MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tngval Structured version   Visualization version   GIF version

Theorem tngval 24534
Description: Value of the function which augments a given structure 𝐺 with a norm 𝑁. (Contributed by Mario Carneiro, 2-Oct-2015.)
Hypotheses
Ref Expression
tngval.t 𝑇 = (𝐺 toNrmGrp 𝑁)
tngval.m = (-g𝐺)
tngval.d 𝐷 = (𝑁 )
tngval.j 𝐽 = (MetOpen‘𝐷)
Assertion
Ref Expression
tngval ((𝐺𝑉𝑁𝑊) → 𝑇 = ((𝐺 sSet ⟨(dist‘ndx), 𝐷⟩) sSet ⟨(TopSet‘ndx), 𝐽⟩))

Proof of Theorem tngval
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tngval.t . 2 𝑇 = (𝐺 toNrmGrp 𝑁)
2 elex 3471 . . 3 (𝐺𝑉𝐺 ∈ V)
3 elex 3471 . . 3 (𝑁𝑊𝑁 ∈ V)
4 simpl 482 . . . . . 6 ((𝑔 = 𝐺𝑓 = 𝑁) → 𝑔 = 𝐺)
5 simpr 484 . . . . . . . . 9 ((𝑔 = 𝐺𝑓 = 𝑁) → 𝑓 = 𝑁)
64fveq2d 6865 . . . . . . . . . 10 ((𝑔 = 𝐺𝑓 = 𝑁) → (-g𝑔) = (-g𝐺))
7 tngval.m . . . . . . . . . 10 = (-g𝐺)
86, 7eqtr4di 2783 . . . . . . . . 9 ((𝑔 = 𝐺𝑓 = 𝑁) → (-g𝑔) = )
95, 8coeq12d 5831 . . . . . . . 8 ((𝑔 = 𝐺𝑓 = 𝑁) → (𝑓 ∘ (-g𝑔)) = (𝑁 ))
10 tngval.d . . . . . . . 8 𝐷 = (𝑁 )
119, 10eqtr4di 2783 . . . . . . 7 ((𝑔 = 𝐺𝑓 = 𝑁) → (𝑓 ∘ (-g𝑔)) = 𝐷)
1211opeq2d 4847 . . . . . 6 ((𝑔 = 𝐺𝑓 = 𝑁) → ⟨(dist‘ndx), (𝑓 ∘ (-g𝑔))⟩ = ⟨(dist‘ndx), 𝐷⟩)
134, 12oveq12d 7408 . . . . 5 ((𝑔 = 𝐺𝑓 = 𝑁) → (𝑔 sSet ⟨(dist‘ndx), (𝑓 ∘ (-g𝑔))⟩) = (𝐺 sSet ⟨(dist‘ndx), 𝐷⟩))
1411fveq2d 6865 . . . . . . 7 ((𝑔 = 𝐺𝑓 = 𝑁) → (MetOpen‘(𝑓 ∘ (-g𝑔))) = (MetOpen‘𝐷))
15 tngval.j . . . . . . 7 𝐽 = (MetOpen‘𝐷)
1614, 15eqtr4di 2783 . . . . . 6 ((𝑔 = 𝐺𝑓 = 𝑁) → (MetOpen‘(𝑓 ∘ (-g𝑔))) = 𝐽)
1716opeq2d 4847 . . . . 5 ((𝑔 = 𝐺𝑓 = 𝑁) → ⟨(TopSet‘ndx), (MetOpen‘(𝑓 ∘ (-g𝑔)))⟩ = ⟨(TopSet‘ndx), 𝐽⟩)
1813, 17oveq12d 7408 . . . 4 ((𝑔 = 𝐺𝑓 = 𝑁) → ((𝑔 sSet ⟨(dist‘ndx), (𝑓 ∘ (-g𝑔))⟩) sSet ⟨(TopSet‘ndx), (MetOpen‘(𝑓 ∘ (-g𝑔)))⟩) = ((𝐺 sSet ⟨(dist‘ndx), 𝐷⟩) sSet ⟨(TopSet‘ndx), 𝐽⟩))
19 df-tng 24479 . . . 4 toNrmGrp = (𝑔 ∈ V, 𝑓 ∈ V ↦ ((𝑔 sSet ⟨(dist‘ndx), (𝑓 ∘ (-g𝑔))⟩) sSet ⟨(TopSet‘ndx), (MetOpen‘(𝑓 ∘ (-g𝑔)))⟩))
20 ovex 7423 . . . 4 ((𝐺 sSet ⟨(dist‘ndx), 𝐷⟩) sSet ⟨(TopSet‘ndx), 𝐽⟩) ∈ V
2118, 19, 20ovmpoa 7547 . . 3 ((𝐺 ∈ V ∧ 𝑁 ∈ V) → (𝐺 toNrmGrp 𝑁) = ((𝐺 sSet ⟨(dist‘ndx), 𝐷⟩) sSet ⟨(TopSet‘ndx), 𝐽⟩))
222, 3, 21syl2an 596 . 2 ((𝐺𝑉𝑁𝑊) → (𝐺 toNrmGrp 𝑁) = ((𝐺 sSet ⟨(dist‘ndx), 𝐷⟩) sSet ⟨(TopSet‘ndx), 𝐽⟩))
231, 22eqtrid 2777 1 ((𝐺𝑉𝑁𝑊) → 𝑇 = ((𝐺 sSet ⟨(dist‘ndx), 𝐷⟩) sSet ⟨(TopSet‘ndx), 𝐽⟩))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3450  cop 4598  ccom 5645  cfv 6514  (class class class)co 7390   sSet csts 17140  ndxcnx 17170  TopSetcts 17233  distcds 17236  -gcsg 18874  MetOpencmopn 21261   toNrmGrp ctng 24473
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-iota 6467  df-fun 6516  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-tng 24479
This theorem is referenced by:  tnglem  24535  tngds  24543  tngtset  24544
  Copyright terms: Public domain W3C validator