆) & ⊢ 𝐺 = (Scalar‘𝑇) ⇒ ⊢ ((𝑆 ∈ NrmMod ∧ 𝑇 ∈ NrmMod ∧ 𝐹 = 𝐺) → (𝑉 × { 0 }) ∈ (𝑆 NMHom 𝑇)) | ||
Theorem | nmhmco 23929 | The composition of bounded linear operators is a bounded linear operator. (Contributed by Mario Carneiro, 20-Oct-2015.) |
⊢ ((𝐹 ∈ (𝑇 NMHom 𝑈) ∧ 𝐺 ∈ (𝑆 NMHom 𝑇)) → (𝐹 ∘ 𝐺) ∈ (𝑆 NMHom 𝑈)) | ||
Theorem | nmhmplusg 23930 | The sum of two bounded linear operators is bounded linear. (Contributed by Mario Carneiro, 20-Oct-2015.) |
⊢ + = (+g‘𝑇) ⇒ ⊢ ((𝐹 ∈ (𝑆 NMHom 𝑇) ∧ 𝐺 ∈ (𝑆 NMHom 𝑇)) → (𝐹 ∘f + 𝐺) ∈ (𝑆 NMHom 𝑇)) | ||
Theorem | qtopbaslem 23931 | The set of open intervals with endpoints in a subset forms a basis for a topology. (Contributed by Mario Carneiro, 17-Jun-2014.) |
⊢ 𝑆 ⊆ ℝ* ⇒ ⊢ ((,) “ (𝑆 × 𝑆)) ∈ TopBases | ||
Theorem | qtopbas 23932 | The set of open intervals with rational endpoints forms a basis for a topology. (Contributed by NM, 8-Mar-2007.) |
⊢ ((,) “ (ℚ × ℚ)) ∈ TopBases | ||
Theorem | retopbas 23933 | A basis for the standard topology on the reals. (Contributed by NM, 6-Feb-2007.) (Proof shortened by Mario Carneiro, 17-Jun-2014.) |
⊢ ran (,) ∈ TopBases | ||
Theorem | retop 23934 | The standard topology on the reals. (Contributed by FL, 4-Jun-2007.) |
⊢ (topGen‘ran (,)) ∈ Top | ||
Theorem | uniretop 23935 | The underlying set of the standard topology on the reals is the reals. (Contributed by FL, 4-Jun-2007.) |
⊢ ℝ = ∪ (topGen‘ran (,)) | ||
Theorem | retopon 23936 | The standard topology on the reals is a topology on the reals. (Contributed by Mario Carneiro, 28-Aug-2015.) |
⊢ (topGen‘ran (,)) ∈ (TopOn‘ℝ) | ||
Theorem | retps 23937 | The standard topological space on the reals. (Contributed by NM, 19-Oct-2012.) |
⊢ 𝐾 = {〈(Base‘ndx), ℝ〉, 〈(TopSet‘ndx), (topGen‘ran (,))〉} ⇒ ⊢ 𝐾 ∈ TopSp | ||
Theorem | iooretop 23938 | Open intervals are open sets of the standard topology on the reals . (Contributed by FL, 18-Jun-2007.) |
⊢ (𝐴(,)𝐵) ∈ (topGen‘ran (,)) | ||
Theorem | icccld 23939 | Closed intervals are closed sets of the standard topology on ℝ. (Contributed by FL, 14-Sep-2007.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ∈ (Clsd‘(topGen‘ran (,)))) | ||
Theorem | icopnfcld 23940 | Right-unbounded closed intervals are closed sets of the standard topology on ℝ. (Contributed by Mario Carneiro, 17-Feb-2015.) |
⊢ (𝐴 ∈ ℝ → (𝐴[,)+∞) ∈ (Clsd‘(topGen‘ran (,)))) | ||
Theorem | iocmnfcld 23941 | Left-unbounded closed intervals are closed sets of the standard topology on ℝ. (Contributed by Mario Carneiro, 17-Feb-2015.) |
⊢ (𝐴 ∈ ℝ → (-∞(,]𝐴) ∈ (Clsd‘(topGen‘ran (,)))) | ||
Theorem | qdensere 23942 | ℚ is dense in the standard topology on ℝ. (Contributed by NM, 1-Mar-2007.) |
