Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > reldmtng | Structured version Visualization version GIF version |
Description: The function toNrmGrp is a two-argument function. (Contributed by Mario Carneiro, 8-Oct-2015.) |
Ref | Expression |
---|---|
reldmtng | ⊢ Rel dom toNrmGrp |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-tng 23646 | . 2 ⊢ toNrmGrp = (𝑔 ∈ V, 𝑓 ∈ V ↦ ((𝑔 sSet 〈(dist‘ndx), (𝑓 ∘ (-g‘𝑔))〉) sSet 〈(TopSet‘ndx), (MetOpen‘(𝑓 ∘ (-g‘𝑔)))〉)) | |
2 | 1 | reldmmpo 7386 | 1 ⊢ Rel dom toNrmGrp |
Colors of variables: wff setvar class |
Syntax hints: Vcvv 3422 〈cop 4564 dom cdm 5580 ∘ ccom 5584 Rel wrel 5585 ‘cfv 6418 (class class class)co 7255 sSet csts 16792 ndxcnx 16822 TopSetcts 16894 distcds 16897 -gcsg 18494 MetOpencmopn 20500 toNrmGrp ctng 23640 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-xp 5586 df-rel 5587 df-dm 5590 df-oprab 7259 df-mpo 7260 df-tng 23646 |
This theorem is referenced by: tnglem 23702 tnglemOLD 23703 tngds 23717 tngdsOLD 23718 tcphval 24287 |
Copyright terms: Public domain | W3C validator |