![]() |
Metamath
Proof Explorer Theorem List (p. 244 of 491) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-30946) |
![]() (30947-32469) |
![]() (32470-49035) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | ucnval 24301* | The set of all uniformly continuous function from uniform space 𝑈 to uniform space 𝑉. (Contributed by Thierry Arnoux, 16-Nov-2017.) |
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ (UnifOn‘𝑌)) → (𝑈 Cnu𝑉) = {𝑓 ∈ (𝑌 ↑m 𝑋) ∣ ∀𝑠 ∈ 𝑉 ∃𝑟 ∈ 𝑈 ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑟𝑦 → (𝑓‘𝑥)𝑠(𝑓‘𝑦))}) | ||
Theorem | isucn 24302* | The predicate "𝐹 is a uniformly continuous function from uniform space 𝑈 to uniform space 𝑉". (Contributed by Thierry Arnoux, 16-Nov-2017.) |
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ (UnifOn‘𝑌)) → (𝐹 ∈ (𝑈 Cnu𝑉) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑠 ∈ 𝑉 ∃𝑟 ∈ 𝑈 ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑟𝑦 → (𝐹‘𝑥)𝑠(𝐹‘𝑦))))) | ||
Theorem | isucn2 24303* | The predicate "𝐹 is a uniformly continuous function from uniform space 𝑈 to uniform space 𝑉", expressed with filter bases for the entourages. (Contributed by Thierry Arnoux, 26-Jan-2018.) |
⊢ 𝑈 = ((𝑋 × 𝑋)filGen𝑅) & ⊢ 𝑉 = ((𝑌 × 𝑌)filGen𝑆) & ⊢ (𝜑 → 𝑈 ∈ (UnifOn‘𝑋)) & ⊢ (𝜑 → 𝑉 ∈ (UnifOn‘𝑌)) & ⊢ (𝜑 → 𝑅 ∈ (fBas‘(𝑋 × 𝑋))) & ⊢ (𝜑 → 𝑆 ∈ (fBas‘(𝑌 × 𝑌))) ⇒ ⊢ (𝜑 → (𝐹 ∈ (𝑈 Cnu𝑉) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑠 ∈ 𝑆 ∃𝑟 ∈ 𝑅 ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑟𝑦 → (𝐹‘𝑥)𝑠(𝐹‘𝑦))))) | ||
Theorem | ucnimalem 24304* | Reformulate the 𝐺 function as a mapping with one variable. (Contributed by Thierry Arnoux, 19-Nov-2017.) |
⊢ (𝜑 → 𝑈 ∈ (UnifOn‘𝑋)) & ⊢ (𝜑 → 𝑉 ∈ (UnifOn‘𝑌)) & ⊢ (𝜑 → 𝐹 ∈ (𝑈 Cnu𝑉)) & ⊢ (𝜑 → 𝑊 ∈ 𝑉) & ⊢ 𝐺 = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ 〈(𝐹‘𝑥), (𝐹‘𝑦)〉) ⇒ ⊢ 𝐺 = (𝑝 ∈ (𝑋 × 𝑋) ↦ 〈(𝐹‘(1st ‘𝑝)), (𝐹‘(2nd ‘𝑝))〉) | ||
Theorem | ucnima 24305* | An equivalent statement of the definition of uniformly continuous function. (Contributed by Thierry Arnoux, 19-Nov-2017.) |
⊢ (𝜑 → 𝑈 ∈ (UnifOn‘𝑋)) & ⊢ (𝜑 → 𝑉 ∈ (UnifOn‘𝑌)) & ⊢ (𝜑 → 𝐹 ∈ (𝑈 Cnu𝑉)) & ⊢ (𝜑 → 𝑊 ∈ 𝑉) & ⊢ 𝐺 = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ 〈(𝐹‘𝑥), (𝐹‘𝑦)〉) ⇒ ⊢ (𝜑 → ∃𝑟 ∈ 𝑈 (𝐺 “ 𝑟) ⊆ 𝑊) | ||
Theorem | ucnprima 24306* | The preimage by a uniformly continuous function 𝐹 of an entourage 𝑊 of 𝑌 is an entourage of 𝑋. Note of the definition 1 of [BourbakiTop1] p. II.6. (Contributed by Thierry Arnoux, 19-Nov-2017.) |
⊢ (𝜑 → 𝑈 ∈ (UnifOn‘𝑋)) & ⊢ (𝜑 → 𝑉 ∈ (UnifOn‘𝑌)) & ⊢ (𝜑 → 𝐹 ∈ (𝑈 Cnu𝑉)) & ⊢ (𝜑 → 𝑊 ∈ 𝑉) & ⊢ 𝐺 = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ 〈(𝐹‘𝑥), (𝐹‘𝑦)〉) ⇒ ⊢ (𝜑 → (◡𝐺 “ 𝑊) ∈ 𝑈) | ||
Theorem | iducn 24307 | The identity is uniformly continuous from a uniform structure to itself. Example 1 of [BourbakiTop1] p. II.6. (Contributed by Thierry Arnoux, 16-Nov-2017.) |
⊢ (𝑈 ∈ (UnifOn‘𝑋) → ( I ↾ 𝑋) ∈ (𝑈 Cnu𝑈)) | ||
Theorem | cstucnd 24308 | A constant function is uniformly continuous. Deduction form. Example 1 of [BourbakiTop1] p. II.6. (Contributed by Thierry Arnoux, 16-Nov-2017.) |
⊢ (𝜑 → 𝑈 ∈ (UnifOn‘𝑋)) & ⊢ (𝜑 → 𝑉 ∈ (UnifOn‘𝑌)) & ⊢ (𝜑 → 𝐴 ∈ 𝑌) ⇒ ⊢ (𝜑 → (𝑋 × {𝐴}) ∈ (𝑈 Cnu𝑉)) | ||
Theorem | ucncn 24309 | Uniform continuity implies continuity. Deduction form. Proposition 1 of [BourbakiTop1] p. II.6. (Contributed by Thierry Arnoux, 30-Nov-2017.) |
⊢ 𝐽 = (TopOpen‘𝑅) & ⊢ 𝐾 = (TopOpen‘𝑆) & ⊢ (𝜑 → 𝑅 ∈ UnifSp) & ⊢ (𝜑 → 𝑆 ∈ UnifSp) & ⊢ (𝜑 → 𝑅 ∈ TopSp) & ⊢ (𝜑 → 𝑆 ∈ TopSp) & ⊢ (𝜑 → 𝐹 ∈ ((UnifSt‘𝑅) Cnu(UnifSt‘𝑆))) ⇒ ⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn 𝐾)) | ||
Syntax | ccfilu 24310 | Extend class notation with the set of Cauchy filter bases. |
