MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reldmtng Structured version   Visualization version   GIF version

Theorem reldmtng 24017
Description: The function toNrmGrp is a two-argument function. (Contributed by Mario Carneiro, 8-Oct-2015.)
Assertion
Ref Expression
reldmtng Rel dom toNrmGrp

Proof of Theorem reldmtng
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-tng 23963 . 2 toNrmGrp = (𝑔 ∈ V, 𝑓 ∈ V ↦ ((𝑔 sSet ⟨(distβ€˜ndx), (𝑓 ∘ (-gβ€˜π‘”))⟩) sSet ⟨(TopSetβ€˜ndx), (MetOpenβ€˜(𝑓 ∘ (-gβ€˜π‘”)))⟩))
21reldmmpo 7494 1 Rel dom toNrmGrp
Colors of variables: wff setvar class
Syntax hints:  Vcvv 3447  βŸ¨cop 4596  dom cdm 5637   ∘ ccom 5641  Rel wrel 5642  β€˜cfv 6500  (class class class)co 7361   sSet csts 17043  ndxcnx 17073  TopSetcts 17147  distcds 17150  -gcsg 18758  MetOpencmopn 20809   toNrmGrp ctng 23957
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5260  ax-nul 5267  ax-pr 5388
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-rab 3407  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4287  df-if 4491  df-sn 4591  df-pr 4593  df-op 4597  df-br 5110  df-opab 5172  df-xp 5643  df-rel 5644  df-dm 5647  df-oprab 7365  df-mpo 7366  df-tng 23963
This theorem is referenced by:  tnglem  24019  tnglemOLD  24020  tngds  24034  tngdsOLD  24035  tcphval  24605
  Copyright terms: Public domain W3C validator