HomeHome Metamath Proof Explorer
Theorem List (p. 244 of 466)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-29289)
  Hilbert Space Explorer  Hilbert Space Explorer
(29290-30812)
  Users' Mathboxes  Users' Mathboxes
(30813-46532)
 

Theorem List for Metamath Proof Explorer - 24301-24400   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremiscvsi 24301* Properties that determine a subcomplex vector space. (Contributed by NM, 5-Nov-2006.) (Revised by AV, 4-Oct-2021.)
· = ( ·𝑠𝑊)    &    + = (+g𝑊)    &   𝑉 = (Base‘𝑊)    &   𝑆 = (Scalar‘𝑊)    &   𝐾 = (Base‘𝑆)    &   𝑊 ∈ Grp    &   𝑆 = (ℂflds 𝐾)    &   𝑆 ∈ DivRing    &   𝐾 ∈ (SubRing‘ℂfld)    &   (𝑥𝑉 → (1 · 𝑥) = 𝑥)    &   ((𝑦𝐾𝑥𝑉) → (𝑦 · 𝑥) ∈ 𝑉)    &   ((𝑦𝐾𝑥𝑉𝑧𝑉) → (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)))    &   ((𝑦𝐾𝑧𝐾𝑥𝑉) → ((𝑧 + 𝑦) · 𝑥) = ((𝑧 · 𝑥) + (𝑦 · 𝑥)))    &   ((𝑦𝐾𝑧𝐾𝑥𝑉) → ((𝑧 · 𝑦) · 𝑥) = (𝑧 · (𝑦 · 𝑥)))       𝑊 ∈ ℂVec
 
Theoremcvsi 24302* The properties of a subcomplex vector space, which is an Abelian group (i.e. the vectors, with the operation of vector addition) accompanied by a scalar multiplication operation on the field of complex numbers. (Contributed by NM, 3-Nov-2006.) (Revised by AV, 21-Sep-2021.)
𝑋 = (Base‘𝑊)    &    + = (+g𝑊)    &   𝑆 = (Base‘(Scalar‘𝑊))    &    = ( ·sf𝑊)    &    · = ( ·𝑠𝑊)       (𝑊 ∈ ℂVec → (𝑊 ∈ Abel ∧ (𝑆 ⊆ ℂ ∧ :(𝑆 × 𝑋)⟶𝑋) ∧ ∀𝑥𝑋 ((1 · 𝑥) = 𝑥 ∧ ∀𝑦𝑆 (∀𝑧𝑋 (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ∀𝑧𝑆 (((𝑦 + 𝑧) · 𝑥) = ((𝑦 · 𝑥) + (𝑧 · 𝑥)) ∧ ((𝑦 · 𝑧) · 𝑥) = (𝑦 · (𝑧 · 𝑥)))))))
 
Theoremcvsunit 24303 Unit group of the scalar ring of a subcomplex vector space. (Contributed by Thierry Arnoux, 22-May-2019.)
𝐹 = (Scalar‘𝑊)    &   𝐾 = (Base‘𝐹)       (𝑊 ∈ ℂVec → (𝐾 ∖ {0}) = (Unit‘𝐹))
 
Theoremcvsdiv 24304 Division of the scalar ring of a subcomplex vector space. (Contributed by Thierry Arnoux, 22-May-2019.)
𝐹 = (Scalar‘𝑊)    &   𝐾 = (Base‘𝐹)       ((𝑊 ∈ ℂVec ∧ (𝐴𝐾𝐵𝐾𝐵 ≠ 0)) → (𝐴 / 𝐵) = (𝐴(/r𝐹)𝐵))
 
Theoremcvsdivcl 24305 The scalar field of a subcomplex vector space is closed under division. (Contributed by Thierry Arnoux, 22-May-2019.)
𝐹 = (Scalar‘𝑊)    &   𝐾 = (Base‘𝐹)       ((𝑊 ∈ ℂVec ∧ (𝐴𝐾𝐵𝐾𝐵 ≠ 0)) → (𝐴 / 𝐵) ∈ 𝐾)
 
Theoremcvsmuleqdivd 24306 An equality involving ratios in a subcomplex vector space. (Contributed by Thierry Arnoux, 22-May-2019.)
𝑉 = (Base‘𝑊)    &    · = ( ·𝑠𝑊)    &   𝐹 = (Scalar‘𝑊)    &   𝐾 = (Base‘𝐹)    &   (𝜑𝑊 ∈ ℂVec)    &   (𝜑𝐴𝐾)    &   (𝜑𝐵𝐾)    &   (𝜑𝑋𝑉)    &   (𝜑𝑌𝑉)    &   (𝜑𝐴 ≠ 0)    &   (𝜑 → (𝐴 · 𝑋) = (𝐵 · 𝑌))       (𝜑𝑋 = ((𝐵 / 𝐴) · 𝑌))
 
Theoremcvsdiveqd 24307 An equality involving ratios in a subcomplex vector space. (Contributed by Thierry Arnoux, 22-May-2019.)
𝑉 = (Base‘𝑊)    &    · = ( ·𝑠𝑊)    &   𝐹 = (Scalar‘𝑊)    &   𝐾 = (Base‘𝐹)    &   (𝜑𝑊 ∈ ℂVec)    &   (𝜑𝐴𝐾)    &   (𝜑𝐵𝐾)    &   (𝜑𝑋𝑉)    &   (𝜑𝑌𝑉)    &   (𝜑𝐴 ≠ 0)    &   (𝜑𝐵 ≠ 0)    &   (𝜑𝑋 = ((𝐴 / 𝐵) · 𝑌))       (𝜑 → ((𝐵 / 𝐴) · 𝑋) = 𝑌)
 
Theoremcnlmodlem1 24308 Lemma 1 for cnlmod 24312. (Contributed by AV, 20-Sep-2021.)
𝑊 = ({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩} ∪ {⟨(Scalar‘ndx), ℂfld⟩, ⟨( ·𝑠 ‘ndx), · ⟩})       (Base‘𝑊) = ℂ
 
