![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > reldmtng | Structured version Visualization version GIF version |
Description: The function toNrmGrp is a two-argument function. (Contributed by Mario Carneiro, 8-Oct-2015.) |
Ref | Expression |
---|---|
reldmtng | ⊢ Rel dom toNrmGrp |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-tng 24581 | . 2 ⊢ toNrmGrp = (𝑔 ∈ V, 𝑓 ∈ V ↦ ((𝑔 sSet 〈(dist‘ndx), (𝑓 ∘ (-g‘𝑔))〉) sSet 〈(TopSet‘ndx), (MetOpen‘(𝑓 ∘ (-g‘𝑔)))〉)) | |
2 | 1 | reldmmpo 7552 | 1 ⊢ Rel dom toNrmGrp |
Colors of variables: wff setvar class |
Syntax hints: Vcvv 3462 〈cop 4629 dom cdm 5674 ∘ ccom 5678 Rel wrel 5679 ‘cfv 6546 (class class class)co 7416 sSet csts 17160 ndxcnx 17190 TopSetcts 17267 distcds 17270 -gcsg 18925 MetOpencmopn 21329 toNrmGrp ctng 24575 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-sep 5296 ax-nul 5303 ax-pr 5425 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-rab 3420 df-v 3464 df-dif 3949 df-un 3951 df-ss 3963 df-nul 4323 df-if 4524 df-sn 4624 df-pr 4626 df-op 4630 df-br 5146 df-opab 5208 df-xp 5680 df-rel 5681 df-dm 5684 df-oprab 7420 df-mpo 7421 df-tng 24581 |
This theorem is referenced by: tnglem 24637 tnglemOLD 24638 tngds 24652 tngdsOLD 24653 tcphval 25234 |
Copyright terms: Public domain | W3C validator |