⊢ ((cls‘(topGen‘ran (,)))‘ℚ) = ℝ | ||
Theorem | cnmetdval 23943 | Value of the distance function of the metric space of complex numbers. (Contributed by NM, 9-Dec-2006.) (Revised by Mario Carneiro, 27-Dec-2014.) |
⊢ 𝐷 = (abs ∘ − ) ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴𝐷𝐵) = (abs‘(𝐴 − 𝐵))) | ||
Theorem | cnmet 23944 | The absolute value metric determines a metric space on the complex numbers. This theorem provides a link between complex numbers and metrics spaces, making metric space theorems available for use with complex numbers. (Contributed by FL, 9-Oct-2006.) |
⊢ (abs ∘ − ) ∈ (Met‘ℂ) | ||
Theorem | cnxmet 23945 | The absolute value metric is an extended metric. (Contributed by Mario Carneiro, 28-Aug-2015.) |
⊢ (abs ∘ − ) ∈ (∞Met‘ℂ) | ||
Theorem | cnbl0 23946 | Two ways to write the open ball centered at zero. (Contributed by Mario Carneiro, 8-Sep-2015.) |
⊢ 𝐷 = (abs ∘ − ) ⇒ ⊢ (𝑅 ∈ ℝ* → (◡abs “ (0[,)𝑅)) = (0(ball‘𝐷)𝑅)) | ||
Theorem | cnblcld 23947* | Two ways to write the closed ball centered at zero. (Contributed by Mario Carneiro, 8-Sep-2015.) |
⊢ 𝐷 = (abs ∘ − ) ⇒ ⊢ (𝑅 ∈ ℝ* → (◡abs “ (0[,]𝑅)) = {𝑥 ∈ ℂ ∣ (0𝐷𝑥) ≤ 𝑅}) | ||
Theorem | cnfldms 23948 | The complex number field is a metric space. (Contributed by Mario Carneiro, 28-Aug-2015.) |
⊢ ℂfld ∈ MetSp | ||
Theorem | cnfldxms 23949 | The complex number field is a topological space. (Contributed by Mario Carneiro, 28-Aug-2015.) |
⊢ ℂfld ∈ ∞MetSp | ||
Theorem | cnfldtps 23950 | The complex number field is a topological space. (Contributed by Mario Carneiro, 28-Aug-2015.) |
⊢ ℂfld ∈ TopSp | ||
Theorem | cnfldnm 23951 | The norm of the field of complex numbers. (Contributed by Mario Carneiro, 4-Oct-2015.) |
⊢ abs = (norm‘ℂfld) | ||
Theorem | cnngp 23952 | The complex numbers form a normed group. (Contributed by Mario Carneiro, 4-Oct-2015.) |
⊢ ℂfld ∈ NrmGrp | ||
Theorem | cnnrg 23953 | The complex numbers form a normed ring. (Contributed by Mario Carneiro, 4-Oct-2015.) |
⊢ ℂfld ∈ NrmRing | ||
Theorem | cnfldtopn 23954 | The topology of the complex numbers. (Contributed by Mario Carneiro, 28-Aug-2015.) |
⊢ 𝐽 = (TopOpen‘ℂfld) ⇒ ⊢ 𝐽 = (MetOpen‘(abs ∘ − )) | ||
Theorem | cnfldtopon 23955 | The topology of the complex numbers is a topology. (Contributed by Mario Carneiro, 2-Sep-2015.) |
⊢ 𝐽 = (TopOpen‘ℂfld) ⇒ ⊢ 𝐽 ∈ (TopOn‘ℂ) | ||
Theorem | cnfldtop 23956 | The topology of the complex numbers is a topology. (Contributed by Mario Carneiro, 2-Sep-2015.) |
⊢ 𝐽 = (TopOpen‘ℂfld) ⇒ ⊢ 𝐽 ∈ Top | ||
Theorem | cnfldhaus 23957 | The topology of the complex numbers is Hausdorff. (Contributed by Mario Carneiro, 8-Sep-2015.) |
