Home | Metamath
Proof Explorer Theorem List (p. 244 of 458) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | Metamath Proof Explorer
(1-28800) |
Hilbert Space Explorer
(28801-30323) |
Users' Mathboxes
(30324-45724) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | opnmbllem 24301* | Lemma for opnmbl 24302. (Contributed by Mario Carneiro, 26-Mar-2015.) |
⊢ 𝐹 = (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ 〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ⇒ ⊢ (𝐴 ∈ (topGen‘ran (,)) → 𝐴 ∈ dom vol) | ||
Theorem | opnmbl 24302 | All open sets are measurable. This proof, via dyadmbl 24300 and uniioombl 24289, shows that it is possible to avoid choice for measurability of open sets and hence continuous functions, which extends the choice-free consequences of Lebesgue measure considerably farther than would otherwise be possible. (Contributed by Mario Carneiro, 26-Mar-2015.) |
⊢ (𝐴 ∈ (topGen‘ran (,)) → 𝐴 ∈ dom vol) | ||
Theorem | opnmblALT 24303 | All open sets are measurable. This alternative proof of opnmbl 24302 is significantly shorter, at the expense of invoking countable choice ax-cc 9895. (This was also the original proof before the current opnmbl 24302 was discovered.) (Contributed by Mario Carneiro, 17-Jun-2014.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ (𝐴 ∈ (topGen‘ran (,)) → 𝐴 ∈ dom vol) | ||
Theorem | subopnmbl 24304 | Sets which are open in a measurable subspace are measurable. (Contributed by Mario Carneiro, 17-Jun-2014.) |
⊢ 𝐽 = ((topGen‘ran (,)) ↾t 𝐴) ⇒ ⊢ ((𝐴 ∈ dom vol ∧ 𝐵 ∈ 𝐽) → 𝐵 ∈ dom vol) | ||
Theorem | volsup2 24305* | The volume of 𝐴 is the supremum of the sequence vol*‘(𝐴 ∩ (-𝑛[,]𝑛)) of volumes of bounded sets. (Contributed by Mario Carneiro, 30-Aug-2014.) |
⊢ ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) → ∃𝑛 ∈ ℕ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛)))) | ||
Theorem | volcn 24306* | The function formed by restricting a measurable set to a closed interval with a varying endpoint produces an increasing continuous function on the reals. (Contributed by Mario Carneiro, 30-Aug-2014.) |
⊢ 𝐹 = (𝑥 ∈ ℝ ↦ (vol‘(𝐴 ∩ (𝐵[,]𝑥)))) ⇒ ⊢ ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) → 𝐹 ∈ (ℝ–cn→ℝ)) | ||
Theorem | volivth 24307* | The Intermediate Value Theorem for the Lebesgue volume function. For any positive 𝐵 ≤ (vol‘𝐴), there is a measurable subset of 𝐴 whose volume is 𝐵. (Contributed by Mario Carneiro, 30-Aug-2014.) |
⊢ ((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) → ∃𝑥 ∈ dom vol(𝑥 ⊆ 𝐴 ∧ (vol‘𝑥) = 𝐵)) | ||
Theorem | vitalilem1 24308* | Lemma for vitali 24313. (Contributed by Mario Carneiro, 16-Jun-2014.) (Proof shortened by AV, 1-May-2021.) |
⊢ ∼ = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]1)) ∧ (𝑥 − 𝑦) ∈ ℚ)} ⇒ ⊢ ∼ Er (0[,]1) | ||
Theorem | vitalilem2 24309* | Lemma for vitali 24313. (Contributed by Mario Carneiro, 16-Jun-2014.) |
⊢ ∼ = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]1)) ∧ (𝑥 − 𝑦) ∈ ℚ)} & ⊢ 𝑆 = ((0[,]1) / ∼ ) & ⊢ (𝜑 → 𝐹 Fn 𝑆) & ⊢ (𝜑 → ∀𝑧 ∈ 𝑆 (𝑧 ≠ ∅ → (𝐹‘𝑧) ∈ 𝑧)) & ⊢ (𝜑 → 𝐺:ℕ–1-1-onto→(ℚ ∩ (-1[,]1))) & ⊢ 𝑇 = (𝑛 ∈ ℕ ↦ {𝑠 ∈ ℝ ∣ (𝑠 − (𝐺‘𝑛)) ∈ ran 𝐹}) & ⊢ (𝜑 → ¬ ran 𝐹 ∈ (𝒫 ℝ ∖ dom vol)) ⇒ ⊢ (𝜑 → (ran 𝐹 ⊆ (0[,]1) ∧ (0[,]1) ⊆ ∪ 𝑚 ∈ ℕ (𝑇‘𝑚) ∧ ∪ 𝑚 ∈ ℕ (𝑇‘𝑚) ⊆ (-1[,]2))) | ||
Theorem | vitalilem3 24310* | Lemma for vitali 24313. (Contributed by Mario Carneiro, 16-Jun-2014.) |
⊢ ∼ = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]1)) ∧ (𝑥 − 𝑦) ∈ ℚ)} & ⊢ 𝑆 = ((0[,]1) / ∼ ) & ⊢ (𝜑 → 𝐹 Fn 𝑆) & ⊢ (𝜑 → ∀𝑧 ∈ 𝑆 (𝑧 ≠ ∅ → (𝐹‘𝑧) ∈ 𝑧)) & ⊢ (𝜑 → 𝐺:ℕ–1-1-onto→(ℚ ∩ (-1[,]1))) & ⊢ 𝑇 = (𝑛 ∈ ℕ ↦ {𝑠 ∈ ℝ ∣ (𝑠 − (𝐺‘𝑛)) ∈ ran 𝐹}) & ⊢ (𝜑 → ¬ ran 𝐹 ∈ (𝒫 ℝ ∖ dom vol)) ⇒ ⊢ (𝜑 → Disj 𝑚 ∈ ℕ (𝑇‘𝑚)) | ||
Theorem | vitalilem4 24311* | Lemma for vitali 24313. (Contributed by Mario Carneiro, 16-Jun-2014.) |
⊢ ∼ = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]1)) ∧ (𝑥 − 𝑦) ∈ ℚ)} & ⊢ 𝑆 = ((0[,]1) / ∼ ) & ⊢ (𝜑 → 𝐹 Fn 𝑆) & ⊢ (𝜑 → ∀𝑧 ∈ 𝑆 (𝑧 ≠ ∅ → (𝐹‘𝑧) ∈ 𝑧)) & ⊢ (𝜑 → 𝐺:ℕ–1-1-onto→(ℚ ∩ (-1[,]1))) & ⊢ 𝑇 = (𝑛 ∈ ℕ ↦ {𝑠 ∈ ℝ ∣ (𝑠 − (𝐺‘𝑛)) ∈ ran 𝐹}) & ⊢ (𝜑 → ¬ ran 𝐹 ∈ (𝒫 ℝ ∖ dom vol)) ⇒ ⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (vol*‘(𝑇‘𝑚)) = 0) | ||
Theorem | vitalilem5 24312* | Lemma for vitali 24313. (Contributed by Mario Carneiro, 16-Jun-2014.) |
⊢ ∼ = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]1)) ∧ (𝑥 − 𝑦) ∈ ℚ)} & ⊢ 𝑆 = ((0[,]1) / ∼ ) & ⊢ (𝜑 → 𝐹 Fn 𝑆) & ⊢ (𝜑 → ∀𝑧 ∈ 𝑆 (𝑧 ≠ ∅ → (𝐹‘𝑧) ∈ 𝑧)) & ⊢ (𝜑 → 𝐺:ℕ–1-1-onto→(ℚ ∩ (-1[,]1))) & ⊢ 𝑇 = (𝑛 ∈ ℕ ↦ {𝑠 ∈ ℝ ∣ (𝑠 − (𝐺‘𝑛)) ∈ ran 𝐹}) & ⊢ (𝜑 → ¬ ran 𝐹 ∈ (𝒫 ℝ ∖ dom vol)) ⇒ ⊢ ¬ 𝜑 | ||
Theorem | vitali 24313 | If the reals can be well-ordered, then there are non-measurable sets. The proof uses "Vitali sets", named for Giuseppe Vitali (1905). (Contributed by Mario Carneiro, 16-Jun-2014.) |
⊢ ( < We ℝ → dom vol ⊊ 𝒫 ℝ) | ||
Syntax | cmbf 24314 | Extend class notation with the class of measurable functions. |
class MblFn | ||
Syntax | citg1 24315 | Extend class notation with the Lebesgue integral for simple functions. |
class ∫1 | ||
Syntax | citg2 24316 | Extend class notation with the Lebesgue integral for nonnegative functions. |
class ∫2 | ||
Syntax | cibl 24317 | Extend class notation with the class of integrable functions. |
class 𝐿1 | ||
Syntax | citg 24318 | Extend class notation with the general Lebesgue integral. |
class ∫𝐴𝐵 d𝑥 | ||
Definition | df-mbf 24319* | Define the class of measurable functions on the reals. A real function is measurable if the preimage of every open interval is a measurable set (see ismbl 24226) and a complex function is measurable if the real and imaginary parts of the function is measurable. (Contributed by Mario Carneiro, 17-Jun-2014.) |
⊢ MblFn = {𝑓 ∈ (ℂ ↑pm ℝ) ∣ ∀𝑥 ∈ ran (,)((◡(ℜ ∘ 𝑓) “ 𝑥) ∈ dom vol ∧ (◡(ℑ ∘ 𝑓) “ 𝑥) ∈ dom vol)} | ||
Definition | df-itg1 24320* | Define the Lebesgue integral for simple functions. A simple function is a finite linear combination of indicator functions for finitely measurable sets, whose assigned value is the sum of the measures of the sets times their respective weights. (Contributed by Mario Carneiro, 18-Jun-2014.) |
⊢ ∫1 = (𝑓 ∈ {𝑔 ∈ MblFn ∣ (𝑔:ℝ⟶ℝ ∧ ran 𝑔 ∈ Fin ∧ (vol‘(◡𝑔 “ (ℝ ∖ {0}))) ∈ ℝ)} ↦ Σ𝑥 ∈ (ran 𝑓 ∖ {0})(𝑥 · (vol‘(◡𝑓 “ {𝑥})))) | ||
Definition | df-itg2 24321* | Define the Lebesgue integral for nonnegative functions. A nonnegative function's integral is the supremum of the integrals of all simple functions that are less than the input function. Note that this may be +∞ for functions that take the value +∞ on a set of positive measure or functions that are bounded below by a positive number on a set of infinite measure. (Contributed by Mario Carneiro, 28-Jun-2014.) |
⊢ ∫2 = (𝑓 ∈ ((0[,]+∞) ↑m ℝ) ↦ sup({𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝑓 ∧ 𝑥 = (∫1‘𝑔))}, ℝ*, < )) | ||
Definition | df-ibl 24322* | Define the class of integrable functions on the reals. A function is integrable if it is measurable and the integrals of the pieces of the function are all finite. (Contributed by Mario Carneiro, 28-Jun-2014.) |
⊢ 𝐿1 = {𝑓 ∈ MblFn ∣ ∀𝑘 ∈ (0...3)(∫2‘(𝑥 ∈ ℝ ↦ ⦋(ℜ‘((𝑓‘𝑥) / (i↑𝑘))) / 𝑦⦌if((𝑥 ∈ dom 𝑓 ∧ 0 ≤ 𝑦), 𝑦, 0))) ∈ ℝ} | ||
Definition | df-itg 24323* | Define the full Lebesgue integral, for complex-valued functions to ℝ. The syntax is designed to be suggestive of the standard notation for integrals. For example, our notation for the integral of 𝑥↑2 from 0 to 1 is ∫(0[,]1)(𝑥↑2) d𝑥 = (1 / 3). The only real function of this definition is to break the integral up into nonnegative real parts and send it off to df-itg2 24321 for further processing. Note that this definition cannot handle integrals which evaluate to infinity, because addition and multiplication are not currently defined on extended reals. (You can use df-itg2 24321 directly for this use-case.) (Contributed by Mario Carneiro, 28-Jun-2014.) |
⊢ ∫𝐴𝐵 d𝑥 = Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ ⦋(ℜ‘(𝐵 / (i↑𝑘))) / 𝑦⦌if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑦), 𝑦, 0)))) | ||
Theorem | ismbf1 24324* | The predicate "𝐹 is a measurable function". This is more naturally stated for functions on the reals, see ismbf 24328 and ismbfcn 24329 for the decomposition of the real and imaginary parts. (Contributed by Mario Carneiro, 17-Jun-2014.) |
⊢ (𝐹 ∈ MblFn ↔ (𝐹 ∈ (ℂ ↑pm ℝ) ∧ ∀𝑥 ∈ ran (,)((◡(ℜ ∘ 𝐹) “ 𝑥) ∈ dom vol ∧ (◡(ℑ ∘ 𝐹) “ 𝑥) ∈ dom vol))) | ||
Theorem | mbff 24325 | A measurable function is a function into the complex numbers. (Contributed by Mario Carneiro, 17-Jun-2014.) |
⊢ (𝐹 ∈ MblFn → 𝐹:dom 𝐹⟶ℂ) | ||
Theorem | mbfdm 24326 | The domain of a measurable function is measurable. (Contributed by Mario Carneiro, 17-Jun-2014.) |
⊢ (𝐹 ∈ MblFn → dom 𝐹 ∈ dom vol) | ||
Theorem | mbfconstlem 24327 | Lemma for mbfconst 24333 and related theorems. (Contributed by Mario Carneiro, 17-Jun-2014.) |
⊢ ((𝐴 ∈ dom vol ∧ 𝐶 ∈ ℝ) → (◡(𝐴 × {𝐶}) “ 𝐵) ∈ dom vol) | ||
Theorem | ismbf 24328* | The predicate "𝐹 is a measurable function". A function is measurable iff the preimages of all open intervals are measurable sets in the sense of ismbl 24226. (Contributed by Mario Carneiro, 17-Jun-2014.) |
⊢ (𝐹:𝐴⟶ℝ → (𝐹 ∈ MblFn ↔ ∀𝑥 ∈ ran (,)(◡𝐹 “ 𝑥) ∈ dom vol)) | ||
Theorem | ismbfcn 24329 | A complex function is measurable iff the real and imaginary components of the function are measurable. (Contributed by Mario Carneiro, 17-Jun-2014.) |
⊢ (𝐹:𝐴⟶ℂ → (𝐹 ∈ MblFn ↔ ((ℜ ∘ 𝐹) ∈ MblFn ∧ (ℑ ∘ 𝐹) ∈ MblFn))) | ||
Theorem | mbfima 24330 | Definitional property of a measurable function: the preimage of an open right-unbounded interval is measurable. (Contributed by Mario Carneiro, 17-Jun-2014.) |
⊢ ((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶ℝ) → (◡𝐹 “ (𝐵(,)𝐶)) ∈ dom vol) | ||
Theorem | mbfimaicc 24331 | The preimage of any closed interval under a measurable function is measurable. (Contributed by Mario Carneiro, 18-Jun-2014.) |
⊢ (((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶ℝ) ∧ (𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ)) → (◡𝐹 “ (𝐵[,]𝐶)) ∈ dom vol) | ||
Theorem | mbfimasn 24332 | The preimage of a point under a measurable function is measurable. (Contributed by Mario Carneiro, 18-Jun-2014.) |
⊢ ((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶ℝ ∧ 𝐵 ∈ ℝ) → (◡𝐹 “ {𝐵}) ∈ dom vol) | ||
Theorem | mbfconst 24333 | A constant function is measurable. (Contributed by Mario Carneiro, 17-Jun-2014.) |
⊢ ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ) → (𝐴 × {𝐵}) ∈ MblFn) | ||
Theorem | mbf0 24334 | The empty function is measurable. (Contributed by Brendan Leahy, 28-Mar-2018.) |
⊢ ∅ ∈ MblFn | ||
Theorem | mbfid 24335 | The identity function is measurable. (Contributed by Mario Carneiro, 17-Jun-2014.) |
⊢ (𝐴 ∈ dom vol → ( I ↾ 𝐴) ∈ MblFn) | ||
Theorem | mbfmptcl 24336* | Lemma for the MblFn predicate applied to a mapping operation. (Contributed by Mario Carneiro, 11-Aug-2014.) |
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ MblFn) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) ⇒ ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℂ) | ||
Theorem | mbfdm2 24337* | The domain of a measurable function is measurable. (Contributed by Mario Carneiro, 31-Aug-2014.) |
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ MblFn) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) ⇒ ⊢ (𝜑 → 𝐴 ∈ dom vol) | ||
Theorem | ismbfcn2 24338* | A complex function is measurable iff the real and imaginary components of the function are measurable. (Contributed by Mario Carneiro, 13-Aug-2014.) |
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ MblFn ↔ ((𝑥 ∈ 𝐴 ↦ (ℜ‘𝐵)) ∈ MblFn ∧ (𝑥 ∈ 𝐴 ↦ (ℑ‘𝐵)) ∈ MblFn))) | ||
Theorem | ismbfd 24339* | Deduction to prove measurability of a real function. The third hypothesis is not necessary, but the proof of this requires countable choice, so we derive this separately as ismbf3d 24354. (Contributed by Mario Carneiro, 18-Jun-2014.) |
⊢ (𝜑 → 𝐹:𝐴⟶ℝ) & ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ*) → (◡𝐹 “ (𝑥(,)+∞)) ∈ dom vol) & ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ*) → (◡𝐹 “ (-∞(,)𝑥)) ∈ dom vol) ⇒ ⊢ (𝜑 → 𝐹 ∈ MblFn) | ||
Theorem | ismbf2d 24340* | Deduction to prove measurability of a real function. (Contributed by Mario Carneiro, 18-Jun-2014.) |
⊢ (𝜑 → 𝐹:𝐴⟶ℝ) & ⊢ (𝜑 → 𝐴 ∈ dom vol) & ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (◡𝐹 “ (𝑥(,)+∞)) ∈ dom vol) & ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (◡𝐹 “ (-∞(,)𝑥)) ∈ dom vol) ⇒ ⊢ (𝜑 → 𝐹 ∈ MblFn) | ||
Theorem | mbfeqalem1 24341* | Lemma for mbfeqalem2 24342. (Contributed by Mario Carneiro, 2-Sep-2014.) (Revised by AV, 19-Aug-2022.) |
⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ (𝜑 → (vol*‘𝐴) = 0) & ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐵 ∖ 𝐴)) → 𝐶 = 𝐷) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐶 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐷 ∈ ℝ) ⇒ ⊢ (𝜑 → ((◡(𝑥 ∈ 𝐵 ↦ 𝐶) “ 𝑦) ∖ (◡(𝑥 ∈ 𝐵 ↦ 𝐷) “ 𝑦)) ∈ dom vol) | ||
Theorem | mbfeqalem2 24342* | Lemma for mbfeqa 24343. (Contributed by Mario Carneiro, 2-Sep-2014.) (Proof shortened by AV, 19-Aug-2022.) |
⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ (𝜑 → (vol*‘𝐴) = 0) & ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐵 ∖ 𝐴)) → 𝐶 = 𝐷) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐶 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐷 ∈ ℝ) ⇒ ⊢ (𝜑 → ((𝑥 ∈ 𝐵 ↦ 𝐶) ∈ MblFn ↔ (𝑥 ∈ 𝐵 ↦ 𝐷) ∈ MblFn)) | ||
Theorem | mbfeqa 24343* | If two functions are equal almost everywhere, then one is measurable iff the other is. (Contributed by Mario Carneiro, 17-Jun-2014.) (Revised by Mario Carneiro, 2-Sep-2014.) |
⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ (𝜑 → (vol*‘𝐴) = 0) & ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐵 ∖ 𝐴)) → 𝐶 = 𝐷) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐶 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐷 ∈ ℂ) ⇒ ⊢ (𝜑 → ((𝑥 ∈ 𝐵 ↦ 𝐶) ∈ MblFn ↔ (𝑥 ∈ 𝐵 ↦ 𝐷) ∈ MblFn)) | ||
Theorem | mbfres 24344 | The restriction of a measurable function is measurable. (Contributed by Mario Carneiro, 18-Jun-2014.) |
⊢ ((𝐹 ∈ MblFn ∧ 𝐴 ∈ dom vol) → (𝐹 ↾ 𝐴) ∈ MblFn) | ||
Theorem | mbfres2 24345 | Measurability of a piecewise function: if 𝐹 is measurable on subsets 𝐵 and 𝐶 of its domain, and these pieces make up all of 𝐴, then 𝐹 is measurable on the whole domain. (Contributed by Mario Carneiro, 18-Jun-2014.) |
⊢ (𝜑 → 𝐹:𝐴⟶ℝ) & ⊢ (𝜑 → (𝐹 ↾ 𝐵) ∈ MblFn) & ⊢ (𝜑 → (𝐹 ↾ 𝐶) ∈ MblFn) & ⊢ (𝜑 → (𝐵 ∪ 𝐶) = 𝐴) ⇒ ⊢ (𝜑 → 𝐹 ∈ MblFn) | ||
Theorem | mbfss 24346* | Change the domain of a measurability predicate. (Contributed by Mario Carneiro, 17-Aug-2014.) |
⊢ (𝜑 → 𝐴 ⊆ 𝐵) & ⊢ (𝜑 → 𝐵 ∈ dom vol) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐵 ∖ 𝐴)) → 𝐶 = 0) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶) ∈ MblFn) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐵 ↦ 𝐶) ∈ MblFn) | ||
Theorem | mbfmulc2lem 24347 | Multiplication by a constant preserves measurability. (Contributed by Mario Carneiro, 18-Jun-2014.) |
⊢ (𝜑 → 𝐹 ∈ MblFn) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐹:𝐴⟶ℝ) ⇒ ⊢ (𝜑 → ((𝐴 × {𝐵}) ∘f · 𝐹) ∈ MblFn) | ||
Theorem | mbfmulc2re 24348 | Multiplication by a constant preserves measurability. (Contributed by Mario Carneiro, 15-Aug-2014.) |
⊢ (𝜑 → 𝐹 ∈ MblFn) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) ⇒ ⊢ (𝜑 → ((𝐴 × {𝐵}) ∘f · 𝐹) ∈ MblFn) | ||
Theorem | mbfmax 24349* | The maximum of two functions is measurable. (Contributed by Mario Carneiro, 18-Jun-2014.) |
⊢ (𝜑 → 𝐹:𝐴⟶ℝ) & ⊢ (𝜑 → 𝐹 ∈ MblFn) & ⊢ (𝜑 → 𝐺:𝐴⟶ℝ) & ⊢ (𝜑 → 𝐺 ∈ MblFn) & ⊢ 𝐻 = (𝑥 ∈ 𝐴 ↦ if((𝐹‘𝑥) ≤ (𝐺‘𝑥), (𝐺‘𝑥), (𝐹‘𝑥))) ⇒ ⊢ (𝜑 → 𝐻 ∈ MblFn) | ||
Theorem | mbfneg 24350* | The negative of a measurable function is measurable. (Contributed by Mario Carneiro, 31-Jul-2014.) |
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ MblFn) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ -𝐵) ∈ MblFn) | ||
Theorem | mbfpos 24351* | The positive part of a measurable function is measurable. (Contributed by Mario Carneiro, 31-Jul-2014.) |
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ MblFn) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) ∈ MblFn) | ||
Theorem | mbfposr 24352* | Converse to mbfpos 24351. (Contributed by Mario Carneiro, 11-Aug-2014.) |
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) ∈ MblFn) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)) ∈ MblFn) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ MblFn) | ||
Theorem | mbfposb 24353* | A function is measurable iff its positive and negative parts are measurable. (Contributed by Mario Carneiro, 11-Aug-2014.) |
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) ⇒ ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ MblFn ↔ ((𝑥 ∈ 𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) ∈ MblFn ∧ (𝑥 ∈ 𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)) ∈ MblFn))) | ||
Theorem | ismbf3d 24354* | Simplified form of ismbfd 24339. (Contributed by Mario Carneiro, 18-Jun-2014.) |
⊢ (𝜑 → 𝐹:𝐴⟶ℝ) & ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (◡𝐹 “ (𝑥(,)+∞)) ∈ dom vol) ⇒ ⊢ (𝜑 → 𝐹 ∈ MblFn) | ||
Theorem | mbfimaopnlem 24355* | Lemma for mbfimaopn 24356. (Contributed by Mario Carneiro, 25-Aug-2014.) |
⊢ 𝐽 = (TopOpen‘ℂfld) & ⊢ 𝐺 = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + (i · 𝑦))) & ⊢ 𝐵 = ((,) “ (ℚ × ℚ)) & ⊢ 𝐾 = ran (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 × 𝑦)) ⇒ ⊢ ((𝐹 ∈ MblFn ∧ 𝐴 ∈ 𝐽) → (◡𝐹 “ 𝐴) ∈ dom vol) | ||
Theorem | mbfimaopn 24356 | The preimage of any open set (in the complex topology) under a measurable function is measurable. (See also cncombf 24358, which explains why 𝐴 ∈ dom vol is too weak a condition for this theorem.) (Contributed by Mario Carneiro, 25-Aug-2014.) |
⊢ 𝐽 = (TopOpen‘ℂfld) ⇒ ⊢ ((𝐹 ∈ MblFn ∧ 𝐴 ∈ 𝐽) → (◡𝐹 “ 𝐴) ∈ dom vol) | ||
Theorem | mbfimaopn2 24357 | The preimage of any set open in the subspace topology of the range of the function is measurable. (Contributed by Mario Carneiro, 25-Aug-2014.) |
⊢ 𝐽 = (TopOpen‘ℂfld) & ⊢ 𝐾 = (𝐽 ↾t 𝐵) ⇒ ⊢ (((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐵 ⊆ ℂ) ∧ 𝐶 ∈ 𝐾) → (◡𝐹 “ 𝐶) ∈ dom vol) | ||
Theorem | cncombf 24358 | The composition of a continuous function with a measurable function is measurable. (More generally, 𝐺 can be a Borel-measurable function, but notably the condition that 𝐺 be only measurable is too weak, the usual counterexample taking 𝐺 to be the Cantor function and 𝐹 the indicator function of the 𝐺-image of a nonmeasurable set, which is a subset of the Cantor set and hence null and measurable.) (Contributed by Mario Carneiro, 25-Aug-2014.) |
⊢ ((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐺 ∈ (𝐵–cn→ℂ)) → (𝐺 ∘ 𝐹) ∈ MblFn) | ||
Theorem | cnmbf 24359 | A continuous function is measurable. (Contributed by Mario Carneiro, 18-Jun-2014.) (Revised by Mario Carneiro, 26-Mar-2015.) |
⊢ ((𝐴 ∈ dom vol ∧ 𝐹 ∈ (𝐴–cn→ℂ)) → 𝐹 ∈ MblFn) | ||
Theorem | mbfaddlem 24360 | The sum of two measurable functions is measurable. (Contributed by Mario Carneiro, 15-Aug-2014.) |
⊢ (𝜑 → 𝐹 ∈ MblFn) & ⊢ (𝜑 → 𝐺 ∈ MblFn) & ⊢ (𝜑 → 𝐹:𝐴⟶ℝ) & ⊢ (𝜑 → 𝐺:𝐴⟶ℝ) ⇒ ⊢ (𝜑 → (𝐹 ∘f + 𝐺) ∈ MblFn) | ||
Theorem | mbfadd 24361 | The sum of two measurable functions is measurable. (Contributed by Mario Carneiro, 15-Aug-2014.) |
⊢ (𝜑 → 𝐹 ∈ MblFn) & ⊢ (𝜑 → 𝐺 ∈ MblFn) ⇒ ⊢ (𝜑 → (𝐹 ∘f + 𝐺) ∈ MblFn) | ||
Theorem | mbfsub 24362 | The difference of two measurable functions is measurable. (Contributed by Mario Carneiro, 5-Sep-2014.) |
⊢ (𝜑 → 𝐹 ∈ MblFn) & ⊢ (𝜑 → 𝐺 ∈ MblFn) ⇒ ⊢ (𝜑 → (𝐹 ∘f − 𝐺) ∈ MblFn) | ||
Theorem | mbfmulc2 24363* | A complex constant times a measurable function is measurable. (Contributed by Mario Carneiro, 17-Aug-2014.) |
⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ MblFn) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (𝐶 · 𝐵)) ∈ MblFn) | ||
Theorem | mbfsup 24364* | The supremum of a sequence of measurable, real-valued functions is measurable. Note that in this and related theorems, 𝐵(𝑛, 𝑥) is a function of both 𝑛 and 𝑥, since it is an 𝑛-indexed sequence of functions on 𝑥. (Contributed by Mario Carneiro, 14-Aug-2014.) (Revised by Mario Carneiro, 7-Sep-2014.) |
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ 𝐺 = (𝑥 ∈ 𝐴 ↦ sup(ran (𝑛 ∈ 𝑍 ↦ 𝐵), ℝ, < )) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ MblFn) & ⊢ ((𝜑 ∧ (𝑛 ∈ 𝑍 ∧ 𝑥 ∈ 𝐴)) → 𝐵 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∃𝑦 ∈ ℝ ∀𝑛 ∈ 𝑍 𝐵 ≤ 𝑦) ⇒ ⊢ (𝜑 → 𝐺 ∈ MblFn) | ||
Theorem | mbfinf 24365* | The infimum of a sequence of measurable, real-valued functions is measurable. (Contributed by Mario Carneiro, 7-Sep-2014.) (Revised by AV, 13-Sep-2020.) |
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ 𝐺 = (𝑥 ∈ 𝐴 ↦ inf(ran (𝑛 ∈ 𝑍 ↦ 𝐵), ℝ, < )) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ MblFn) & ⊢ ((𝜑 ∧ (𝑛 ∈ 𝑍 ∧ 𝑥 ∈ 𝐴)) → 𝐵 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∃𝑦 ∈ ℝ ∀𝑛 ∈ 𝑍 𝑦 ≤ 𝐵) ⇒ ⊢ (𝜑 → 𝐺 ∈ MblFn) | ||
Theorem | mbflimsup 24366* | The limit supremum of a sequence of measurable real-valued functions is measurable. (Contributed by Mario Carneiro, 7-Sep-2014.) (Revised by AV, 12-Sep-2020.) |
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ 𝐺 = (𝑥 ∈ 𝐴 ↦ (lim sup‘(𝑛 ∈ 𝑍 ↦ 𝐵))) & ⊢ 𝐻 = (𝑚 ∈ ℝ ↦ sup((((𝑛 ∈ 𝑍 ↦ 𝐵) “ (𝑚[,)+∞)) ∩ ℝ*), ℝ*, < )) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (lim sup‘(𝑛 ∈ 𝑍 ↦ 𝐵)) ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ MblFn) & ⊢ ((𝜑 ∧ (𝑛 ∈ 𝑍 ∧ 𝑥 ∈ 𝐴)) → 𝐵 ∈ ℝ) ⇒ ⊢ (𝜑 → 𝐺 ∈ MblFn) | ||
Theorem | mbflimlem 24367* | The pointwise limit of a sequence of measurable real-valued functions is measurable. (Contributed by Mario Carneiro, 7-Sep-2014.) |
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝑛 ∈ 𝑍 ↦ 𝐵) ⇝ 𝐶) & ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ MblFn) & ⊢ ((𝜑 ∧ (𝑛 ∈ 𝑍 ∧ 𝑥 ∈ 𝐴)) → 𝐵 ∈ ℝ) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶) ∈ MblFn) | ||
Theorem | mbflim 24368* | The pointwise limit of a sequence of measurable functions is measurable. (Contributed by Mario Carneiro, 7-Sep-2014.) |
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝑛 ∈ 𝑍 ↦ 𝐵) ⇝ 𝐶) & ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ MblFn) & ⊢ ((𝜑 ∧ (𝑛 ∈ 𝑍 ∧ 𝑥 ∈ 𝐴)) → 𝐵 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶) ∈ MblFn) | ||
Syntax | c0p 24369 | Extend class notation to include the zero polynomial. |
class 0𝑝 | ||
Definition | df-0p 24370 | Define the zero polynomial. (Contributed by Mario Carneiro, 19-Jun-2014.) |
⊢ 0𝑝 = (ℂ × {0}) | ||
Theorem | 0pval 24371 | The zero function evaluates to zero at every point. (Contributed by Mario Carneiro, 23-Jul-2014.) |
⊢ (𝐴 ∈ ℂ → (0𝑝‘𝐴) = 0) | ||
Theorem | 0plef 24372 | Two ways to say that the function 𝐹 on the reals is nonnegative. (Contributed by Mario Carneiro, 17-Aug-2014.) |
⊢ (𝐹:ℝ⟶(0[,)+∞) ↔ (𝐹:ℝ⟶ℝ ∧ 0𝑝 ∘r ≤ 𝐹)) | ||
Theorem | 0pledm 24373 | Adjust the domain of the left argument to match the right, which works better in our theorems. (Contributed by Mario Carneiro, 28-Jul-2014.) |
⊢ (𝜑 → 𝐴 ⊆ ℂ) & ⊢ (𝜑 → 𝐹 Fn 𝐴) ⇒ ⊢ (𝜑 → (0𝑝 ∘r ≤ 𝐹 ↔ (𝐴 × {0}) ∘r ≤ 𝐹)) | ||
Theorem | isi1f 24374 | The predicate "𝐹 is a simple function". A simple function is a finite nonnegative linear combination of indicator functions for finitely measurable sets. We use the idiom 𝐹 ∈ dom ∫1 to represent this concept because ∫1 is the first preparation function for our final definition ∫ (see df-itg 24323); unlike that operator, which can integrate any function, this operator can only integrate simple functions. (Contributed by Mario Carneiro, 18-Jun-2014.) |
⊢ (𝐹 ∈ dom ∫1 ↔ (𝐹 ∈ MblFn ∧ (𝐹:ℝ⟶ℝ ∧ ran 𝐹 ∈ Fin ∧ (vol‘(◡𝐹 “ (ℝ ∖ {0}))) ∈ ℝ))) | ||
Theorem | i1fmbf 24375 | Simple functions are measurable. (Contributed by Mario Carneiro, 18-Jun-2014.) |
⊢ (𝐹 ∈ dom ∫1 → 𝐹 ∈ MblFn) | ||
Theorem | i1ff 24376 | A simple function is a function on the reals. (Contributed by Mario Carneiro, 26-Jun-2014.) |
⊢ (𝐹 ∈ dom ∫1 → 𝐹:ℝ⟶ℝ) | ||
Theorem | i1frn 24377 | A simple function has finite range. (Contributed by Mario Carneiro, 26-Jun-2014.) |
⊢ (𝐹 ∈ dom ∫1 → ran 𝐹 ∈ Fin) | ||
Theorem | i1fima 24378 | Any preimage of a simple function is measurable. (Contributed by Mario Carneiro, 26-Jun-2014.) |
⊢ (𝐹 ∈ dom ∫1 → (◡𝐹 “ 𝐴) ∈ dom vol) | ||
Theorem | i1fima2 24379 | Any preimage of a simple function not containing zero has finite measure. (Contributed by Mario Carneiro, 26-Jun-2014.) |
⊢ ((𝐹 ∈ dom ∫1 ∧ ¬ 0 ∈ 𝐴) → (vol‘(◡𝐹 “ 𝐴)) ∈ ℝ) | ||
Theorem | i1fima2sn 24380 | Preimage of a singleton. (Contributed by Mario Carneiro, 26-Jun-2014.) |
⊢ ((𝐹 ∈ dom ∫1 ∧ 𝐴 ∈ (𝐵 ∖ {0})) → (vol‘(◡𝐹 “ {𝐴})) ∈ ℝ) | ||
Theorem | i1fd 24381* | A simplified set of assumptions to show that a given function is simple. (Contributed by Mario Carneiro, 26-Jun-2014.) |
⊢ (𝜑 → 𝐹:ℝ⟶ℝ) & ⊢ (𝜑 → ran 𝐹 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑥 ∈ (ran 𝐹 ∖ {0})) → (◡𝐹 “ {𝑥}) ∈ dom vol) & ⊢ ((𝜑 ∧ 𝑥 ∈ (ran 𝐹 ∖ {0})) → (vol‘(◡𝐹 “ {𝑥})) ∈ ℝ) ⇒ ⊢ (𝜑 → 𝐹 ∈ dom ∫1) | ||
Theorem | i1f0rn 24382 | Any simple function takes the value zero on a set of unbounded measure, so in particular this set is not empty. (Contributed by Mario Carneiro, 18-Jun-2014.) |
⊢ (𝐹 ∈ dom ∫1 → 0 ∈ ran 𝐹) | ||
Theorem | itg1val 24383* | The value of the integral on simple functions. (Contributed by Mario Carneiro, 18-Jun-2014.) |
⊢ (𝐹 ∈ dom ∫1 → (∫1‘𝐹) = Σ𝑥 ∈ (ran 𝐹 ∖ {0})(𝑥 · (vol‘(◡𝐹 “ {𝑥})))) | ||
Theorem | itg1val2 24384* | The value of the integral on simple functions. (Contributed by Mario Carneiro, 26-Jun-2014.) |
⊢ ((𝐹 ∈ dom ∫1 ∧ (𝐴 ∈ Fin ∧ (ran 𝐹 ∖ {0}) ⊆ 𝐴 ∧ 𝐴 ⊆ (ℝ ∖ {0}))) → (∫1‘𝐹) = Σ𝑥 ∈ 𝐴 (𝑥 · (vol‘(◡𝐹 “ {𝑥})))) | ||
Theorem | itg1cl 24385 | Closure of the integral on simple functions. (Contributed by Mario Carneiro, 26-Jun-2014.) |
⊢ (𝐹 ∈ dom ∫1 → (∫1‘𝐹) ∈ ℝ) | ||
Theorem | itg1ge0 24386 | Closure of the integral on positive simple functions. (Contributed by Mario Carneiro, 19-Jun-2014.) |
⊢ ((𝐹 ∈ dom ∫1 ∧ 0𝑝 ∘r ≤ 𝐹) → 0 ≤ (∫1‘𝐹)) | ||
Theorem | i1f0 24387 | The zero function is simple. (Contributed by Mario Carneiro, 18-Jun-2014.) |
⊢ (ℝ × {0}) ∈ dom ∫1 | ||
Theorem | itg10 24388 | The zero function has zero integral. (Contributed by Mario Carneiro, 18-Jun-2014.) |
⊢ (∫1‘(ℝ × {0})) = 0 | ||
Theorem | i1f1lem 24389* | Lemma for i1f1 24390 and itg11 24391. (Contributed by Mario Carneiro, 18-Jun-2014.) |
⊢ 𝐹 = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 1, 0)) ⇒ ⊢ (𝐹:ℝ⟶{0, 1} ∧ (𝐴 ∈ dom vol → (◡𝐹 “ {1}) = 𝐴)) | ||
Theorem | i1f1 24390* | Base case simple functions are indicator functions of measurable sets. (Contributed by Mario Carneiro, 18-Jun-2014.) |
⊢ 𝐹 = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 1, 0)) ⇒ ⊢ ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) → 𝐹 ∈ dom ∫1) | ||
Theorem | itg11 24391* | The integral of an indicator function is the volume of the set. (Contributed by Mario Carneiro, 18-Jun-2014.) (Revised by Mario Carneiro, 23-Aug-2014.) |
⊢ 𝐹 = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 1, 0)) ⇒ ⊢ ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) → (∫1‘𝐹) = (vol‘𝐴)) | ||
Theorem | itg1addlem1 24392* | Decompose a preimage, which is always a disjoint union. (Contributed by Mario Carneiro, 25-Jun-2014.) (Proof shortened by Mario Carneiro, 11-Dec-2016.) |
⊢ (𝜑 → 𝐹:𝑋⟶𝑌) & ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ⊆ (◡𝐹 “ {𝑘})) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ dom vol) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (vol‘𝐵) ∈ ℝ) ⇒ ⊢ (𝜑 → (vol‘∪ 𝑘 ∈ 𝐴 𝐵) = Σ𝑘 ∈ 𝐴 (vol‘𝐵)) | ||
Theorem | i1faddlem 24393* | Decompose the preimage of a sum. (Contributed by Mario Carneiro, 19-Jun-2014.) |
⊢ (𝜑 → 𝐹 ∈ dom ∫1) & ⊢ (𝜑 → 𝐺 ∈ dom ∫1) ⇒ ⊢ ((𝜑 ∧ 𝐴 ∈ ℂ) → (◡(𝐹 ∘f + 𝐺) “ {𝐴}) = ∪ 𝑦 ∈ ran 𝐺((◡𝐹 “ {(𝐴 − 𝑦)}) ∩ (◡𝐺 “ {𝑦}))) | ||
Theorem | i1fmullem 24394* | Decompose the preimage of a product. (Contributed by Mario Carneiro, 19-Jun-2014.) |
⊢ (𝜑 → 𝐹 ∈ dom ∫1) & ⊢ (𝜑 → 𝐺 ∈ dom ∫1) ⇒ ⊢ ((𝜑 ∧ 𝐴 ∈ (ℂ ∖ {0})) → (◡(𝐹 ∘f · 𝐺) “ {𝐴}) = ∪ 𝑦 ∈ (ran 𝐺 ∖ {0})((◡𝐹 “ {(𝐴 / 𝑦)}) ∩ (◡𝐺 “ {𝑦}))) | ||
Theorem | i1fadd 24395 | The sum of two simple functions is a simple function. (Contributed by Mario Carneiro, 18-Jun-2014.) |
⊢ (𝜑 → 𝐹 ∈ dom ∫1) & ⊢ (𝜑 → 𝐺 ∈ dom ∫1) ⇒ ⊢ (𝜑 → (𝐹 ∘f + 𝐺) ∈ dom ∫1) | ||
Theorem | i1fmul 24396 | The pointwise product of two simple functions is a simple function. (Contributed by Mario Carneiro, 5-Sep-2014.) |
⊢ (𝜑 → 𝐹 ∈ dom ∫1) & ⊢ (𝜑 → 𝐺 ∈ dom ∫1) ⇒ ⊢ (𝜑 → (𝐹 ∘f · 𝐺) ∈ dom ∫1) | ||
Theorem | itg1addlem2 24397* | Lemma for itg1add 24401. The function 𝐼 represents the pieces into which we will break up the domain of the sum. Since it is infinite only when both 𝑖 and 𝑗 are zero, we arbitrarily define it to be zero there to simplify the sums that are manipulated in itg1addlem4 24399 and itg1addlem5 24400. (Contributed by Mario Carneiro, 26-Jun-2014.) |
⊢ (𝜑 → 𝐹 ∈ dom ∫1) & ⊢ (𝜑 → 𝐺 ∈ dom ∫1) & ⊢ 𝐼 = (𝑖 ∈ ℝ, 𝑗 ∈ ℝ ↦ if((𝑖 = 0 ∧ 𝑗 = 0), 0, (vol‘((◡𝐹 “ {𝑖}) ∩ (◡𝐺 “ {𝑗}))))) ⇒ ⊢ (𝜑 → 𝐼:(ℝ × ℝ)⟶ℝ) | ||
Theorem | itg1addlem3 24398* | Lemma for itg1add 24401. (Contributed by Mario Carneiro, 26-Jun-2014.) |
⊢ (𝜑 → 𝐹 ∈ dom ∫1) & ⊢ (𝜑 → 𝐺 ∈ dom ∫1) & ⊢ 𝐼 = (𝑖 ∈ ℝ, 𝑗 ∈ ℝ ↦ if((𝑖 = 0 ∧ 𝑗 = 0), 0, (vol‘((◡𝐹 “ {𝑖}) ∩ (◡𝐺 “ {𝑗}))))) ⇒ ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) → (𝐴𝐼𝐵) = (vol‘((◡𝐹 “ {𝐴}) ∩ (◡𝐺 “ {𝐵})))) | ||
Theorem | itg1addlem4 24399* | Lemma for itg1add . (Contributed by Mario Carneiro, 28-Jun-2014.) |
⊢ (𝜑 → 𝐹 ∈ dom ∫1) & ⊢ (𝜑 → 𝐺 ∈ dom ∫1) & ⊢ 𝐼 = (𝑖 ∈ ℝ, 𝑗 ∈ ℝ ↦ if((𝑖 = 0 ∧ 𝑗 = 0), 0, (vol‘((◡𝐹 “ {𝑖}) ∩ (◡𝐺 “ {𝑗}))))) & ⊢ 𝑃 = ( + ↾ (ran 𝐹 × ran 𝐺)) ⇒ ⊢ (𝜑 → (∫1‘(𝐹 ∘f + 𝐺)) = Σ𝑦 ∈ ran 𝐹Σ𝑧 ∈ ran 𝐺((𝑦 + 𝑧) · (𝑦𝐼𝑧))) | ||
Theorem | itg1addlem5 24400* | Lemma for itg1add . (Contributed by Mario Carneiro, 27-Jun-2014.) |
⊢ (𝜑 → 𝐹 ∈ dom ∫1) & ⊢ (𝜑 → 𝐺 ∈ dom ∫1) & ⊢ 𝐼 = (𝑖 ∈ ℝ, 𝑗 ∈ ℝ ↦ if((𝑖 = 0 ∧ 𝑗 = 0), 0, (vol‘((◡𝐹 “ {𝑖}) ∩ (◡𝐺 “ {𝑗}))))) & ⊢ 𝑃 = ( + ↾ (ran 𝐹 × ran 𝐺)) ⇒ ⊢ (𝜑 → (∫1‘(𝐹 ∘f + 𝐺)) = ((∫1‘𝐹) + (∫1‘𝐺))) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |