MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tngval Structured version   Visualization version   GIF version

Theorem tngval 24147
Description: Value of the function which augments a given structure 𝐺 with a norm 𝑁. (Contributed by Mario Carneiro, 2-Oct-2015.)
Hypotheses
Ref Expression
tngval.t 𝑇 = (𝐺 toNrmGrp 𝑁)
tngval.m βˆ’ = (-gβ€˜πΊ)
tngval.d 𝐷 = (𝑁 ∘ βˆ’ )
tngval.j 𝐽 = (MetOpenβ€˜π·)
Assertion
Ref Expression
tngval ((𝐺 ∈ 𝑉 ∧ 𝑁 ∈ π‘Š) β†’ 𝑇 = ((𝐺 sSet ⟨(distβ€˜ndx), 𝐷⟩) sSet ⟨(TopSetβ€˜ndx), 𝐽⟩))

Proof of Theorem tngval
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tngval.t . 2 𝑇 = (𝐺 toNrmGrp 𝑁)
2 elex 3492 . . 3 (𝐺 ∈ 𝑉 β†’ 𝐺 ∈ V)
3 elex 3492 . . 3 (𝑁 ∈ π‘Š β†’ 𝑁 ∈ V)
4 simpl 483 . . . . . 6 ((𝑔 = 𝐺 ∧ 𝑓 = 𝑁) β†’ 𝑔 = 𝐺)
5 simpr 485 . . . . . . . . 9 ((𝑔 = 𝐺 ∧ 𝑓 = 𝑁) β†’ 𝑓 = 𝑁)
64fveq2d 6895 . . . . . . . . . 10 ((𝑔 = 𝐺 ∧ 𝑓 = 𝑁) β†’ (-gβ€˜π‘”) = (-gβ€˜πΊ))
7 tngval.m . . . . . . . . . 10 βˆ’ = (-gβ€˜πΊ)
86, 7eqtr4di 2790 . . . . . . . . 9 ((𝑔 = 𝐺 ∧ 𝑓 = 𝑁) β†’ (-gβ€˜π‘”) = βˆ’ )
95, 8coeq12d 5864 . . . . . . . 8 ((𝑔 = 𝐺 ∧ 𝑓 = 𝑁) β†’ (𝑓 ∘ (-gβ€˜π‘”)) = (𝑁 ∘ βˆ’ ))
10 tngval.d . . . . . . . 8 𝐷 = (𝑁 ∘ βˆ’ )
119, 10eqtr4di 2790 . . . . . . 7 ((𝑔 = 𝐺 ∧ 𝑓 = 𝑁) β†’ (𝑓 ∘ (-gβ€˜π‘”)) = 𝐷)
1211opeq2d 4880 . . . . . 6 ((𝑔 = 𝐺 ∧ 𝑓 = 𝑁) β†’ ⟨(distβ€˜ndx), (𝑓 ∘ (-gβ€˜π‘”))⟩ = ⟨(distβ€˜ndx), 𝐷⟩)
134, 12oveq12d 7426 . . . . 5 ((𝑔 = 𝐺 ∧ 𝑓 = 𝑁) β†’ (𝑔 sSet ⟨(distβ€˜ndx), (𝑓 ∘ (-gβ€˜π‘”))⟩) = (𝐺 sSet ⟨(distβ€˜ndx), 𝐷⟩))
1411fveq2d 6895 . . . . . . 7 ((𝑔 = 𝐺 ∧ 𝑓 = 𝑁) β†’ (MetOpenβ€˜(𝑓 ∘ (-gβ€˜π‘”))) = (MetOpenβ€˜π·))
15 tngval.j . . . . . . 7 𝐽 = (MetOpenβ€˜π·)
1614, 15eqtr4di 2790 . . . . . 6 ((𝑔 = 𝐺 ∧ 𝑓 = 𝑁) β†’ (MetOpenβ€˜(𝑓 ∘ (-gβ€˜π‘”))) = 𝐽)
1716opeq2d 4880 . . . . 5 ((𝑔 = 𝐺 ∧ 𝑓 = 𝑁) β†’ ⟨(TopSetβ€˜ndx), (MetOpenβ€˜(𝑓 ∘ (-gβ€˜π‘”)))⟩ = ⟨(TopSetβ€˜ndx), 𝐽⟩)
1813, 17oveq12d 7426 . . . 4 ((𝑔 = 𝐺 ∧ 𝑓 = 𝑁) β†’ ((𝑔 sSet ⟨(distβ€˜ndx), (𝑓 ∘ (-gβ€˜π‘”))⟩) sSet ⟨(TopSetβ€˜ndx), (MetOpenβ€˜(𝑓 ∘ (-gβ€˜π‘”)))⟩) = ((𝐺 sSet ⟨(distβ€˜ndx), 𝐷⟩) sSet ⟨(TopSetβ€˜ndx), 𝐽⟩))
19 df-tng 24092 . . . 4 toNrmGrp = (𝑔 ∈ V, 𝑓 ∈ V ↦ ((𝑔 sSet ⟨(distβ€˜ndx), (𝑓 ∘ (-gβ€˜π‘”))⟩) sSet ⟨(TopSetβ€˜ndx), (MetOpenβ€˜(𝑓 ∘ (-gβ€˜π‘”)))⟩))
20 ovex 7441 . . . 4 ((𝐺 sSet ⟨(distβ€˜ndx), 𝐷⟩) sSet ⟨(TopSetβ€˜ndx), 𝐽⟩) ∈ V
2118, 19, 20ovmpoa 7562 . . 3 ((𝐺 ∈ V ∧ 𝑁 ∈ V) β†’ (𝐺 toNrmGrp 𝑁) = ((𝐺 sSet ⟨(distβ€˜ndx), 𝐷⟩) sSet ⟨(TopSetβ€˜ndx), 𝐽⟩))
222, 3, 21syl2an 596 . 2 ((𝐺 ∈ 𝑉 ∧ 𝑁 ∈ π‘Š) β†’ (𝐺 toNrmGrp 𝑁) = ((𝐺 sSet ⟨(distβ€˜ndx), 𝐷⟩) sSet ⟨(TopSetβ€˜ndx), 𝐽⟩))
231, 22eqtrid 2784 1 ((𝐺 ∈ 𝑉 ∧ 𝑁 ∈ π‘Š) β†’ 𝑇 = ((𝐺 sSet ⟨(distβ€˜ndx), 𝐷⟩) sSet ⟨(TopSetβ€˜ndx), 𝐽⟩))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 396   = wceq 1541   ∈ wcel 2106  Vcvv 3474  βŸ¨cop 4634   ∘ ccom 5680  β€˜cfv 6543  (class class class)co 7408   sSet csts 17095  ndxcnx 17125  TopSetcts 17202  distcds 17205  -gcsg 18820  MetOpencmopn 20933   toNrmGrp ctng 24086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-sbc 3778  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-iota 6495  df-fun 6545  df-fv 6551  df-ov 7411  df-oprab 7412  df-mpo 7413  df-tng 24092
This theorem is referenced by:  tnglem  24148  tnglemOLD  24149  tngds  24163  tngdsOLD  24164  tngtset  24165
  Copyright terms: Public domain W3C validator