⊢ 𝐽 = (TopOpen‘ℂfld) ⇒ ⊢ 𝐽 ∈ Haus | ||
Theorem | unicntop 23958 | The underlying set of the standard topology on the complex numbers is the set of complex numbers. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ ℂ = ∪ (TopOpen‘ℂfld) | ||
Theorem | cnopn 23959 | The set of complex numbers is open with respect to the standard topology on complex numbers. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ ℂ ∈ (TopOpen‘ℂfld) | ||
Theorem | zringnrg 23960 | The ring of integers is a normed ring. (Contributed by AV, 13-Jun-2019.) |
⊢ ℤring ∈ NrmRing | ||
Theorem | remetdval 23961 | Value of the distance function of the metric space of real numbers. (Contributed by NM, 16-May-2007.) |
⊢ 𝐷 = ((abs ∘ − ) ↾ (ℝ × ℝ)) ⇒ ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴𝐷𝐵) = (abs‘(𝐴 − 𝐵))) | ||
Theorem | remet 23962 | The absolute value metric determines a metric space on the reals. (Contributed by NM, 10-Feb-2007.) |
⊢ 𝐷 = ((abs ∘ − ) ↾ (ℝ × ℝ)) ⇒ ⊢ 𝐷 ∈ (Met‘ℝ) | ||
Theorem | rexmet 23963 | The absolute value metric is an extended metric. (Contributed by Mario Carneiro, 28-Aug-2015.) |
⊢ 𝐷 = ((abs ∘ − ) ↾ (ℝ × ℝ)) ⇒ ⊢ 𝐷 ∈ (∞Met‘ℝ) | ||
Theorem | bl2ioo 23964 | A ball in terms of an open interval of reals. (Contributed by NM, 18-May-2007.) (Revised by Mario Carneiro, 13-Nov-2013.) |
⊢ 𝐷 = ((abs ∘ − ) ↾ (ℝ × ℝ)) ⇒ ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴(ball‘𝐷)𝐵) = ((𝐴 − 𝐵)(,)(𝐴 + 𝐵))) | ||
Theorem | ioo2bl 23965 | An open interval of reals in terms of a ball. (Contributed by NM, 18-May-2007.) (Revised by Mario Carneiro, 28-Aug-2015.) |
⊢ 𝐷 = ((abs ∘ − ) ↾ (ℝ × ℝ)) ⇒ ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴(,)𝐵) = (((𝐴 + 𝐵) / 2)(ball‘𝐷)((𝐵 − 𝐴) / 2))) | ||
Theorem | ioo2blex 23966 | An open interval of reals in terms of a ball. (Contributed by Mario Carneiro, 14-Nov-2013.) |
⊢ 𝐷 = ((abs ∘ − ) ↾ (ℝ × ℝ)) ⇒ ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴(,)𝐵) ∈ ran (ball‘𝐷)) | ||
Theorem | blssioo 23967 | The balls of the standard real metric space are included in the open real intervals. (Contributed by NM, 8-May-2007.) (Revised by Mario Carneiro, 13-Nov-2013.) |
⊢ 𝐷 = ((abs ∘ − ) ↾ (ℝ × ℝ)) ⇒ ⊢ ran (ball‘𝐷) ⊆ ran (,) | ||
Theorem | tgioo 23968 | The topology generated by open intervals of reals is the same as the open sets of the standard metric space on the reals. (Contributed by NM, 7-May-2007.) (Revised by Mario Carneiro, 13-Nov-2013.) |
⊢ 𝐷 = ((abs ∘ − ) ↾ (ℝ × ℝ)) & ⊢ 𝐽 = (MetOpen‘𝐷) ⇒ ⊢ (topGen‘ran (,)) = 𝐽 | ||
Theorem | qdensere2 23969 | ℚ is dense in ℝ. (Contributed by NM, 24-Aug-2007.) |
⊢ 𝐷 = ((abs ∘ − ) ↾ (ℝ × ℝ)) & ⊢ 𝐽 = (MetOpen‘𝐷) ⇒ ⊢ ((cls‘𝐽)‘ℚ) = ℝ | ||
