MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tngval Structured version   Visualization version   GIF version

Theorem tngval 23795
Description: Value of the function which augments a given structure 𝐺 with a norm 𝑁. (Contributed by Mario Carneiro, 2-Oct-2015.)
Hypotheses
Ref Expression
tngval.t 𝑇 = (𝐺 toNrmGrp 𝑁)
tngval.m = (-g𝐺)
tngval.d 𝐷 = (𝑁 )
tngval.j 𝐽 = (MetOpen‘𝐷)
Assertion
Ref Expression
tngval ((𝐺𝑉𝑁𝑊) → 𝑇 = ((𝐺 sSet ⟨(dist‘ndx), 𝐷⟩) sSet ⟨(TopSet‘ndx), 𝐽⟩))

Proof of Theorem tngval
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tngval.t . 2 𝑇 = (𝐺 toNrmGrp 𝑁)
2 elex 3450 . . 3 (𝐺𝑉𝐺 ∈ V)
3 elex 3450 . . 3 (𝑁𝑊𝑁 ∈ V)
4 simpl 483 . . . . . 6 ((𝑔 = 𝐺𝑓 = 𝑁) → 𝑔 = 𝐺)
5 simpr 485 . . . . . . . . 9 ((𝑔 = 𝐺𝑓 = 𝑁) → 𝑓 = 𝑁)
64fveq2d 6778 . . . . . . . . . 10 ((𝑔 = 𝐺𝑓 = 𝑁) → (-g𝑔) = (-g𝐺))
7 tngval.m . . . . . . . . . 10 = (-g𝐺)
86, 7eqtr4di 2796 . . . . . . . . 9 ((𝑔 = 𝐺𝑓 = 𝑁) → (-g𝑔) = )
95, 8coeq12d 5773 . . . . . . . 8 ((𝑔 = 𝐺𝑓 = 𝑁) → (𝑓 ∘ (-g𝑔)) = (𝑁 ))
10 tngval.d . . . . . . . 8 𝐷 = (𝑁 )
119, 10eqtr4di 2796 . . . . . . 7 ((𝑔 = 𝐺𝑓 = 𝑁) → (𝑓 ∘ (-g𝑔)) = 𝐷)
1211opeq2d 4811 . . . . . 6 ((𝑔 = 𝐺𝑓 = 𝑁) → ⟨(dist‘ndx), (𝑓 ∘ (-g𝑔))⟩ = ⟨(dist‘ndx), 𝐷⟩)
134, 12oveq12d 7293 . . . . 5 ((𝑔 = 𝐺𝑓 = 𝑁) → (𝑔 sSet ⟨(dist‘ndx), (𝑓 ∘ (-g𝑔))⟩) = (𝐺 sSet ⟨(dist‘ndx), 𝐷⟩))
1411fveq2d 6778 . . . . . . 7 ((𝑔 = 𝐺𝑓 = 𝑁) → (MetOpen‘(𝑓 ∘ (-g𝑔))) = (MetOpen‘𝐷))
15 tngval.j . . . . . . 7 𝐽 = (MetOpen‘𝐷)
1614, 15eqtr4di 2796 . . . . . 6 ((𝑔 = 𝐺𝑓 = 𝑁) → (MetOpen‘(𝑓 ∘ (-g𝑔))) = 𝐽)
1716opeq2d 4811 . . . . 5 ((𝑔 = 𝐺𝑓 = 𝑁) → ⟨(TopSet‘ndx), (MetOpen‘(𝑓 ∘ (-g𝑔)))⟩ = ⟨(TopSet‘ndx), 𝐽⟩)
1813, 17oveq12d 7293 . . . 4 ((𝑔 = 𝐺𝑓 = 𝑁) → ((𝑔 sSet ⟨(dist‘ndx), (𝑓 ∘ (-g𝑔))⟩) sSet ⟨(TopSet‘ndx), (MetOpen‘(𝑓 ∘ (-g𝑔)))⟩) = ((𝐺 sSet ⟨(dist‘ndx), 𝐷⟩) sSet ⟨(TopSet‘ndx), 𝐽⟩))
19 df-tng 23740 . . . 4 toNrmGrp = (𝑔 ∈ V, 𝑓 ∈ V ↦ ((𝑔 sSet ⟨(dist‘ndx), (𝑓 ∘ (-g𝑔))⟩) sSet ⟨(TopSet‘ndx), (MetOpen‘(𝑓 ∘ (-g𝑔)))⟩))
20 ovex 7308 . . . 4 ((𝐺 sSet ⟨(dist‘ndx), 𝐷⟩) sSet ⟨(TopSet‘ndx), 𝐽⟩) ∈ V
2118, 19, 20ovmpoa 7428 . . 3 ((𝐺 ∈ V ∧ 𝑁 ∈ V) → (𝐺 toNrmGrp 𝑁) = ((𝐺 sSet ⟨(dist‘ndx), 𝐷⟩) sSet ⟨(TopSet‘ndx), 𝐽⟩))
222, 3, 21syl2an 596 . 2 ((𝐺𝑉𝑁𝑊) → (𝐺 toNrmGrp 𝑁) = ((𝐺 sSet ⟨(dist‘ndx), 𝐷⟩) sSet ⟨(TopSet‘ndx), 𝐽⟩))
231, 22eqtrid 2790 1 ((𝐺𝑉𝑁𝑊) → 𝑇 = ((𝐺 sSet ⟨(dist‘ndx), 𝐷⟩) sSet ⟨(TopSet‘ndx), 𝐽⟩))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  Vcvv 3432  cop 4567  ccom 5593  cfv 6433  (class class class)co 7275   sSet csts 16864  ndxcnx 16894  TopSetcts 16968  distcds 16971  -gcsg 18579  MetOpencmopn 20587   toNrmGrp ctng 23734
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-iota 6391  df-fun 6435  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-tng 23740
This theorem is referenced by:  tnglem  23796  tnglemOLD  23797  tngds  23811  tngdsOLD  23812  tngtset  23813
  Copyright terms: Public domain W3C validator