Theoremcnlmodlem2 24309 Lemma 2 for cnlmod 24312. (Contributed by AV, 20-Sep-2021.)
𝑊 = ({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩} ∪ {⟨(Scalar‘ndx), ℂfld⟩, ⟨( ·𝑠 ‘ndx), · ⟩})       (+g𝑊) = +
 
Theoremcnlmodlem3 24310 Lemma 3 for cnlmod 24312. (Contributed by AV, 20-Sep-2021.)
𝑊 = ({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩} ∪ {⟨(Scalar‘ndx), ℂfld⟩, ⟨( ·𝑠 ‘ndx), · ⟩})       (Scalar‘𝑊) = ℂfld
 
Theoremcnlmod4 24311 Lemma 4 for cnlmod 24312. (Contributed by AV, 20-Sep-2021.)
𝑊 = ({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩} ∪ {⟨(Scalar‘ndx), ℂfld⟩, ⟨( ·𝑠 ‘ndx), · ⟩})       ( ·𝑠𝑊) = ·
 
Theoremcnlmod 24312 The set of complex numbers is a left module over itself. The vector operation is +, and the scalar product is ·. (Contributed by AV, 20-Sep-2021.)
𝑊 = ({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩} ∪ {⟨(Scalar‘ndx), ℂfld⟩, ⟨( ·𝑠 ‘ndx), · ⟩})       𝑊 ∈ LMod
 
Theoremcnstrcvs 24313 The set of complex numbers is a subcomplex vector space. The vector operation is +, and the scalar product is ·. (Contributed by NM, 5-Nov-2006.) (Revised by AV, 20-Sep-2021.)
𝑊 = ({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩} ∪ {⟨(Scalar‘ndx), ℂfld⟩, ⟨( ·𝑠 ‘ndx), · ⟩})       𝑊 ∈ ℂVec
 
Theoremcnrbas 24314 The set of complex numbers is the base set of the complex left module of complex numbers. (Contributed by AV, 21-Sep-2021.)
𝐶 = (ringLMod‘ℂfld)       (Base‘𝐶) = ℂ
 
Theoremcnrlmod 24315 The complex left module of complex numbers is a left module. The vector operation is +, and the scalar product is ·. (Contributed by AV, 21-Sep-2021.)
𝐶 = (ringLMod‘ℂfld)       𝐶 ∈ LMod
 
Theoremcnrlvec 24316 The complex left module of complex numbers is a left vector space. The vector operation is +, and the scalar product is ·. (Contributed by AV, 21-Sep-2021.)
𝐶 = (ringLMod‘ℂfld)       𝐶 ∈ LVec
 
Theoremcncvs 24317 The complex left module of complex numbers is a subcomplex vector space. The vector operation is +, and the scalar product is ·. (Contributed by NM, 5-Nov-2006.) (Revised by AV, 21-Sep-2021.)
𝐶 = (ringLMod‘ℂfld)       𝐶 ∈ ℂVec
 
Theoremrecvs 24318 The field of the real numbers as left module over itself is a subcomplex vector space. The vector operation is +, and the scalar product is ·. (Contributed by AV, 22-Oct-2021.) (Proof shortened by SN, 23-Nov-2024.)
𝑅 = (ringLMod‘ℝfld)       𝑅 ∈ ℂVec
 
TheoremrecvsOLD 24319 Obsolete version of recvs 24318 as of 23-Nov-2024. (Contributed by AV, 22-Oct-2021.) (Proof modification is discouraged.) (New usage is discouraged.)
𝑅 = (ringLMod‘ℝfld)       𝑅 ∈ ℂVec
 
Theoremqcvs 24320 The field of rational numbers as left module over itself is a subcomplex vector space. The vector operation is +, and the scalar product is ·. (Contributed by AV, 22-Oct-2021.)
𝑄 = (ringLMod‘(ℂflds ℚ))       𝑄 ∈ ℂVec
 
Theoremzclmncvs 24321 The ring of integers as left module over itself is a subcomplex module, but not a subcomplex vector space. The vector operation is +, and the scalar product is ·. (Contributed by AV, 22-Oct-2021.)
𝑍 = (ringLMod‘ℤring)       (𝑍 ∈ ℂMod ∧ 𝑍 ∉ ℂVec)
 
12.5.3  Normed subcomplex vector spaces

This section characterizes normed subcomplex vector spaces as subcomplex vector spaces which are also normed vector spaces (that is, normed groups with a positively homogeneous norm). For the moment, there is no need of a special token to represent their class, so we only use the characterization isncvsngp 24322. Most theorems for normed subcomplex vector spaces have a label containing "ncvs". The idiom 𝑊 ∈ (NrmVec ∩ ℂVec) is used in the following to say that 𝑊 is a normed subcomplex vector space, i.e., a subcomplex vector space which is also a normed vector space.

 
Theoremisncvsngp 24322* A normed subcomplex vector space is a subcomplex vector space which is a normed group with a positively homogeneous norm. (Contributed by NM, 5-Jun-2008.) (Revised by AV, 7-Oct-2021.)
𝑉 = (Base‘𝑊)    &   𝑁 = (norm‘𝑊)    &    · = ( ·𝑠𝑊)    &   𝐹 = (Scalar‘𝑊)    &   𝐾 = (Base‘𝐹)       (𝑊 ∈ (NrmVec ∩ ℂVec) ↔ (𝑊 ∈ ℂVec ∧ 𝑊 ∈ NrmGrp ∧ ∀𝑥𝑉𝑘𝐾 (𝑁‘(𝑘 · 𝑥)) = ((abs‘𝑘) · (𝑁𝑥))))
 
Theoremisncvsngpd 24323* Properties that determine a normed subcomplex vector space. (Contributed by NM, 15-Apr-2007.) (Revised by AV, 7-Oct-2021.)
𝑉 = (Base‘𝑊)    &   𝑁 = (norm‘𝑊)    &    · = ( ·𝑠𝑊)    &   𝐹 = (Scalar‘𝑊)    &   𝐾 = (Base‘𝐹)    &   (𝜑𝑊 ∈ ℂVec)    &   (𝜑𝑊 ∈ NrmGrp)    &   ((𝜑 ∧ (𝑥𝑉𝑘𝐾)) → (𝑁‘(𝑘 · 𝑥)) = ((abs‘𝑘) · (𝑁𝑥)))       (𝜑𝑊 ∈ (NrmVec ∩ ℂVec))
 
Theoremncvsi 24324* The properties of a normed subcomplex vector space, which is a vector space accompanied by a norm. (Contributed by NM, 11-Nov-2006.) (Revised by AV, 7-Oct-2021.)
𝑉 = (Base‘𝑊)    &   𝑁 = (norm‘𝑊)    &    · = ( ·𝑠𝑊)    &   𝐹 = (Scalar‘𝑊)    &   𝐾 = (Base‘𝐹)    &    = (-g𝑊)    &    0 = (0g𝑊)       (𝑊 ∈ (NrmVec ∩ ℂVec) → (𝑊 ∈ ℂVec ∧ 𝑁:𝑉⟶ℝ ∧ ∀𝑥𝑉 (((𝑁𝑥) = 0 ↔ 𝑥 = 0 ) ∧ ∀𝑦𝑉 (𝑁‘(𝑥 𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦)) ∧ ∀𝑘𝐾 (𝑁‘(𝑘 · 𝑥)) = ((abs‘𝑘) · (𝑁𝑥)))))
 
Theoremncvsprp 24325 Proportionality property of the norm of a scalar product in a normed subcomplex vector space. (Contributed by NM, 11-Nov-2006.) (Revised by AV, 8-Oct-2021.)
𝑉 = (Base‘𝑊)    &   𝑁 = (norm‘𝑊)    &    · = ( ·𝑠𝑊)    &   𝐹 = (Scalar‘𝑊)    &   𝐾 = (Base‘𝐹)       ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ 𝐴𝐾𝐵𝑉) → (𝑁‘(𝐴 · 𝐵)) = ((abs‘𝐴) · (𝑁𝐵)))
 
Theoremncvsge0 24326 The norm of a scalar product with a nonnegative real. (Contributed by NM, 1-Jan-2008.) (Revised by AV, 8-Oct-2021.)
𝑉 = (Base‘𝑊)    &   𝑁 = (norm‘𝑊)    &    · = ( ·𝑠𝑊)    &   𝐹 = (Scalar‘𝑊)    &   𝐾 = (Base‘𝐹)       ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ (𝐴 ∈ (𝐾 ∩ ℝ) ∧ 0 ≤ 𝐴) ∧ 𝐵𝑉) → (𝑁‘(𝐴 · 𝐵)) = (𝐴 · (𝑁𝐵)))
 
Theoremncvsm1 24327 The norm of the opposite of a vector. (Contributed by NM, 28-Nov-2006.) (Revised by AV, 8-Oct-2021.)
𝑉 = (Base‘𝑊)    &   𝑁 = (norm‘𝑊)    &    · = ( ·𝑠𝑊)       ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ 𝐴𝑉) → (𝑁‘(-1 · 𝐴)) = (𝑁𝐴))
 
Theoremncvsdif 24328 The norm of the difference between two vectors. (Contributed by NM, 1-Dec-2006.) (Revised by AV, 8-Oct-2021.)
𝑉 = (Base‘𝑊)    &   𝑁 = (norm‘𝑊)    &    · = ( ·𝑠𝑊)    &    + = (+g𝑊)       ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ 𝐴𝑉𝐵𝑉) → (𝑁‘(𝐴 + (-1 · 𝐵))) = (𝑁‘(𝐵 + (-1 · 𝐴))))
 
Theoremncvspi 24329 The norm of a vector plus the imaginary scalar product of another. (Contributed by NM, 2-Feb-2007.) (Revised by AV, 8-Oct-2021.)
𝑉 = (Base‘𝑊)    &   𝑁 = (norm‘𝑊)    &    · = ( ·𝑠𝑊)    &    + = (+g𝑊)    &   𝐹 = (Scalar‘𝑊)    &   𝐾 = (Base‘𝐹)       ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ (𝐴𝑉𝐵𝑉) ∧ i ∈ 𝐾) → (𝑁‘(𝐴 + (i · 𝐵))) = (𝑁‘(𝐵 + (-i · 𝐴))))
 
Theoremncvs1 24330 From any nonzero vector of a normed subcomplex vector space, construct a collinear vector whose norm is one. (Contributed by NM, 6-Dec-2007.) (Revised by AV, 8-Oct-2021.)
𝑋 = (Base‘𝐺)    &   𝑁 = (norm‘𝐺)    &    0 = (0g𝐺)    &    · = ( ·𝑠𝐺)    &   𝐹 = (Scalar‘𝐺)    &   𝐾 = (Base‘𝐹)       ((𝐺 ∈ (NrmVec ∩ ℂVec) ∧ (𝐴𝑋𝐴0 ) ∧ (1 / (𝑁𝐴)) ∈ 𝐾) → (𝑁‘((1 / (𝑁𝐴)) · 𝐴)) = 1)
 
Theoremcnrnvc 24331 The module of complex numbers (as a module over itself) is a normed vector space over itself. The vector operation is +, and the scalar product is ·, and the norm function is abs. (Contributed by AV, 9-Oct-2021.)
𝐶 = (ringLMod‘ℂfld)       𝐶 ∈ NrmVec
 
Theoremcnncvs 24332 The module of complex numbers (as a module over itself) is a normed subcomplex vector space. The vector operation is +, the scalar product is ·, and the norm is abs (see cnnm 24333) . (Contributed by Steve Rodriguez, 3-Dec-2006.) (Revised by AV, 9-Oct-2021.)
𝐶 = (ringLMod‘ℂfld)       𝐶 ∈ (NrmVec ∩ ℂVec)
 
Theoremcnnm 24333 The norm of the normed subcomplex vector space of complex numbers is the absolute value. (Contributed by NM, 12-Jan-2008.) (Revised by AV, 9-Oct-2021.)
𝐶 = (ringLMod‘ℂfld)       (norm‘𝐶) = abs
 