Theorem | blcvx 23970 | An open ball in the complex numbers is a convex set. (Contributed by Mario Carneiro, 12-Feb-2015.) (Revised by Mario Carneiro, 8-Sep-2015.) |
⊢ 𝑆 = (𝑃(ball‘(abs ∘ − ))𝑅) ⇒ ⊢ (((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝑇 ∈ (0[,]1))) → ((𝑇 · 𝐴) + ((1 − 𝑇) · 𝐵)) ∈ 𝑆) | ||
Theorem | rehaus 23971 | The standard topology on the reals is Hausdorff. (Contributed by NM, 8-Mar-2007.) |
⊢ (topGen‘ran (,)) ∈ Haus | ||
Theorem | tgqioo 23972 | The topology generated by open intervals of reals with rational endpoints is the same as the open sets of the standard metric space on the reals. In particular, this proves that the standard topology on the reals is second-countable. (Contributed by Mario Carneiro, 17-Jun-2014.) |
⊢ 𝑄 = (topGen‘((,) “ (ℚ × ℚ))) ⇒ ⊢ (topGen‘ran (,)) = 𝑄 | ||
Theorem | re2ndc 23973 | The standard topology on the reals is second-countable. (Contributed by Mario Carneiro, 21-Mar-2015.) |
⊢ (topGen‘ran (,)) ∈ 2ndω | ||
Theorem | resubmet 23974 | The subspace topology induced by a subset of the reals. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 13-Aug-2014.) |
⊢ 𝑅 = (topGen‘ran (,)) & ⊢ 𝐽 = (MetOpen‘((abs ∘ − ) ↾ (𝐴 × 𝐴))) ⇒ ⊢ (𝐴 ⊆ ℝ → 𝐽 = (𝑅 ↾t 𝐴)) | ||
Theorem | tgioo2 23975 | The standard topology on the reals is a subspace of the complex metric topology. (Contributed by Mario Carneiro, 13-Aug-2014.) |
⊢ 𝐽 = (TopOpen‘ℂfld) ⇒ ⊢ (topGen‘ran (,)) = (𝐽 ↾t ℝ) | ||
Theorem | rerest 23976 | The subspace topology induced by a subset of the reals. (Contributed by Mario Carneiro, 13-Aug-2014.) |
⊢ 𝐽 = (TopOpen‘ℂfld) & ⊢ 𝑅 = (topGen‘ran (,)) ⇒ ⊢ (𝐴 ⊆ ℝ → (𝐽 ↾t 𝐴) = (𝑅 ↾t 𝐴)) | ||
Theorem | tgioo3 23977 | The standard topology on the reals is a subspace of the complex metric topology. (Contributed by Mario Carneiro, 13-Aug-2014.) (Revised by Thierry Arnoux, 3-Jul-2019.) |
⊢ 𝐽 = (TopOpen‘ℝfld) ⇒ ⊢ (topGen‘ran (,)) = 𝐽 | ||
Theorem | xrtgioo 23978 | The topology on the extended reals coincides with the standard topology on the reals, when restricted to ℝ. (Contributed by Mario Carneiro, 3-Sep-2015.) |
⊢ 𝐽 = ((ordTop‘ ≤ ) ↾t ℝ) ⇒ ⊢ (topGen‘ran (,)) = 𝐽 | ||
Theorem | xrrest 23979 | The subspace topology induced by a subset of the reals. (Contributed by Mario Carneiro, 9-Sep-2015.) |
⊢ 𝑋 = (ordTop‘ ≤ ) & ⊢ 𝑅 = (topGen‘ran (,)) ⇒ ⊢ (𝐴 ⊆ ℝ → (𝑋 ↾t 𝐴) = (𝑅 ↾t 𝐴)) | ||
Theorem | xrrest2 23980 | The subspace topology induced by a subset of the reals. (Contributed by Mario Carneiro, 9-Sep-2015.) |
⊢ 𝐽 = (TopOpen‘ℂfld) & ⊢ 𝑋 = (ordTop‘ ≤ ) ⇒ ⊢ (𝐴 ⊆ ℝ → (𝐽 ↾t 𝐴) = (𝑋 ↾t 𝐴)) | ||
Theorem | xrsxmet 23981 | The metric on the extended reals is a proper extended metric. (Contributed by Mario Carneiro, 4-Sep-2015.) |
⊢ 𝐷 = (dist‘ℝ*𝑠) ⇒ ⊢ 𝐷 ∈ (∞Met‘ℝ*) | ||
Theorem | xrsdsre 23982 | The metric on the extended reals coincides with the usual metric on the reals. (Contributed by Mario Carneiro, 4-Sep-2015.) |
⊢ 𝐷 = (dist‘ℝ*𝑠) ⇒ ⊢ (𝐷 ↾ (ℝ × ℝ)) = ((abs ∘ − ) ↾ (ℝ × ℝ)) | ||
Theorem | xrsblre 23983 | Any ball of the metric of the extended reals centered on an element of ℝ is entirely contained in ℝ. (Contributed by Mario Carneiro, 4-Sep-2015.) |
⊢ 𝐷 = (dist‘ℝ*𝑠) ⇒ ⊢ ((𝑃 ∈ ℝ ∧ 𝑅 ∈ ℝ*) → (𝑃(ball‘𝐷)𝑅) ⊆ ℝ) | ||
Theorem | xrsmopn 23984 | The metric on the extended reals generates a topology, but this does not match the order topology on ℝ*; for example {+∞} is open in the metric topology, but not the order topology. However, the metric topology is finer than the order topology, meaning that all open intervals are open in the metric topology. (Contributed by Mario Carneiro, 4-Sep-2015.) |
⊢ 𝐷 = (dist‘ℝ*𝑠) & ⊢ 𝐽 = (MetOpen‘𝐷) ⇒ ⊢ (ordTop‘ ≤ ) ⊆ 𝐽 | ||
Theorem | zcld 23985 | The integers are a closed set in the topology on ℝ. (Contributed by Mario Carneiro, 17-Feb-2015.) |
⊢ 𝐽 = (topGen‘ran (,)) ⇒ ⊢ ℤ ∈ (Clsd‘𝐽) | ||
Theorem | recld2 23986 | The real numbers are a closed set in the topology on ℂ. (Contributed by Mario Carneiro, 17-Feb-2015.) |
⊢ 𝐽 = (TopOpen‘ℂfld) ⇒ ⊢ ℝ ∈ (Clsd‘𝐽) | ||
Theorem | zcld2 23987 | The integers are a closed set in the topology on ℂ. (Contributed by Mario Carneiro, 17-Feb-2015.) |
⊢ 𝐽 = (TopOpen‘ℂfld) ⇒ ⊢ ℤ ∈ (Clsd‘𝐽) | ||
Theorem | zdis 23988 | The integers are a discrete set in the topology on ℂ. (Contributed by Mario Carneiro, 19-Sep-2015.) |
⊢ 𝐽 = (TopOpen‘ℂfld) ⇒ ⊢ (𝐽 ↾t ℤ) = 𝒫 ℤ | ||
Theorem | sszcld 23989 | Every subset of the integers are closed in the topology on ℂ. (Contributed by Mario Carneiro, 6-Jul-2017.) |
⊢ 𝐽 = (TopOpen‘ℂfld) ⇒ ⊢ (𝐴 ⊆ ℤ → 𝐴 ∈ (Clsd‘𝐽)) | ||
Theorem | reperflem 23990* | A subset of the real numbers that is closed under addition with real numbers is perfect. (Contributed by Mario Carneiro, 26-Dec-2016.) |
⊢ 𝐽 = (TopOpen‘ℂfld) & ⊢ ((𝑢 ∈ 𝑆 ∧ 𝑣 ∈ ℝ) → (𝑢 + 𝑣) ∈ 𝑆) & ⊢ 𝑆 ⊆ ℂ ⇒ ⊢ (𝐽 ↾t 𝑆) ∈ Perf | ||
Theorem | reperf 23991 | The real numbers are a perfect subset of the complex numbers. (Contributed by Mario Carneiro, 26-Dec-2016.) |
⊢ 𝐽 = (TopOpen‘ℂfld) ⇒ ⊢ (𝐽 ↾t ℝ) ∈ Perf | ||
Theorem | cnperf 23992 | The complex numbers are a perfect space. (Contributed by Mario Carneiro, 26-Dec-2016.) |
⊢ 𝐽 = (TopOpen‘ℂfld) ⇒ ⊢ 𝐽 ∈ Perf | ||
Theorem | iccntr 23993 | The interior of a closed interval in the standard topology on ℝ is the corresponding open interval. (Contributed by Mario Carneiro, 1-Sep-2014.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) = (𝐴(,)𝐵)) | ||
Theorem | icccmplem1 23994* | Lemma for icccmp 23997. (Contributed by Mario Carneiro, 18-Jun-2014.) |
⊢ 𝐽 = (topGen‘ran (,)) & ⊢ 𝑇 = (𝐽 ↾t (𝐴[,]𝐵)) & ⊢ 𝐷 = ((abs ∘ − ) ↾ (ℝ × ℝ)) & ⊢ 𝑆 = {𝑥 ∈ (𝐴[,]𝐵) ∣ ∃𝑧 ∈ (𝒫 𝑈 ∩ Fin)(𝐴[,]𝑥) ⊆ ∪ 𝑧} & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ≤ 𝐵) & ⊢ (𝜑 → 𝑈 ⊆ 𝐽) & ⊢ (𝜑 → (𝐴[,]𝐵) ⊆ ∪ 𝑈) ⇒ ⊢ (𝜑 → (𝐴 ∈ 𝑆 ∧ ∀𝑦 ∈ 𝑆 𝑦 ≤ 𝐵)) | ||
Theorem | icccmplem2 23995* | Lemma for icccmp 23997. (Contributed by Mario Carneiro, 13-Jun-2014.) |
⊢ 𝐽 = (topGen‘ran (,)) & ⊢ 𝑇 = (𝐽 ↾t (𝐴[,]𝐵)) & ⊢ 𝐷 = ((abs ∘ − ) ↾ (ℝ × ℝ)) & ⊢ 𝑆 = {𝑥 ∈ (𝐴[,]𝐵) ∣ ∃𝑧 ∈ (𝒫 𝑈 ∩ Fin)(𝐴[,]𝑥) ⊆ ∪ 𝑧} & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ≤ 𝐵) & ⊢ (𝜑 → 𝑈 ⊆ 𝐽) & ⊢ (𝜑 → (𝐴[,]𝐵) ⊆ ∪ 𝑈) & ⊢ (𝜑 → 𝑉 ∈ 𝑈) & ⊢ (𝜑 → 𝐶 ∈ ℝ+) & ⊢ (𝜑 → (𝐺(ball‘𝐷)𝐶) ⊆ 𝑉) & ⊢ 𝐺 = sup(𝑆, ℝ, < ) & ⊢ 𝑅 = if((𝐺 + (𝐶 / 2)) ≤ 𝐵, (𝐺 + (𝐶 / 2)), 𝐵) ⇒ ⊢ (𝜑 → 𝐵 ∈ 𝑆) | ||
Theorem | icccmplem3 23996* | Lemma for icccmp 23997. (Contributed by Mario Carneiro, 13-Jun-2014.) |
⊢ 𝐽 = (topGen‘ran (,)) & ⊢ 𝑇 = (𝐽 ↾t (𝐴[,]𝐵)) & ⊢ 𝐷 = ((abs ∘ − ) ↾ (ℝ × ℝ)) & ⊢ 𝑆 = {𝑥 ∈ (𝐴[,]𝐵) ∣ ∃𝑧 ∈ (𝒫 𝑈 ∩ Fin)(𝐴[,]𝑥) ⊆ ∪ 𝑧} & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ≤ 𝐵) & ⊢ (𝜑 → 𝑈 ⊆ 𝐽) & ⊢ (𝜑 → (𝐴[,]𝐵) ⊆ ∪ 𝑈) ⇒ ⊢ (𝜑 → 𝐵 ∈ 𝑆) | ||
Theorem | icccmp 23997 | A closed interval in ℝ is compact. (Contributed by Mario Carneiro, 13-Jun-2014.) |
⊢ 𝐽 = (topGen‘ran (,)) & ⊢ 𝑇 = (𝐽 ↾t (𝐴[,]𝐵)) ⇒ ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝑇 ∈ Comp) | ||
Theorem | reconnlem1 23998 | Lemma for reconn 24000. Connectedness in the reals-easy direction. (Contributed by Jeff Hankins, 13-Jul-2009.) (Proof shortened by Mario Carneiro, 9-Sep-2015.) |
⊢ (((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴)) → (𝑋[,]𝑌) ⊆ 𝐴) | ||
Theorem | reconnlem2 23999* | Lemma for reconn 24000. (Contributed by Jeff Hankins, 17-Aug-2009.) (Proof shortened by Mario Carneiro, 9-Sep-2015.) |
⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ (𝜑 → 𝑈 ∈ (topGen‘ran (,))) & ⊢ (𝜑 → 𝑉 ∈ (topGen‘ran (,))) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥[,]𝑦) ⊆ 𝐴) & ⊢ (𝜑 → 𝐵 ∈ (𝑈 ∩ 𝐴)) & ⊢ (𝜑 → 𝐶 ∈ (𝑉 ∩ 𝐴)) & ⊢ (𝜑 → (𝑈 ∩ 𝑉) ⊆ (ℝ ∖ 𝐴)) & ⊢ (𝜑 → 𝐵 ≤ 𝐶) & ⊢ 𝑆 = sup((𝑈 ∩ (𝐵[,]𝐶)), ℝ, < ) ⇒ ⊢ (𝜑 → ¬ 𝐴 ⊆ (𝑈 ∪ 𝑉)) | ||
Theorem | reconn 24000* | A subset of the reals is connected iff it has the interval property. (Contributed by Jeff Hankins, 15-Jul-2009.) (Proof shortened by Mario Carneiro, 9-Sep-2015.) |
⊢ (𝐴 ⊆ ℝ → (((topGen‘ran (,)) ↾t 𝐴) ∈ Conn ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥[,]𝑦) ⊆ 𝐴)) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |