![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > reldmtng | Structured version Visualization version GIF version |
Description: The function toNrmGrp is a two-argument function. (Contributed by Mario Carneiro, 8-Oct-2015.) |
Ref | Expression |
---|---|
reldmtng | ⊢ Rel dom toNrmGrp |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-tng 24620 | . 2 ⊢ toNrmGrp = (𝑔 ∈ V, 𝑓 ∈ V ↦ ((𝑔 sSet 〈(dist‘ndx), (𝑓 ∘ (-g‘𝑔))〉) sSet 〈(TopSet‘ndx), (MetOpen‘(𝑓 ∘ (-g‘𝑔)))〉)) | |
2 | 1 | reldmmpo 7586 | 1 ⊢ Rel dom toNrmGrp |
Colors of variables: wff setvar class |
Syntax hints: Vcvv 3488 〈cop 4654 dom cdm 5700 ∘ ccom 5704 Rel wrel 5705 ‘cfv 6575 (class class class)co 7450 sSet csts 17212 ndxcnx 17242 TopSetcts 17319 distcds 17322 -gcsg 18977 MetOpencmopn 21379 toNrmGrp ctng 24614 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-xp 5706 df-rel 5707 df-dm 5710 df-oprab 7454 df-mpo 7455 df-tng 24620 |
This theorem is referenced by: tnglem 24676 tnglemOLD 24677 tngds 24691 tngdsOLD 24692 tcphval 25273 |
Copyright terms: Public domain | W3C validator |