Theoremncvspds 24334 Value of the distance function in terms of the norm of a normed subcomplex vector space. Equation 1 of [Kreyszig] p. 59. (Contributed by NM, 28-Nov-2006.) (Revised by AV, 13-Oct-2021.)
𝑁 = (norm‘𝐺)    &   𝑋 = (Base‘𝐺)    &    + = (+g𝐺)    &   𝐷 = (dist‘𝐺)    &    · = ( ·𝑠𝐺)       ((𝐺 ∈ (NrmVec ∩ ℂVec) ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐷𝐵) = (𝑁‘(𝐴 + (-1 · 𝐵))))
 
Theoremcnindmet 24335 The metric induced on the complex numbers. cnmet 23944 proves that it is a metric. The induced metric is identical with the original metric on the complex numbers, see cnfldds 20616 and also cnmet 23944. (Contributed by Steve Rodriguez, 5-Dec-2006.) (Revised by AV, 17-Oct-2021.)
𝑇 = (ℂfld toNrmGrp abs)       (dist‘𝑇) = (abs ∘ − )
 
Theoremcnncvsaddassdemo 24336 Derive the associative law for complex number addition addass 10967 to demonstrate the use of the properties of a normed subcomplex vector space for the complex numbers. (Contributed by NM, 12-Jan-2008.) (Revised by AV, 9-Oct-2021.) (Proof modification is discouraged.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶)))
 
Theoremcnncvsmulassdemo 24337 Derive the associative law for complex number multiplication mulass 10968 interpreted as scalar multiplication to demonstrate the use of the properties of a normed subcomplex vector space for the complex numbers. (Contributed by AV, 9-Oct-2021.) (Proof modification is discouraged.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶)))
 
Theoremcnncvsabsnegdemo 24338 Derive the absolute value of a negative complex number absneg 14998 to demonstrate the use of the properties of a normed subcomplex vector space for the complex numbers. (Contributed by AV, 9-Oct-2021.) (Proof modification is discouraged.)
(𝐴 ∈ ℂ → (abs‘-𝐴) = (abs‘𝐴))
 
12.5.4  Subcomplex pre-Hilbert spaces
 
Syntaxccph 24339 Extend class notation with the class of subcomplex pre-Hilbert spaces.
class ℂPreHil
 
Syntaxctcph 24340 Function to put a norm on a pre-Hilbert space.
class toℂPreHil
 
Definitiondf-cph 24341* Define the class of subcomplex pre-Hilbert spaces. By restricting the scalar field to a subfield of fld closed under square roots of nonnegative reals, we have enough structure to define a norm, with the associated connection to a metric and topology. (Contributed by Mario Carneiro, 8-Oct-2015.)
ℂPreHil = {𝑤 ∈ (PreHil ∩ NrmMod) ∣ [(Scalar‘𝑤) / 𝑓][(Base‘𝑓) / 𝑘](𝑓 = (ℂflds 𝑘) ∧ (√ “ (𝑘 ∩ (0[,)+∞))) ⊆ 𝑘 ∧ (norm‘𝑤) = (𝑥 ∈ (Base‘𝑤) ↦ (√‘(𝑥(·𝑖𝑤)𝑥))))}
 
Definitiondf-tcph 24342* Define a function to augment a pre-Hilbert space with a norm. No extra parameters are needed, but some conditions must be satisfied to ensure that this in fact creates a normed subcomplex pre-Hilbert space (see tcphcph 24410). (Contributed by Mario Carneiro, 7-Oct-2015.)
toℂPreHil = (𝑤 ∈ V ↦ (𝑤 toNrmGrp (𝑥 ∈ (Base‘𝑤) ↦ (√‘(𝑥(·𝑖𝑤)𝑥)))))
 
Theoremiscph 24343* A subcomplex pre-Hilbert space is exactly a pre-Hilbert space over a subfield of the field of complex numbers closed under square roots of nonnegative reals equipped with a norm. (Contributed by Mario Carneiro, 8-Oct-2015.)
𝑉 = (Base‘𝑊)    &    , = (·𝑖𝑊)    &   𝑁 = (norm‘𝑊)    &   𝐹 = (Scalar‘𝑊)    &   𝐾 = (Base‘𝐹)       (𝑊 ∈ ℂPreHil ↔ ((𝑊 ∈ PreHil ∧ 𝑊 ∈ NrmMod ∧ 𝐹 = (ℂflds 𝐾)) ∧ (√ “ (𝐾 ∩ (0[,)+∞))) ⊆ 𝐾𝑁 = (𝑥𝑉 ↦ (√‘(𝑥 , 𝑥)))))
 
Theoremcphphl 24344 A subcomplex pre-Hilbert space is a pre-Hilbert space. (Contributed by Mario Carneiro, 7-Oct-2015.)
(𝑊 ∈ ℂPreHil → 𝑊 ∈ PreHil)
 
Theoremcphnlm 24345 A subcomplex pre-Hilbert space is a normed module. (Contributed by Mario Carneiro, 7-Oct-2015.)
(𝑊 ∈ ℂPreHil → 𝑊 ∈ NrmMod)
 
Theoremcphngp 24346 A subcomplex pre-Hilbert space is a normed group. (Contributed by Mario Carneiro, 13-Oct-2015.)
(𝑊 ∈ ℂPreHil → 𝑊 ∈ NrmGrp)
 
Theoremcphlmod 24347 A subcomplex pre-Hilbert space is a left module. (Contributed by Mario Carneiro, 7-Oct-2015.)
(𝑊 ∈ ℂPreHil → 𝑊 ∈ LMod)
 
Theoremcphlvec 24348 A subcomplex pre-Hilbert space is a left vector space. (Contributed by Mario Carneiro, 7-Oct-2015.)
(𝑊 ∈ ℂPreHil → 𝑊 ∈ LVec)
 
Theoremcphnvc 24349 A subcomplex pre-Hilbert space is a normed vector space. (Contributed by Mario Carneiro, 8-Oct-2015.)
(𝑊 ∈ ℂPreHil → 𝑊 ∈ NrmVec)
 
Theoremcphsubrglem 24350 Lemma for cphsubrg 24353. (Contributed by Mario Carneiro, 9-Oct-2015.)
𝐾 = (Base‘𝐹)    &   (𝜑𝐹 = (ℂflds 𝐴))    &   (𝜑𝐹 ∈ DivRing)       (𝜑 → (𝐹 = (ℂflds 𝐾) ∧ 𝐾 = (𝐴 ∩ ℂ) ∧ 𝐾 ∈ (SubRing‘ℂfld)))
 
Theoremcphreccllem 24351 Lemma for cphreccl 24354. (Contributed by Mario Carneiro, 8-Oct-2015.)
𝐾 = (Base‘𝐹)    &   (𝜑𝐹 = (ℂflds 𝐴))    &   (𝜑𝐹 ∈ DivRing)       ((𝜑𝑋𝐾𝑋 ≠ 0) → (1 / 𝑋) ∈ 𝐾)
 
Theoremcphsca 24352 A subcomplex pre-Hilbert space is a vector space over a subfield of fld. (Contributed by Mario Carneiro, 8-Oct-2015.)
𝐹 = (Scalar‘𝑊)    &   𝐾 = (Base‘𝐹)       (𝑊 ∈ ℂPreHil → 𝐹 = (ℂflds 𝐾))
 
Theoremcphsubrg 24353 The scalar field of a subcomplex pre-Hilbert space is a subring of fld. (Contributed by Mario Carneiro, 8-Oct-2015.)
𝐹 = (Scalar‘𝑊)    &   𝐾 = (Base‘𝐹)       (𝑊 ∈ ℂPreHil → 𝐾 ∈ (SubRing‘ℂfld))
 
Theoremcphreccl 24354 The scalar field of a subcomplex pre-Hilbert space is closed under reciprocal. (Contributed by Mario Carneiro, 8-Oct-2015.)
𝐹 = (Scalar‘𝑊)    &   𝐾 = (Base‘𝐹)       ((𝑊 ∈ ℂPreHil ∧ 𝐴𝐾𝐴 ≠ 0) → (1 / 𝐴) ∈ 𝐾)
 
Theoremcphdivcl 24355 The scalar field of a subcomplex pre-Hilbert space is closed under reciprocal. (Contributed by Mario Carneiro, 11-Oct-2015.)
𝐹 = (Scalar‘𝑊)    &   𝐾 = (Base‘𝐹)       ((𝑊 ∈ ℂPreHil ∧ (𝐴𝐾𝐵𝐾𝐵 ≠ 0)) → (𝐴 / 𝐵) ∈ 𝐾)
 
Theoremcphcjcl 24356 The scalar field of a subcomplex pre-Hilbert space is closed under conjugation. (Contributed by Mario Carneiro, 11-Oct-2015.)
𝐹 = (Scalar‘𝑊)    &   𝐾 = (Base‘𝐹)       ((𝑊 ∈ ℂPreHil ∧ 𝐴𝐾) → (∗‘𝐴) ∈ 𝐾)
 
Theoremcphsqrtcl 24357 The scalar field of a subcomplex pre-Hilbert space is closed under square roots of nonnegative reals. (Contributed by Mario Carneiro, 8-Oct-2015.)
𝐹 = (Scalar‘𝑊)    &   𝐾 = (Base‘𝐹)       ((𝑊 ∈ ℂPreHil ∧ (𝐴𝐾𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) → (√‘𝐴) ∈ 𝐾)
 
Theoremcphabscl 24358 The scalar field of a subcomplex pre-Hilbert space is closed under the absolute value operation. (Contributed by Mario Carneiro, 11-Oct-2015.)
𝐹 = (Scalar‘𝑊)    &   𝐾 = (Base‘𝐹)       ((𝑊 ∈ ℂPreHil ∧ 𝐴𝐾) → (abs‘𝐴) ∈ 𝐾)
 
Theoremcphsqrtcl2 24359 The scalar field of a subcomplex pre-Hilbert space is closed under square roots of all numbers except possibly the negative reals. (Contributed by Mario Carneiro, 8-Oct-2015.)
𝐹 = (Scalar‘𝑊)    &   𝐾 = (Base‘𝐹)       ((𝑊 ∈ ℂPreHil ∧ 𝐴𝐾 ∧ ¬ -𝐴 ∈ ℝ+) → (√‘𝐴) ∈ 𝐾)
 
Theoremcphsqrtcl3 24360 If the scalar field of a subcomplex pre-Hilbert space contains the imaginary unit i, then it is closed under square roots (i.e., it is quadratically closed). (Contributed by Mario Carneiro, 11-Oct-2015.)
𝐹 = (Scalar‘𝑊)    &   𝐾 = (Base‘𝐹)       ((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾𝐴𝐾) → (√‘𝐴) ∈ 𝐾)
 
Theoremcphqss 24361 The scalar field of a subcomplex pre-Hilbert space contains the rational numbers. (Contributed by Mario Carneiro, 15-Oct-2015.)
𝐹 = (Scalar‘𝑊)    &   𝐾 = (Base‘𝐹)       (𝑊 ∈ ℂPreHil → ℚ ⊆ 𝐾)
 
Theoremcphclm 24362 A subcomplex pre-Hilbert space is a subcomplex module. (Contributed by Mario Carneiro, 16-Oct-2015.)
(𝑊 ∈ ℂPreHil → 𝑊 ∈ ℂMod)
 
Theoremcphnmvs 24363 Norm of a scalar product. (Contributed by Mario Carneiro, 16-Oct-2015.)
𝑉 = (Base‘𝑊)    &   𝑁 = (norm‘𝑊)    &    · = ( ·𝑠𝑊)    &   𝐹 = (Scalar‘𝑊)    &   𝐾 = (Base‘𝐹)       ((𝑊 ∈ ℂPreHil ∧ 𝑋𝐾𝑌𝑉) → (𝑁‘(𝑋 · 𝑌)) = ((abs‘𝑋) · (𝑁𝑌)))
 
Theoremcphipcl 24364 An inner product is a member of the complex numbers. (Contributed by Mario Carneiro, 13-Oct-2015.)
𝑉 = (Base‘𝑊)    &    , = (·𝑖𝑊)       ((𝑊 ∈ ℂPreHil ∧ 𝐴𝑉𝐵𝑉) → (𝐴 , 𝐵) ∈ ℂ)
 
Theoremcphnmfval 24365* The value of the norm in a subcomplex pre-Hilbert space is the square root of the inner product of a vector with itself. (Contributed by Mario Carneiro, 7-Oct-2015.)
𝑉 = (Base‘𝑊)    &    , = (·𝑖𝑊)    &   𝑁 = (norm‘𝑊)       (𝑊 ∈ ℂPreHil → 𝑁 = (𝑥𝑉 ↦ (√‘(𝑥 , 𝑥))))
 
Theoremcphnm 24366 The square of the norm is the norm of an inner product in a subcomplex pre-Hilbert space. (Contributed by Mario Carneiro, 7-Oct-2015.)
𝑉 = (Base‘𝑊)    &    , = (·𝑖𝑊)    &   𝑁 = (norm‘𝑊)       ((𝑊 ∈ ℂPreHil ∧ 𝐴𝑉) → (𝑁𝐴) = (√‘(𝐴 , 𝐴)))
 
Theoremnmsq 24367 The square of the norm is the norm of an inner product in a subcomplex pre-Hilbert space. Equation I4 of [Ponnusamy] p. 362. (Contributed by NM, 1-Feb-2007.) (Revised by Mario Carneiro, 7-Oct-2015.)
𝑉 = (Base‘𝑊)    &    , = (·𝑖𝑊)    &   𝑁 = (norm‘𝑊)       ((𝑊 ∈ ℂPreHil ∧ 𝐴𝑉) → ((𝑁𝐴)↑2) = (𝐴 , 𝐴))
 
Theoremcphnmf 24368 The norm of a vector is a member of the scalar field in a subcomplex pre-Hilbert space. (Contributed by Mario Carneiro, 9-Oct-2015.)
𝑉 = (Base‘𝑊)    &    , = (·𝑖𝑊)    &   𝑁 = (norm‘𝑊)    &   𝐹 = (Scalar‘𝑊)    &   𝐾 = (Base‘𝐹)       (𝑊 ∈ ℂPreHil → 𝑁:𝑉𝐾)
 
Theoremcphnmcl 24369 The norm of a vector is a member of the scalar field in a subcomplex pre-Hilbert space. (Contributed by Mario Carneiro, 9-Oct-2015.)
𝑉 = (Base‘𝑊)    &    , = (·𝑖𝑊)    &   𝑁 = (norm‘𝑊)    &   𝐹 = (Scalar‘𝑊)    &   𝐾 = (Base‘𝐹)       ((𝑊 ∈ ℂPreHil ∧ 𝐴𝑉) → (𝑁𝐴) ∈ 𝐾)
 
Theoremreipcl 24370 An inner product of an element with itself is real. (Contributed by Mario Carneiro, 7-Oct-2015.)
𝑉 = (Base‘𝑊)    &    , = (·𝑖𝑊)       ((𝑊 ∈ ℂPreHil ∧ 𝐴𝑉) → (𝐴 , 𝐴) ∈ ℝ)
 
Theoremipge0 24371 The inner product in a subcomplex pre-Hilbert space is positive definite. (Contributed by Mario Carneiro, 7-Oct-2015.)
𝑉 = (Base‘𝑊)    &    , = (·𝑖𝑊)       ((𝑊 ∈ ℂPreHil ∧ 𝐴𝑉) → 0 ≤ (𝐴 , 𝐴))
 
Theoremcphipcj 24372 Conjugate of an inner product in a subcomplex pre-Hilbert space. Complex version of ipcj 20848. (Contributed by Mario Carneiro, 16-Oct-2015.)
, = (·𝑖𝑊)    &   𝑉 = (Base‘𝑊)       ((𝑊 ∈ ℂPreHil ∧ 𝐴𝑉𝐵𝑉) → (∗‘(𝐴 , 𝐵)) = (𝐵 , 𝐴))
 
Theoremcphipipcj 24373 An inner product times its conjugate. (Contributed by NM, 23-Nov-2007.) (Revised by AV, 19-Oct-2021.)
, = (·𝑖𝑊)    &   𝑉 = (Base‘𝑊)       ((𝑊 ∈ ℂPreHil ∧ 𝐴𝑉𝐵𝑉) → ((𝐴 , 𝐵) · (𝐵 , 𝐴)) = ((abs‘(𝐴 , 𝐵))↑2))
 
Theoremcphorthcom 24374 Orthogonality (meaning inner product is 0) is commutative. Complex version of iporthcom 20849. (Contributed by Mario Carneiro, 16-Oct-2015.)
, = (·𝑖𝑊)    &   𝑉 = (Base‘𝑊)       ((𝑊 ∈ ℂPreHil ∧ 𝐴𝑉𝐵𝑉) → ((𝐴 , 𝐵) = 0 ↔ (𝐵 , 𝐴) = 0))
 
Theoremcphip0l 24375 Inner product with a zero first argument. Part of proof of Theorem 6.44 of [Ponnusamy] p. 361. Complex version of ip0l 20850. (Contributed by Mario Carneiro, 16-Oct-2015.)
, = (·𝑖𝑊)    &   𝑉 = (Base‘𝑊)    &    0 = (0g𝑊)       ((𝑊 ∈ ℂPreHil ∧ 𝐴𝑉) → ( 0 , 𝐴) = 0)
 
Theoremcphip0r 24376 Inner product with a zero second argument. Complex version of ip0r 20851. (Contributed by Mario Carneiro, 16-Oct-2015.)
, = (·𝑖𝑊)    &   𝑉 = (Base‘𝑊)    &    0 = (0g𝑊)       ((𝑊 ∈ ℂPreHil ∧ 𝐴𝑉) → (𝐴 , 0 ) = 0)
 
Theoremcphipeq0 24377 The inner product of a vector with itself is zero iff the vector is zero. Part of Definition 3.1-1 of [Kreyszig] p. 129. Complex version of ipeq0 20852. (Contributed by Mario Carneiro, 16-Oct-2015.)
, = (·𝑖𝑊)    &   𝑉 = (Base‘𝑊)    &    0 = (0g𝑊)       ((𝑊 ∈ ℂPreHil ∧ 𝐴𝑉) → ((𝐴 , 𝐴) = 0 ↔ 𝐴 = 0 ))
 
Theoremcphdir 24378 Distributive law for inner product (right-distributivity). Equation I3 of [Ponnusamy] p. 362. Complex version of ipdir 20853. (Contributed by Mario Carneiro, 16-Oct-2015.)
, = (·𝑖𝑊)    &   𝑉 = (Base‘𝑊)    &    + = (+g𝑊)       ((𝑊 ∈ ℂPreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → ((𝐴 + 𝐵) , 𝐶) = ((𝐴 , 𝐶) + (𝐵 , 𝐶)))
 
Theoremcphdi 24379 Distributive law for inner product (left-distributivity). Complex version of ipdi 20854. (Contributed by Mario Carneiro, 16-Oct-2015.)
, = (·𝑖𝑊)    &   𝑉 = (Base‘𝑊)    &    + = (+g𝑊)       ((𝑊 ∈ ℂPreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → (𝐴 , (𝐵 + 𝐶)) = ((𝐴 , 𝐵) + (𝐴 , 𝐶)))
 
Theoremcph2di 24380 Distributive law for inner product. Complex version of ip2di 20855. (Contributed by Mario Carneiro, 16-Oct-2015.)
, = (·𝑖𝑊)    &   𝑉 = (Base‘𝑊)    &    + = (+g𝑊)    &   (𝜑𝑊 ∈ ℂPreHil)    &   (𝜑𝐴𝑉)    &   (𝜑𝐵𝑉)    &   (𝜑𝐶𝑉)    &   (𝜑𝐷𝑉)       (𝜑 → ((𝐴 + 𝐵) , (𝐶 + 𝐷)) = (((𝐴 , 𝐶) + (𝐵 , 𝐷)) + ((𝐴 , 𝐷) + (𝐵 , 𝐶))))
 
Theoremcphsubdir 24381 Distributive law for inner product subtraction. Complex version of ipsubdir 20856. (Contributed by Mario Carneiro, 16-Oct-2015.)
, = (·𝑖𝑊)    &   𝑉 = (Base‘𝑊)    &    = (-g𝑊)       ((𝑊 ∈ ℂPreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → ((𝐴 𝐵) , 𝐶) = ((𝐴 , 𝐶) − (𝐵 , 𝐶)))
 
Theoremcphsubdi 24382 Distributive law for inner product subtraction. Complex version of ipsubdi 20857. (Contributed by Mario Carneiro, 16-Oct-2015.)
, = (·𝑖𝑊)    &   𝑉 = (Base‘𝑊)    &    = (-g𝑊)       ((𝑊 ∈ ℂPreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → (𝐴 , (𝐵 𝐶)) = ((𝐴 , 𝐵) − (𝐴 , 𝐶)))
 
Theoremcph2subdi 24383 Distributive law for inner product subtraction. Complex version of ip2subdi 20858. (Contributed by Mario Carneiro, 16-Oct-2015.)
, = (·𝑖𝑊)    &   𝑉 = (Base‘𝑊)    &    = (-g𝑊)    &   (𝜑𝑊 ∈ ℂPreHil)    &   (𝜑𝐴𝑉)    &   (𝜑𝐵𝑉)    &   (𝜑𝐶𝑉)    &   (𝜑𝐷𝑉)       (𝜑 → ((𝐴 𝐵) , (𝐶 𝐷)) = (((𝐴 , 𝐶) + (𝐵 , 𝐷)) − ((𝐴 , 𝐷) + (𝐵 , 𝐶))))
 
Theoremcphass 24384 Associative law for inner product. Equation I2 of [Ponnusamy] p. 363. See ipass 20859, his5 29457. (Contributed by Mario Carneiro, 16-Oct-2015.)
, = (·𝑖𝑊)    &   𝑉 = (Base‘𝑊)    &   𝐹 = (Scalar‘𝑊)    &   𝐾 = (Base‘𝐹)    &    · = ( ·𝑠𝑊)       ((𝑊 ∈ ℂPreHil ∧ (𝐴𝐾𝐵𝑉𝐶𝑉)) → ((𝐴 · 𝐵) , 𝐶) = (𝐴 · (𝐵 , 𝐶)))
 
Theoremcphassr 24385 "Associative" law for second argument of inner product (compare cphass 24384). See ipassr 20860, his52 . (Contributed by Mario Carneiro, 16-Oct-2015.)
, = (·𝑖𝑊)    &   𝑉 = (Base‘𝑊)    &   𝐹 = (Scalar‘𝑊)    &   𝐾 = (Base‘𝐹)    &    · = ( ·𝑠𝑊)       ((𝑊 ∈ ℂPreHil ∧ (𝐴𝐾𝐵𝑉𝐶𝑉)) → (𝐵 , (𝐴 · 𝐶)) = ((∗‘𝐴) · (𝐵 , 𝐶)))
 
Theoremcph2ass 24386 Move scalar multiplication to outside of inner product. See his35 29459. (Contributed by Mario Carneiro, 17-Oct-2015.)
, = (·𝑖𝑊)    &   𝑉 = (Base‘𝑊)    &   𝐹 = (Scalar‘𝑊)    &   𝐾 = (Base‘𝐹)    &    · = ( ·𝑠𝑊)       ((𝑊 ∈ ℂPreHil ∧ (𝐴𝐾𝐵𝐾) ∧ (𝐶𝑉𝐷𝑉)) → ((𝐴 · 𝐶) , (𝐵 · 𝐷)) = ((𝐴 · (∗‘𝐵)) · (𝐶 , 𝐷)))
 
Theoremcphassi 24387 Associative law for the first argument of an inner product with scalar 𝑖. (Contributed by AV, 17-Oct-2021.)
𝑋 = (Base‘𝑊)    &    · = ( ·𝑠𝑊)    &    , = (·𝑖𝑊)    &   𝐹 = (Scalar‘𝑊)    &   𝐾 = (Base‘𝐹)       (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((i · 𝐵) , 𝐴) = (i · (𝐵 , 𝐴)))
 
Theoremcphassir 24388 "Associative" law for the second argument of an inner product with scalar 𝑖. (Contributed by AV, 17-Oct-2021.)
𝑋 = (Base‘𝑊)    &    · = ( ·𝑠𝑊)    &    , = (·𝑖𝑊)    &   𝐹 = (Scalar‘𝑊)    &   𝐾 = (Base‘𝐹)       (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (𝐴 , (i · 𝐵)) = (-i · (𝐴 , 𝐵)))
 
Theoremcphpyth 24389 The pythagorean theorem for a subcomplex pre-Hilbert space. The square of the norm of the sum of two orthogonal vectors (i.e., whose inner product is 0) is the sum of the squares of their norms. Problem 2 in [Kreyszig] p. 135. This is Metamath 100 proof #4. (Contributed by NM, 17-Apr-2008.) (Revised by SN, 22-Sep-2024.)
𝑉 = (Base‘𝑊)    &    , = (·𝑖𝑊)    &    + = (+g𝑊)    &   𝑁 = (norm‘𝑊)    &   (𝜑𝑊 ∈ ℂPreHil)    &   (𝜑𝐴𝑉)    &   (𝜑𝐵𝑉)       ((𝜑 ∧ (𝐴 , 𝐵) = 0) → ((𝑁‘(𝐴 + 𝐵))↑2) = (((𝑁𝐴)↑2) + ((𝑁𝐵)↑2)))
 
Theoremtcphex 24390* Lemma for tcphbas 24392 and similar theorems. (Contributed by Mario Carneiro, 7-Oct-2015.)
𝑉 = (Base‘𝑊)       (𝑥𝑉 ↦ (√‘(𝑥 , 𝑥))) ∈ V
 
Theoremtcphval 24391* Define a function to augment a subcomplex pre-Hilbert space with norm. (Contributed by Mario Carneiro, 7-Oct-2015.)
𝐺 = (toℂPreHil‘𝑊)    &   𝑉 = (Base‘𝑊)    &    , = (·𝑖𝑊)       𝐺 = (𝑊 toNrmGrp (𝑥𝑉 ↦ (√‘(𝑥 , 𝑥))))
 
Theoremtcphbas 24392 The base set of a subcomplex pre-Hilbert space augmented with norm. (Contributed by Mario Carneiro, 8-Oct-2015.)
𝐺 = (toℂPreHil‘𝑊)    &   𝑉 = (Base‘𝑊)       𝑉 = (Base‘𝐺)
 
Theoremtchplusg 24393 The addition operation of a subcomplex pre-Hilbert space augmented with norm. (Contributed by Mario Carneiro, 8-Oct-2015.)
𝐺 = (toℂPreHil‘𝑊)    &    + = (+g𝑊)        + = (+g𝐺)
 
Theoremtcphsub 24394 The subtraction operation of a subcomplex pre-Hilbert space augmented with norm. (Contributed by Thierry Arnoux, 30-Jun-2019.)
𝐺 = (toℂPreHil‘𝑊)    &    = (-g𝑊)        = (-g𝐺)
 
Theoremtcphmulr 24395 The ring operation of a subcomplex pre-Hilbert space augmented with norm. (Contributed by Mario Carneiro, 8-Oct-2015.)
𝐺 = (toℂPreHil‘𝑊)    &    · = (.r𝑊)        · = (.r𝐺)
 
Theoremtcphsca 24396 The scalar field of a subcomplex pre-Hilbert space augmented with norm. (Contributed by Mario Carneiro, 8-Oct-2015.)
𝐺 = (toℂPreHil‘𝑊)    &   𝐹 = (Scalar‘𝑊)       𝐹 = (Scalar‘𝐺)
 
Theoremtcphvsca 24397 The scalar multiplication of a subcomplex pre-Hilbert space augmented with norm. (Contributed by Mario Carneiro, 8-Oct-2015.)
𝐺 = (toℂPreHil‘𝑊)    &    · = ( ·𝑠𝑊)        · = ( ·𝑠𝐺)
 
Theoremtcphip 24398 The inner product of a subcomplex pre-Hilbert space augmented with norm. (Contributed by Mario Carneiro, 8-Oct-2015.)
𝐺 = (toℂPreHil‘𝑊)    &    · = (·𝑖𝑊)        · = (·𝑖𝐺)
 
Theoremtcphtopn 24399 The topology of a subcomplex pre-Hilbert space augmented with norm. (Contributed by Mario Carneiro, 8-Oct-2015.)
𝐺 = (toℂPreHil‘𝑊)    &   𝐷 = (dist‘𝐺)    &   𝐽 = (TopOpen‘𝐺)       (𝑊𝑉𝐽 = (MetOpen‘𝐷))
 
Theoremtcphphl 24400 Augmentation of a subcomplex pre-Hilbert space with a norm does not affect whether it is still a pre-Hilbert space (because all the original components are the same). (Contributed by Mario Carneiro, 8-Oct-2015.)
𝐺 = (toℂPreHil‘𝑊)       (𝑊 ∈ PreHil ↔ 𝐺 ∈ PreHil)
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42900 430 42901-43000 431 43001-43100 432 43101-43200 433 43201-43300 434 43301-43400 435 43401-43500 436 43501-43600 437 43601-43700 438 43701-43800 439 43801-43900 440 43901-44000 441 44001-44100 442 44101-44200 443 44201-44300 444 44301-44400 445 44401-44500 446 44501-44600 447 44601-44700 448 44701-44800 449 44801-44900 450 44901-45000 451 45001-45100 452 45101-45200 453 45201-45300 454 45301-45400 455 45401-45500 456 45501-45600 457 45601-45700 458 45701-45800 459 45801-45900 460 45901-46000 461 46001-46100 462 46101-46200 463 46201-46300 464 46301-46400 465 46401-46500 466 46501-46532
  Copyright terms: Public domain < Previous  Next >