MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tngval Structured version   Visualization version   GIF version

Theorem tngval 24525
Description: Value of the function which augments a given structure 𝐺 with a norm 𝑁. (Contributed by Mario Carneiro, 2-Oct-2015.)
Hypotheses
Ref Expression
tngval.t 𝑇 = (𝐺 toNrmGrp 𝑁)
tngval.m = (-g𝐺)
tngval.d 𝐷 = (𝑁 )
tngval.j 𝐽 = (MetOpen‘𝐷)
Assertion
Ref Expression
tngval ((𝐺𝑉𝑁𝑊) → 𝑇 = ((𝐺 sSet ⟨(dist‘ndx), 𝐷⟩) sSet ⟨(TopSet‘ndx), 𝐽⟩))

Proof of Theorem tngval
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tngval.t . 2 𝑇 = (𝐺 toNrmGrp 𝑁)
2 elex 3457 . . 3 (𝐺𝑉𝐺 ∈ V)
3 elex 3457 . . 3 (𝑁𝑊𝑁 ∈ V)
4 simpl 482 . . . . . 6 ((𝑔 = 𝐺𝑓 = 𝑁) → 𝑔 = 𝐺)
5 simpr 484 . . . . . . . . 9 ((𝑔 = 𝐺𝑓 = 𝑁) → 𝑓 = 𝑁)
64fveq2d 6826 . . . . . . . . . 10 ((𝑔 = 𝐺𝑓 = 𝑁) → (-g𝑔) = (-g𝐺))
7 tngval.m . . . . . . . . . 10 = (-g𝐺)
86, 7eqtr4di 2782 . . . . . . . . 9 ((𝑔 = 𝐺𝑓 = 𝑁) → (-g𝑔) = )
95, 8coeq12d 5807 . . . . . . . 8 ((𝑔 = 𝐺𝑓 = 𝑁) → (𝑓 ∘ (-g𝑔)) = (𝑁 ))
10 tngval.d . . . . . . . 8 𝐷 = (𝑁 )
119, 10eqtr4di 2782 . . . . . . 7 ((𝑔 = 𝐺𝑓 = 𝑁) → (𝑓 ∘ (-g𝑔)) = 𝐷)
1211opeq2d 4831 . . . . . 6 ((𝑔 = 𝐺𝑓 = 𝑁) → ⟨(dist‘ndx), (𝑓 ∘ (-g𝑔))⟩ = ⟨(dist‘ndx), 𝐷⟩)
134, 12oveq12d 7367 . . . . 5 ((𝑔 = 𝐺𝑓 = 𝑁) → (𝑔 sSet ⟨(dist‘ndx), (𝑓 ∘ (-g𝑔))⟩) = (𝐺 sSet ⟨(dist‘ndx), 𝐷⟩))
1411fveq2d 6826 . . . . . . 7 ((𝑔 = 𝐺𝑓 = 𝑁) → (MetOpen‘(𝑓 ∘ (-g𝑔))) = (MetOpen‘𝐷))
15 tngval.j . . . . . . 7 𝐽 = (MetOpen‘𝐷)
1614, 15eqtr4di 2782 . . . . . 6 ((𝑔 = 𝐺𝑓 = 𝑁) → (MetOpen‘(𝑓 ∘ (-g𝑔))) = 𝐽)
1716opeq2d 4831 . . . . 5 ((𝑔 = 𝐺𝑓 = 𝑁) → ⟨(TopSet‘ndx), (MetOpen‘(𝑓 ∘ (-g𝑔)))⟩ = ⟨(TopSet‘ndx), 𝐽⟩)
1813, 17oveq12d 7367 . . . 4 ((𝑔 = 𝐺𝑓 = 𝑁) → ((𝑔 sSet ⟨(dist‘ndx), (𝑓 ∘ (-g𝑔))⟩) sSet ⟨(TopSet‘ndx), (MetOpen‘(𝑓 ∘ (-g𝑔)))⟩) = ((𝐺 sSet ⟨(dist‘ndx), 𝐷⟩) sSet ⟨(TopSet‘ndx), 𝐽⟩))
19 df-tng 24470 . . . 4 toNrmGrp = (𝑔 ∈ V, 𝑓 ∈ V ↦ ((𝑔 sSet ⟨(dist‘ndx), (𝑓 ∘ (-g𝑔))⟩) sSet ⟨(TopSet‘ndx), (MetOpen‘(𝑓 ∘ (-g𝑔)))⟩))
20 ovex 7382 . . . 4 ((𝐺 sSet ⟨(dist‘ndx), 𝐷⟩) sSet ⟨(TopSet‘ndx), 𝐽⟩) ∈ V
2118, 19, 20ovmpoa 7504 . . 3 ((𝐺 ∈ V ∧ 𝑁 ∈ V) → (𝐺 toNrmGrp 𝑁) = ((𝐺 sSet ⟨(dist‘ndx), 𝐷⟩) sSet ⟨(TopSet‘ndx), 𝐽⟩))
222, 3, 21syl2an 596 . 2 ((𝐺𝑉𝑁𝑊) → (𝐺 toNrmGrp 𝑁) = ((𝐺 sSet ⟨(dist‘ndx), 𝐷⟩) sSet ⟨(TopSet‘ndx), 𝐽⟩))
231, 22eqtrid 2776 1 ((𝐺𝑉𝑁𝑊) → 𝑇 = ((𝐺 sSet ⟨(dist‘ndx), 𝐷⟩) sSet ⟨(TopSet‘ndx), 𝐽⟩))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3436  cop 4583  ccom 5623  cfv 6482  (class class class)co 7349   sSet csts 17074  ndxcnx 17104  TopSetcts 17167  distcds 17170  -gcsg 18814  MetOpencmopn 21251   toNrmGrp ctng 24464
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-sbc 3743  df-dif 3906  df-un 3908  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-iota 6438  df-fun 6484  df-fv 6490  df-ov 7352  df-oprab 7353  df-mpo 7354  df-tng 24470
This theorem is referenced by:  tnglem  24526  tngds  24534  tngtset  24535
  Copyright terms: Public domain W3C validator