class CauFilu | ||
Definition | df-cfilu 24311* | Define the set of Cauchy filter bases on a uniform space. A Cauchy filter base is a filter base on the set such that for every entourage 𝑣, there is an element 𝑎 of the filter "small enough in 𝑣 " i.e. such that every pair {𝑥, 𝑦} of points in 𝑎 is related by 𝑣". Definition 2 of [BourbakiTop1] p. II.13. (Contributed by Thierry Arnoux, 16-Nov-2017.) |
⊢ CauFilu = (𝑢 ∈ ∪ ran UnifOn ↦ {𝑓 ∈ (fBas‘dom ∪ 𝑢) ∣ ∀𝑣 ∈ 𝑢 ∃𝑎 ∈ 𝑓 (𝑎 × 𝑎) ⊆ 𝑣}) | ||
Theorem | iscfilu 24312* | The predicate "𝐹 is a Cauchy filter base on uniform space 𝑈". (Contributed by Thierry Arnoux, 18-Nov-2017.) |
⊢ (𝑈 ∈ (UnifOn‘𝑋) → (𝐹 ∈ (CauFilu‘𝑈) ↔ (𝐹 ∈ (fBas‘𝑋) ∧ ∀𝑣 ∈ 𝑈 ∃𝑎 ∈ 𝐹 (𝑎 × 𝑎) ⊆ 𝑣))) | ||
Theorem | cfilufbas 24313 | A Cauchy filter base is a filter base. (Contributed by Thierry Arnoux, 19-Nov-2017.) |
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐹 ∈ (CauFilu‘𝑈)) → 𝐹 ∈ (fBas‘𝑋)) | ||
Theorem | cfiluexsm 24314* | For a Cauchy filter base and any entourage 𝑉, there is an element of the filter small in 𝑉. (Contributed by Thierry Arnoux, 19-Nov-2017.) |
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐹 ∈ (CauFilu‘𝑈) ∧ 𝑉 ∈ 𝑈) → ∃𝑎 ∈ 𝐹 (𝑎 × 𝑎) ⊆ 𝑉) | ||
Theorem | fmucndlem 24315* | Lemma for fmucnd 24316. (Contributed by Thierry Arnoux, 19-Nov-2017.) |
⊢ ((𝐹 Fn 𝑋 ∧ 𝐴 ⊆ 𝑋) → ((𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ 〈(𝐹‘𝑥), (𝐹‘𝑦)〉) “ (𝐴 × 𝐴)) = ((𝐹 “ 𝐴) × (𝐹 “ 𝐴))) | ||
Theorem | fmucnd 24316* | The image of a Cauchy filter base by an uniformly continuous function is a Cauchy filter base. Deduction form. Proposition 3 of [BourbakiTop1] p. II.13. (Contributed by Thierry Arnoux, 18-Nov-2017.) |
⊢ (𝜑 → 𝑈 ∈ (UnifOn‘𝑋)) & ⊢ (𝜑 → 𝑉 ∈ (UnifOn‘𝑌)) & ⊢ (𝜑 → 𝐹 ∈ (𝑈 Cnu𝑉)) & ⊢ (𝜑 → 𝐶 ∈ (CauFilu‘𝑈)) & ⊢ 𝐷 = ran (𝑎 ∈ 𝐶 ↦ (𝐹 “ 𝑎)) ⇒ ⊢ (𝜑 → 𝐷 ∈ (CauFilu‘𝑉)) | ||
Theorem | cfilufg 24317 | The filter generated by a Cauchy filter base is still a Cauchy filter base. (Contributed by Thierry Arnoux, 24-Jan-2018.) |
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐹 ∈ (CauFilu‘𝑈)) → (𝑋filGen𝐹) ∈ (CauFilu‘𝑈)) | ||
Theorem | trcfilu 24318 | Condition for the trace of a Cauchy filter base to be a Cauchy filter base for the restricted uniform structure. (Contributed by Thierry Arnoux, 24-Jan-2018.) |
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝐹 ∈ (CauFilu‘𝑈) ∧ ¬ ∅ ∈ (𝐹 ↾t 𝐴)) ∧ 𝐴 ⊆ 𝑋) → (𝐹 ↾t 𝐴) ∈ (CauFilu‘(𝑈 ↾t (𝐴 × 𝐴)))) | ||
Theorem | cfiluweak 24319 | A Cauchy filter base is also a Cauchy filter base on any coarser uniform structure. (Contributed by Thierry Arnoux, 24-Jan-2018.) |
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴 ⊆ 𝑋 ∧ 𝐹 ∈ (CauFilu‘(𝑈 ↾t (𝐴 × 𝐴)))) → 𝐹 ∈ (CauFilu‘𝑈)) | ||
Theorem | neipcfilu 24320 | In an uniform space, a neighboring filter is a Cauchy filter base. (Contributed by Thierry Arnoux, 24-Jan-2018.) |
⊢ 𝑋 = (Base‘𝑊) & ⊢ 𝐽 = (TopOpen‘𝑊) & ⊢ 𝑈 = (UnifSt‘𝑊) ⇒ ⊢ ((𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝑃 ∈ 𝑋) → ((nei‘𝐽)‘{𝑃}) ∈ (CauFilu‘𝑈)) | ||
Syntax | ccusp 24321 | Extend class notation with the class of all complete uniform spaces. |
class CUnifSp | ||
Definition | df-cusp 24322* | Define the class of all complete uniform spaces. Definition 3 of [BourbakiTop1] p. II.15. (Contributed by Thierry Arnoux, 1-Dec-2017.) |
⊢ CUnifSp = {𝑤 ∈ UnifSp ∣ ∀𝑐 ∈ (Fil‘(Base‘𝑤))(𝑐 ∈ (CauFilu‘(UnifSt‘𝑤)) → ((TopOpen‘𝑤) fLim 𝑐) ≠ ∅)} | ||
Theorem | iscusp 24323* | The predicate "𝑊 is a complete uniform space." (Contributed by Thierry Arnoux, 3-Dec-2017.) |
