![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > reldmtng | Structured version Visualization version GIF version |
Description: The function toNrmGrp is a two-argument function. (Contributed by Mario Carneiro, 8-Oct-2015.) |
Ref | Expression |
---|---|
reldmtng | ⊢ Rel dom toNrmGrp |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-tng 24622 | . 2 ⊢ toNrmGrp = (𝑔 ∈ V, 𝑓 ∈ V ↦ ((𝑔 sSet 〈(dist‘ndx), (𝑓 ∘ (-g‘𝑔))〉) sSet 〈(TopSet‘ndx), (MetOpen‘(𝑓 ∘ (-g‘𝑔)))〉)) | |
2 | 1 | reldmmpo 7574 | 1 ⊢ Rel dom toNrmGrp |
Colors of variables: wff setvar class |
Syntax hints: Vcvv 3481 〈cop 4640 dom cdm 5693 ∘ ccom 5697 Rel wrel 5698 ‘cfv 6569 (class class class)co 7438 sSet csts 17206 ndxcnx 17236 TopSetcts 17313 distcds 17316 -gcsg 18975 MetOpencmopn 21381 toNrmGrp ctng 24616 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5305 ax-nul 5315 ax-pr 5441 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-rab 3437 df-v 3483 df-dif 3969 df-un 3971 df-ss 3983 df-nul 4343 df-if 4535 df-sn 4635 df-pr 4637 df-op 4641 df-br 5152 df-opab 5214 df-xp 5699 df-rel 5700 df-dm 5703 df-oprab 7442 df-mpo 7443 df-tng 24622 |
This theorem is referenced by: tnglem 24678 tnglemOLD 24679 tngds 24693 tngdsOLD 24694 tcphval 25277 |
Copyright terms: Public domain | W3C validator |