⊢ (𝑊 ∈ CUnifSp ↔ (𝑊 ∈ UnifSp ∧ ∀𝑐 ∈ (Fil‘(Base‘𝑊))(𝑐 ∈ (CauFilu‘(UnifSt‘𝑊)) → ((TopOpen‘𝑊) fLim 𝑐) ≠ ∅))) | ||
Theorem | cuspusp 24324 | A complete uniform space is an uniform space. (Contributed by Thierry Arnoux, 3-Dec-2017.) |
⊢ (𝑊 ∈ CUnifSp → 𝑊 ∈ UnifSp) | ||
Theorem | cuspcvg 24325 | In a complete uniform space, any Cauchy filter 𝐶 has a limit. (Contributed by Thierry Arnoux, 3-Dec-2017.) |
⊢ 𝐵 = (Base‘𝑊) & ⊢ 𝐽 = (TopOpen‘𝑊) ⇒ ⊢ ((𝑊 ∈ CUnifSp ∧ 𝐶 ∈ (CauFilu‘(UnifSt‘𝑊)) ∧ 𝐶 ∈ (Fil‘𝐵)) → (𝐽 fLim 𝐶) ≠ ∅) | ||
Theorem | iscusp2 24326* | The predicate "𝑊 is a complete uniform space." (Contributed by Thierry Arnoux, 15-Dec-2017.) |
⊢ 𝐵 = (Base‘𝑊) & ⊢ 𝑈 = (UnifSt‘𝑊) & ⊢ 𝐽 = (TopOpen‘𝑊) ⇒ ⊢ (𝑊 ∈ CUnifSp ↔ (𝑊 ∈ UnifSp ∧ ∀𝑐 ∈ (Fil‘𝐵)(𝑐 ∈ (CauFilu‘𝑈) → (𝐽 fLim 𝑐) ≠ ∅))) | ||
Theorem | cnextucn 24327* | Extension by continuity. Proposition 11 of [BourbakiTop1] p. II.20. Given a topology 𝐽 on 𝑋, a subset 𝐴 dense in 𝑋, this states a condition for 𝐹 from 𝐴 to a space 𝑌 Hausdorff and complete to be extensible by continuity. (Contributed by Thierry Arnoux, 4-Dec-2017.) |
⊢ 𝑋 = (Base‘𝑉) & ⊢ 𝑌 = (Base‘𝑊) & ⊢ 𝐽 = (TopOpen‘𝑉) & ⊢ 𝐾 = (TopOpen‘𝑊) & ⊢ 𝑈 = (UnifSt‘𝑊) & ⊢ (𝜑 → 𝑉 ∈ TopSp) & ⊢ (𝜑 → 𝑊 ∈ TopSp) & ⊢ (𝜑 → 𝑊 ∈ CUnifSp) & ⊢ (𝜑 → 𝐾 ∈ Haus) & ⊢ (𝜑 → 𝐴 ⊆ 𝑋) & ⊢ (𝜑 → 𝐹:𝐴⟶𝑌) & ⊢ (𝜑 → ((cls‘𝐽)‘𝐴) = 𝑋) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ((𝑌 FilMap 𝐹)‘(((nei‘𝐽)‘{𝑥}) ↾t 𝐴)) ∈ (CauFilu‘𝑈)) ⇒ ⊢ (𝜑 → ((𝐽CnExt𝐾)‘𝐹) ∈ (𝐽 Cn 𝐾)) | ||
Theorem | ucnextcn 24328 | Extension by continuity. Theorem 2 of [BourbakiTop1] p. II.20. Given an uniform space on a set 𝑋, a subset 𝐴 dense in 𝑋, and a function 𝐹 uniformly continuous from 𝐴 to 𝑌, that function can be extended by continuity to the whole 𝑋, and its extension is uniformly continuous. (Contributed by Thierry Arnoux, 25-Jan-2018.) |
⊢ 𝑋 = (Base‘𝑉) & ⊢ 𝑌 = (Base‘𝑊) & ⊢ 𝐽 = (TopOpen‘𝑉) & ⊢ 𝐾 = (TopOpen‘𝑊) & ⊢ 𝑆 = (UnifSt‘𝑉) & ⊢ 𝑇 = (UnifSt‘(𝑉 ↾s 𝐴)) & ⊢ 𝑈 = (UnifSt‘𝑊) & ⊢ (𝜑 → 𝑉 ∈ TopSp) & ⊢ (𝜑 → 𝑉 ∈ UnifSp) & ⊢ (𝜑 → 𝑊 ∈ TopSp) & ⊢ (𝜑 → 𝑊 ∈ CUnifSp) & ⊢ (𝜑 → 𝐾 ∈ Haus) & ⊢ (𝜑 → 𝐴 ⊆ 𝑋) & ⊢ (𝜑 → 𝐹 ∈ (𝑇 Cnu𝑈)) & ⊢ (𝜑 → ((cls‘𝐽)‘𝐴) = 𝑋) ⇒ ⊢ (𝜑 → ((𝐽CnExt𝐾)‘𝐹) ∈ (𝐽 Cn 𝐾)) | ||
Theorem | ispsmet 24329* | Express the predicate "𝐷 is a pseudometric." (Contributed by Thierry Arnoux, 7-Feb-2018.) |
⊢ (𝑋 ∈ 𝑉 → (𝐷 ∈ (PsMet‘𝑋) ↔ (𝐷:(𝑋 × 𝑋)⟶ℝ* ∧ ∀𝑥 ∈ 𝑋 ((𝑥𝐷𝑥) = 0 ∧ ∀𝑦 ∈ 𝑋 ∀𝑧 ∈ 𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)))))) | ||
Theorem | psmetdmdm 24330 | Recover the base set from a pseudometric. (Contributed by Thierry Arnoux, 7-Feb-2018.) |
⊢ (𝐷 ∈ (PsMet‘𝑋) → 𝑋 = dom dom 𝐷) | ||
Theorem | psmetf 24331 | The distance function of a pseudometric as a function. (Contributed by Thierry Arnoux, 7-Feb-2018.) |
⊢ (𝐷 ∈ (PsMet‘𝑋) → 𝐷:(𝑋 × 𝑋)⟶ℝ*) | ||
Theorem | psmetcl 24332 | Closure of the distance function of a pseudometric space. (Contributed by Thierry Arnoux, 7-Feb-2018.) |
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐷𝐵) ∈ ℝ*) | ||
Theorem | psmet0 24333 | The distance function of a pseudometric space is zero if its arguments are equal. (Contributed by Thierry Arnoux, 7-Feb-2018.) |
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ∈ 𝑋) → (𝐴𝐷𝐴) = 0) | ||
Theorem | psmettri2 24334 | Triangle inequality for the distance function of a pseudometric. (Contributed by Thierry Arnoux, 11-Feb-2018.) |
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐶 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝐴𝐷𝐵) ≤ ((𝐶𝐷𝐴) +𝑒 (𝐶𝐷𝐵))) | ||
Theorem | psmetsym 24335 | The distance function of a pseudometric is symmetrical. (Contributed by Thierry Arnoux, 7-Feb-2018.) |
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐷𝐵) = (𝐵𝐷𝐴)) | ||
Theorem | psmettri 24336 | Triangle inequality for the distance function of a pseudometric space. (Contributed by Thierry Arnoux, 11-Feb-2018.) |
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐴𝐷𝐵) ≤ ((𝐴𝐷𝐶) +𝑒 (𝐶𝐷𝐵))) | ||
Theorem | psmetge0 24337 | The distance function of a pseudometric space is nonnegative. (Contributed by Thierry Arnoux, 7-Feb-2018.) |
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → 0 ≤ (𝐴𝐷𝐵)) | ||
Theorem | psmetxrge0 24338 | The distance function of a pseudometric space is a function into the nonnegative extended real numbers. (Contributed by Thierry Arnoux, 24-Feb-2018.) |
⊢ (𝐷 ∈ (PsMet‘𝑋) → 𝐷:(𝑋 × 𝑋)⟶(0[,]+∞)) | ||
Theorem | psmetres2 24339 | Restriction of a pseudometric. (Contributed by Thierry Arnoux, 11-Feb-2018.) |
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑅 ⊆ 𝑋) → (𝐷 ↾ (𝑅 × 𝑅)) ∈ (PsMet‘𝑅)) | ||
Theorem | psmetlecl 24340 | Real closure of an extended metric value that is upper bounded by a real. (Contributed by Thierry Arnoux, 11-Mar-2018.) |
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐶 ∈ ℝ ∧ (𝐴𝐷𝐵) ≤ 𝐶)) → (𝐴𝐷𝐵) ∈ ℝ) | ||
Theorem | distspace 24341 | A set 𝑋 together with a (distance) function 𝐷 which is a pseudometric is a distance space (according to E. Deza, M.M. Deza: "Dictionary of Distances", Elsevier, 2006), i.e. a (base) set 𝑋 equipped with a distance 𝐷, which is a mapping of two elements of the base set to the (extended) reals and which is nonnegative, symmetric and equal to 0 if the two elements are equal. (Contributed by AV, 15-Oct-2021.) (Revised by AV, 5-Jul-2022.) |
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝐷:(𝑋 × 𝑋)⟶ℝ* ∧ (𝐴𝐷𝐴) = 0) ∧ (0 ≤ (𝐴𝐷𝐵) ∧ (𝐴𝐷𝐵) = (𝐵𝐷𝐴)))) | ||
Syntax | cxms 24342 | Extend class notation with the class of extended metric spaces. |
class ∞MetSp | ||
Syntax | cms 24343 | Extend class notation with the class of metric spaces. |
class MetSp | ||
Syntax | ctms 24344 | Extend class notation with the function mapping a metric to the metric space it defines. |
class toMetSp | ||
Definition | df-xms 24345 | Define the (proper) class of extended metric spaces. (Contributed by Mario Carneiro, 2-Sep-2015.) |
⊢ ∞MetSp = {𝑓 ∈ TopSp ∣ (TopOpen‘𝑓) = (MetOpen‘((dist‘𝑓) ↾ ((Base‘𝑓) × (Base‘𝑓))))} | ||
Definition | df-ms 24346 | Define the (proper) class of metric spaces. (Contributed by NM, 27-Aug-2006.) |
⊢ MetSp = {𝑓 ∈ ∞MetSp ∣ ((dist‘𝑓) ↾ ((Base‘𝑓) × (Base‘𝑓))) ∈ (Met‘(Base‘𝑓))} | ||
Definition | df-tms 24347 | Define the function mapping a metric to the metric space which it defines. (Contributed by Mario Carneiro, 2-Sep-2015.) |
⊢ toMetSp = (𝑑 ∈ ∪ ran ∞Met ↦ ({〈(Base‘ndx), dom dom 𝑑〉, 〈(dist‘ndx), 𝑑〉} sSet 〈(TopSet‘ndx), (MetOpen‘𝑑)〉)) | ||
Theorem | ismet 24348* | Express the predicate "𝐷 is a metric." (Contributed by NM, 25-Aug-2006.) (Revised by Mario Carneiro, 14-Aug-2015.) |
⊢ (𝑋 ∈ 𝐴 → (𝐷 ∈ (Met‘𝑋) ↔ (𝐷:(𝑋 × 𝑋)⟶ℝ ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧 ∈ 𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) + (𝑧𝐷𝑦)))))) | ||
Theorem | isxmet 24349* | Express the predicate "𝐷 is an extended metric." (Contributed by Mario Carneiro, 20-Aug-2015.) |
⊢ (𝑋 ∈ 𝐴 → (𝐷 ∈ (∞Met‘𝑋) ↔ (𝐷:(𝑋 × 𝑋)⟶ℝ* ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧 ∈ 𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)))))) | ||
Theorem | ismeti 24350* | Properties that determine a metric. (Contributed by NM, 17-Nov-2006.) (Revised by Mario Carneiro, 14-Aug-2015.) |
⊢ 𝑋 ∈ V & ⊢ 𝐷:(𝑋 × 𝑋)⟶ℝ & ⊢ ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → ((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦)) & ⊢ ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋) → (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) + (𝑧𝐷𝑦))) ⇒ ⊢ 𝐷 ∈ (Met‘𝑋) | ||
Theorem | isxmetd 24351* | Properties that determine an extended metric. (Contributed by Mario Carneiro, 20-Aug-2015.) (Revised by AV, 9-Apr-2024.) |
⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝐷:(𝑋 × 𝑋)⟶ℝ*) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → ((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦))) ⇒ ⊢ (𝜑 → 𝐷 ∈ (∞Met‘𝑋)) | ||
Theorem | isxmet2d 24352* | It is safe to only require the triangle inequality when the values are real (so that we can use the standard addition over the reals), but in this case the nonnegativity constraint cannot be deduced and must be provided separately. (Counterexample: 𝐷(𝑥, 𝑦) = if(𝑥 = 𝑦, 0, -∞) satisfies all hypotheses except nonnegativity.) (Contributed by Mario Carneiro, 20-Aug-2015.) |
⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝐷:(𝑋 × 𝑋)⟶ℝ*) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → 0 ≤ (𝑥𝐷𝑦)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → ((𝑥𝐷𝑦) ≤ 0 ↔ 𝑥 = 𝑦)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) → (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) + (𝑧𝐷𝑦))) ⇒ ⊢ (𝜑 → 𝐷 ∈ (∞Met‘𝑋)) | ||
Theorem | metflem 24353* | Lemma for metf 24355 and others. (Contributed by NM, 30-Aug-2006.) (Revised by Mario Carneiro, 14-Aug-2015.) |
⊢ (𝐷 ∈ (Met‘𝑋) → (𝐷:(𝑋 × 𝑋)⟶ℝ ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧 ∈ 𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) + (𝑧𝐷𝑦))))) | ||
Theorem | xmetf 24354 | Mapping of the distance function of an extended metric. (Contributed by Mario Carneiro, 20-Aug-2015.) |
⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝐷:(𝑋 × 𝑋)⟶ℝ*) | ||
Theorem | metf 24355 | Mapping of the distance function of a metric space. (Contributed by NM, 30-Aug-2006.) |
⊢ (𝐷 ∈ (Met‘𝑋) → 𝐷:(𝑋 × 𝑋)⟶ℝ) | ||
Theorem | xmetcl 24356 | Closure of the distance function of a metric space. Part of Property M1 of [Kreyszig] p. 3. (Contributed by NM, 30-Aug-2006.) |
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐷𝐵) ∈ ℝ*) | ||
Theorem | metcl 24357 | Closure of the distance function of a metric space. Part of Property M1 of [Kreyszig] p. 3. (Contributed by NM, 30-Aug-2006.) |
⊢ ((𝐷 ∈ (Met‘𝑋) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐷𝐵) ∈ ℝ) | ||
Theorem | ismet2 24358 | An extended metric is a metric exactly when it takes real values for all values of the arguments. (Contributed by Mario Carneiro, 20-Aug-2015.) |
⊢ (𝐷 ∈ (Met‘𝑋) ↔ (𝐷 ∈ (∞Met‘𝑋) ∧ 𝐷:(𝑋 × 𝑋)⟶ℝ)) | ||
Theorem | metxmet 24359 | A metric is an extended metric. (Contributed by Mario Carneiro, 20-Aug-2015.) |
⊢ (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋)) | ||
Theorem | xmetdmdm 24360 | Recover the base set from an extended metric. (Contributed by Mario Carneiro, 23-Aug-2015.) |
⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝑋 = dom dom 𝐷) | ||
Theorem | metdmdm 24361 | Recover the base set from a metric. (Contributed by Mario Carneiro, 23-Aug-2015.) |
⊢ (𝐷 ∈ (Met‘𝑋) → 𝑋 = dom dom 𝐷) | ||
Theorem | xmetunirn 24362 | Two ways to express an extended metric on an unspecified base. (Contributed by Mario Carneiro, 13-Oct-2015.) |
⊢ (𝐷 ∈ ∪ ran ∞Met ↔ 𝐷 ∈ (∞Met‘dom dom 𝐷)) | ||
Theorem | xmeteq0 24363 | The value of an extended metric is zero iff its arguments are equal. (Contributed by Mario Carneiro, 20-Aug-2015.) |
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝐴𝐷𝐵) = 0 ↔ 𝐴 = 𝐵)) | ||
Theorem | meteq0 24364 | The value of a metric is zero iff its arguments are equal. Property M2 of [Kreyszig] p. 4. (Contributed by NM, 30-Aug-2006.) |
⊢ ((𝐷 ∈ (Met‘𝑋) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝐴𝐷𝐵) = 0 ↔ 𝐴 = 𝐵)) | ||
Theorem | xmettri2 24365 | Triangle inequality for the distance function of an extended metric. (Contributed by Mario Carneiro, 20-Aug-2015.) |
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐶 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝐴𝐷𝐵) ≤ ((𝐶𝐷𝐴) +𝑒 (𝐶𝐷𝐵))) | ||
Theorem | mettri2 24366 | Triangle inequality for the distance function of a metric space. (Contributed by NM, 30-Aug-2006.) (Revised by Mario Carneiro, 20-Aug-2015.) |
⊢ ((𝐷 ∈ (Met‘𝑋) ∧ (𝐶 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝐴𝐷𝐵) ≤ ((𝐶𝐷𝐴) + (𝐶𝐷𝐵))) | ||
Theorem | xmet0 24367 | The distance function of a metric space is zero if its arguments are equal. Definition 14-1.1(a) of [Gleason] p. 223. (Contributed by Mario Carneiro, 20-Aug-2015.) |
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ 𝑋) → (𝐴𝐷𝐴) = 0) | ||
Theorem | met0 24368 | The distance function of a metric space is zero if its arguments are equal. Definition 14-1.1(a) of [Gleason] p. 223. (Contributed by NM, 30-Aug-2006.) |
⊢ ((𝐷 ∈ (Met‘𝑋) ∧ 𝐴 ∈ 𝑋) → (𝐴𝐷𝐴) = 0) | ||
Theorem | xmetge0 24369 | The distance function of a metric space is nonnegative. (Contributed by Mario Carneiro, 20-Aug-2015.) |
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → 0 ≤ (𝐴𝐷𝐵)) | ||
Theorem | metge0 24370 | The distance function of a metric space is nonnegative. (Contributed by NM, 27-Aug-2006.) (Revised by Mario Carneiro, 14-Aug-2015.) |
⊢ ((𝐷 ∈ (Met‘𝑋) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → 0 ≤ (𝐴𝐷𝐵)) | ||
Theorem | xmetlecl 24371 | Real closure of an extended metric value that is upper bounded by a real. (Contributed by Mario Carneiro, 20-Aug-2015.) |
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐶 ∈ ℝ ∧ (𝐴𝐷𝐵) ≤ 𝐶)) → (𝐴𝐷𝐵) ∈ ℝ) | ||
Theorem | xmetsym 24372 | The distance function of an extended metric space is symmetric. (Contributed by Mario Carneiro, 20-Aug-2015.) |
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐷𝐵) = (𝐵𝐷𝐴)) | ||
Theorem | xmetpsmet 24373 | An extended metric is a pseudometric. (Contributed by Thierry Arnoux, 7-Feb-2018.) |
⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝐷 ∈ (PsMet‘𝑋)) | ||
Theorem | xmettpos 24374 | The distance function of an extended metric space is symmetric. (Contributed by Mario Carneiro, 20-Aug-2015.) |
⊢ (𝐷 ∈ (∞Met‘𝑋) → tpos 𝐷 = 𝐷) | ||
Theorem | metsym 24375 | The distance function of a metric space is symmetric. Definition 14-1.1(c) of [Gleason] p. 223. (Contributed by NM, 27-Aug-2006.) (Revised by Mario Carneiro, 20-Aug-2015.) |
⊢ ((𝐷 ∈ (Met‘𝑋) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐷𝐵) = (𝐵𝐷𝐴)) | ||
Theorem | xmettri 24376 | Triangle inequality for the distance function of a metric space. Definition 14-1.1(d) of [Gleason] p. 223. (Contributed by Mario Carneiro, 20-Aug-2015.) |
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐴𝐷𝐵) ≤ ((𝐴𝐷𝐶) +𝑒 (𝐶𝐷𝐵))) | ||
Theorem | mettri 24377 | Triangle inequality for the distance function of a metric space. Definition 14-1.1(d) of [Gleason] p. 223. (Contributed by NM, 27-Aug-2006.) |
⊢ ((𝐷 ∈ (Met‘𝑋) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐴𝐷𝐵) ≤ ((𝐴𝐷𝐶) + (𝐶𝐷𝐵))) | ||
Theorem | xmettri3 24378 | Triangle inequality for the distance function of an extended metric. (Contributed by Mario Carneiro, 20-Aug-2015.) |
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐴𝐷𝐵) ≤ ((𝐴𝐷𝐶) +𝑒 (𝐵𝐷𝐶))) | ||
Theorem | mettri3 24379 | Triangle inequality for the distance function of a metric space. (Contributed by NM, 13-Mar-2007.) |
⊢ ((𝐷 ∈ (Met‘𝑋) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐴𝐷𝐵) ≤ ((𝐴𝐷𝐶) + (𝐵𝐷𝐶))) | ||
Theorem | xmetrtri 24380 | One half of the reverse triangle inequality for the distance function of an extended metric. (Contributed by Mario Carneiro, 4-Sep-2015.) |
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴𝐷𝐶) +𝑒 -𝑒(𝐵𝐷𝐶)) ≤ (𝐴𝐷𝐵)) | ||
Theorem | xmetrtri2 24381 | The reverse triangle inequality for the distance function of an extended metric. In order to express the "extended absolute value function", we use the distance function xrsdsval 21445 defined on the extended real structure. (Contributed by Mario Carneiro, 4-Sep-2015.) |
⊢ 𝐾 = (dist‘ℝ*𝑠) ⇒ ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴𝐷𝐶)𝐾(𝐵𝐷𝐶)) ≤ (𝐴𝐷𝐵)) | ||
Theorem | metrtri 24382 | Reverse triangle inequality for the distance function of a metric space. (Contributed by Mario Carneiro, 5-May-2014.) |
⊢ ((𝐷 ∈ (Met‘𝑋) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (abs‘((𝐴𝐷𝐶) − (𝐵𝐷𝐶))) ≤ (𝐴𝐷𝐵)) | ||
Theorem | xmetgt0 24383 | The distance function of an extended metric space is positive for unequal points. (Contributed by Mario Carneiro, 20-Aug-2015.) |
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴 ≠ 𝐵 ↔ 0 < (𝐴𝐷𝐵))) | ||
Theorem | metgt0 24384 | The distance function of a metric space is positive for unequal points. Definition 14-1.1(b) of [Gleason] p. 223 and its converse. (Contributed by NM, 27-Aug-2006.) |
⊢ ((𝐷 ∈ (Met‘𝑋) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴 ≠ 𝐵 ↔ 0 < (𝐴𝐷𝐵))) | ||
Theorem | metn0 24385 | A metric space is nonempty iff its base set is nonempty. (Contributed by NM, 4-Oct-2007.) (Revised by Mario Carneiro, 14-Aug-2015.) |
⊢ (𝐷 ∈ (Met‘𝑋) → (𝐷 ≠ ∅ ↔ 𝑋 ≠ ∅)) | ||
Theorem | xmetres2 24386 | Restriction of an extended metric. (Contributed by Mario Carneiro, 20-Aug-2015.) |
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅 ⊆ 𝑋) → (𝐷 ↾ (𝑅 × 𝑅)) ∈ (∞Met‘𝑅)) | ||
Theorem | metreslem 24387 | Lemma for metres 24390. (Contributed by Mario Carneiro, 24-Aug-2015.) |
⊢ (dom 𝐷 = (𝑋 × 𝑋) → (𝐷 ↾ (𝑅 × 𝑅)) = (𝐷 ↾ ((𝑋 ∩ 𝑅) × (𝑋 ∩ 𝑅)))) | ||
Theorem | metres2 24388 | Lemma for metres 24390. (Contributed by FL, 12-Oct-2006.) (Proof shortened by Mario Carneiro, 14-Aug-2015.) |
⊢ ((𝐷 ∈ (Met‘𝑋) ∧ 𝑅 ⊆ 𝑋) → (𝐷 ↾ (𝑅 × 𝑅)) ∈ (Met‘𝑅)) | ||
Theorem | xmetres 24389 | A restriction of an extended metric is an extended metric. (Contributed by Mario Carneiro, 24-Aug-2015.) |
⊢ (𝐷 ∈ (∞Met‘𝑋) → (𝐷 ↾ (𝑅 × 𝑅)) ∈ (∞Met‘(𝑋 ∩ 𝑅))) | ||
Theorem | metres 24390 | A restriction of a metric is a metric. (Contributed by NM, 26-Aug-2007.) (Revised by Mario Carneiro, 14-Aug-2015.) |
⊢ (𝐷 ∈ (Met‘𝑋) → (𝐷 ↾ (𝑅 × 𝑅)) ∈ (Met‘(𝑋 ∩ 𝑅))) | ||
Theorem | 0met 24391 | The empty metric. (Contributed by NM, 30-Aug-2006.) (Revised by Mario Carneiro, 14-Aug-2015.) |
⊢ ∅ ∈ (Met‘∅) | ||
Theorem | prdsdsf 24392* | The product metric is a function into the nonnegative extended reals. In general this means that it is not a metric but rather an *extended* metric (even when all the factors are metrics), but it will be a metric when restricted to regions where it does not take infinite values. (Contributed by Mario Carneiro, 20-Aug-2015.) |
⊢ 𝑌 = (𝑆Xs(𝑥 ∈ 𝐼 ↦ 𝑅)) & ⊢ 𝐵 = (Base‘𝑌) & ⊢ 𝑉 = (Base‘𝑅) & ⊢ 𝐸 = ((dist‘𝑅) ↾ (𝑉 × 𝑉)) & ⊢ 𝐷 = (dist‘𝑌) & ⊢ (𝜑 → 𝑆 ∈ 𝑊) & ⊢ (𝜑 → 𝐼 ∈ 𝑋) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝑅 ∈ 𝑍) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝐸 ∈ (∞Met‘𝑉)) ⇒ ⊢ (𝜑 → 𝐷:(𝐵 × 𝐵)⟶(0[,]+∞)) | ||
Theorem | prdsxmetlem 24393* | The product metric is an extended metric. (Contributed by Mario Carneiro, 20-Aug-2015.) |
⊢ 𝑌 = (𝑆Xs(𝑥 ∈ 𝐼 ↦ 𝑅)) & ⊢ 𝐵 = (Base‘𝑌) & ⊢ 𝑉 = (Base‘𝑅) & ⊢ 𝐸 = ((dist‘𝑅) ↾ (𝑉 × 𝑉)) & ⊢ 𝐷 = (dist‘𝑌) & ⊢ (𝜑 → 𝑆 ∈ 𝑊) & ⊢ (𝜑 → 𝐼 ∈ 𝑋) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝑅 ∈ 𝑍) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝐸 ∈ (∞Met‘𝑉)) ⇒ ⊢ (𝜑 → 𝐷 ∈ (∞Met‘𝐵)) | ||
Theorem | prdsxmet 24394* | The product metric is an extended metric. Eliminate disjoint variable conditions from prdsxmetlem 24393. (Contributed by Mario Carneiro, 26-Sep-2015.) |
⊢ 𝑌 = (𝑆Xs(𝑥 ∈ 𝐼 ↦ 𝑅)) & ⊢ 𝐵 = (Base‘𝑌) & ⊢ 𝑉 = (Base‘𝑅) & ⊢ 𝐸 = ((dist‘𝑅) ↾ (𝑉 × 𝑉)) & ⊢ 𝐷 = (dist‘𝑌) & ⊢ (𝜑 → 𝑆 ∈ 𝑊) & ⊢ (𝜑 → 𝐼 ∈ 𝑋) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝑅 ∈ 𝑍) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝐸 ∈ (∞Met‘𝑉)) ⇒ ⊢ (𝜑 → 𝐷 ∈ (∞Met‘𝐵)) | ||
Theorem | prdsmet 24395* | The product metric is a metric when the index set is finite. (Contributed by Mario Carneiro, 20-Aug-2015.) |
⊢ 𝑌 = (𝑆Xs(𝑥 ∈ 𝐼 ↦ 𝑅)) & ⊢ 𝐵 = (Base‘𝑌) & ⊢ 𝑉 = (Base‘𝑅) & ⊢ 𝐸 = ((dist‘𝑅) ↾ (𝑉 × 𝑉)) & ⊢ 𝐷 = (dist‘𝑌) & ⊢ (𝜑 → 𝑆 ∈ 𝑊) & ⊢ (𝜑 → 𝐼 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝑅 ∈ 𝑍) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝐸 ∈ (Met‘𝑉)) ⇒ ⊢ (𝜑 → 𝐷 ∈ (Met‘𝐵)) | ||
Theorem | ressprdsds 24396* | Restriction of a product metric. (Contributed by Mario Carneiro, 16-Sep-2015.) |
⊢ (𝜑 → 𝑌 = (𝑆Xs(𝑥 ∈ 𝐼 ↦ 𝑅))) & ⊢ (𝜑 → 𝐻 = (𝑇Xs(𝑥 ∈ 𝐼 ↦ (𝑅 ↾s 𝐴)))) & ⊢ 𝐵 = (Base‘𝐻) & ⊢ 𝐷 = (dist‘𝑌) & ⊢ 𝐸 = (dist‘𝐻) & ⊢ (𝜑 → 𝑆 ∈ 𝑈) & ⊢ (𝜑 → 𝑇 ∈ 𝑉) & ⊢ (𝜑 → 𝐼 ∈ 𝑊) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝑅 ∈ 𝑋) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝐴 ∈ 𝑍) ⇒ ⊢ (𝜑 → 𝐸 = (𝐷 ↾ (𝐵 × 𝐵))) | ||
Theorem | resspwsds 24397 | Restriction of a power metric. (Contributed by Mario Carneiro, 16-Sep-2015.) |
⊢ (𝜑 → 𝑌 = (𝑅 ↑s 𝐼)) & ⊢ (𝜑 → 𝐻 = ((𝑅 ↾s 𝐴) ↑s 𝐼)) & ⊢ 𝐵 = (Base‘𝐻) & ⊢ 𝐷 = (dist‘𝑌) & ⊢ 𝐸 = (dist‘𝐻) & ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → 𝑅 ∈ 𝑊) & ⊢ (𝜑 → 𝐴 ∈ 𝑋) ⇒ ⊢ (𝜑 → 𝐸 = (𝐷 ↾ (𝐵 × 𝐵))) | ||
Theorem | imasdsf1olem 24398* | Lemma for imasdsf1o 24399. (Contributed by Mario Carneiro, 21-Aug-2015.) (Proof shortened by AV, 6-Oct-2020.) |
⊢ (𝜑 → 𝑈 = (𝐹 “s 𝑅)) & ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) & ⊢ (𝜑 → 𝐹:𝑉–1-1-onto→𝐵) & ⊢ (𝜑 → 𝑅 ∈ 𝑍) & ⊢ 𝐸 = ((dist‘𝑅) ↾ (𝑉 × 𝑉)) & ⊢ 𝐷 = (dist‘𝑈) & ⊢ (𝜑 → 𝐸 ∈ (∞Met‘𝑉)) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) & ⊢ 𝑊 = (ℝ*𝑠 ↾s (ℝ* ∖ {-∞})) & ⊢ 𝑆 = {ℎ ∈ ((𝑉 × 𝑉) ↑m (1...𝑛)) ∣ ((𝐹‘(1st ‘(ℎ‘1))) = (𝐹‘𝑋) ∧ (𝐹‘(2nd ‘(ℎ‘𝑛))) = (𝐹‘𝑌) ∧ ∀𝑖 ∈ (1...(𝑛 − 1))(𝐹‘(2nd ‘(ℎ‘𝑖))) = (𝐹‘(1st ‘(ℎ‘(𝑖 + 1)))))} & ⊢ 𝑇 = ∪ 𝑛 ∈ ℕ ran (𝑔 ∈ 𝑆 ↦ (ℝ*𝑠 Σg (𝐸 ∘ 𝑔))) ⇒ ⊢ (𝜑 → ((𝐹‘𝑋)𝐷(𝐹‘𝑌)) = (𝑋𝐸𝑌)) | ||
Theorem | imasdsf1o 24399 | The distance function is transferred across an image structure under a bijection. (Contributed by Mario Carneiro, 20-Aug-2015.) |
⊢ (𝜑 → 𝑈 = (𝐹 “s 𝑅)) & ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) & ⊢ (𝜑 → 𝐹:𝑉–1-1-onto→𝐵) & ⊢ (𝜑 → 𝑅 ∈ 𝑍) & ⊢ 𝐸 = ((dist‘𝑅) ↾ (𝑉 × 𝑉)) & ⊢ 𝐷 = (dist‘𝑈) & ⊢ (𝜑 → 𝐸 ∈ (∞Met‘𝑉)) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) ⇒ ⊢ (𝜑 → ((𝐹‘𝑋)𝐷(𝐹‘𝑌)) = (𝑋𝐸𝑌)) | ||
Theorem | imasf1oxmet 24400 | The image of an extended metric is an extended metric. (Contributed by Mario Carneiro, 20-Aug-2015.) |
⊢ (𝜑 → 𝑈 = (𝐹 “s 𝑅)) & ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) & ⊢ (𝜑 → 𝐹:𝑉–1-1-onto→𝐵) & ⊢ (𝜑 → 𝑅 ∈ 𝑍) & ⊢ 𝐸 = ((dist‘𝑅) ↾ (𝑉 × 𝑉)) & ⊢ 𝐷 = (dist‘𝑈) & ⊢ (𝜑 → 𝐸 ∈ (∞Met‘𝑉)) ⇒ ⊢ (𝜑 → 𝐷 ∈ (∞Met‘𝐵)) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |