MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tngval Structured version   Visualization version   GIF version

Theorem tngval 24148
Description: Value of the function which augments a given structure 𝐺 with a norm 𝑁. (Contributed by Mario Carneiro, 2-Oct-2015.)
Hypotheses
Ref Expression
tngval.t 𝑇 = (𝐺 toNrmGrp 𝑁)
tngval.m βˆ’ = (-gβ€˜πΊ)
tngval.d 𝐷 = (𝑁 ∘ βˆ’ )
tngval.j 𝐽 = (MetOpenβ€˜π·)
Assertion
Ref Expression
tngval ((𝐺 ∈ 𝑉 ∧ 𝑁 ∈ π‘Š) β†’ 𝑇 = ((𝐺 sSet ⟨(distβ€˜ndx), 𝐷⟩) sSet ⟨(TopSetβ€˜ndx), 𝐽⟩))

Proof of Theorem tngval
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tngval.t . 2 𝑇 = (𝐺 toNrmGrp 𝑁)
2 elex 3493 . . 3 (𝐺 ∈ 𝑉 β†’ 𝐺 ∈ V)
3 elex 3493 . . 3 (𝑁 ∈ π‘Š β†’ 𝑁 ∈ V)
4 simpl 484 . . . . . 6 ((𝑔 = 𝐺 ∧ 𝑓 = 𝑁) β†’ 𝑔 = 𝐺)
5 simpr 486 . . . . . . . . 9 ((𝑔 = 𝐺 ∧ 𝑓 = 𝑁) β†’ 𝑓 = 𝑁)
64fveq2d 6896 . . . . . . . . . 10 ((𝑔 = 𝐺 ∧ 𝑓 = 𝑁) β†’ (-gβ€˜π‘”) = (-gβ€˜πΊ))
7 tngval.m . . . . . . . . . 10 βˆ’ = (-gβ€˜πΊ)
86, 7eqtr4di 2791 . . . . . . . . 9 ((𝑔 = 𝐺 ∧ 𝑓 = 𝑁) β†’ (-gβ€˜π‘”) = βˆ’ )
95, 8coeq12d 5865 . . . . . . . 8 ((𝑔 = 𝐺 ∧ 𝑓 = 𝑁) β†’ (𝑓 ∘ (-gβ€˜π‘”)) = (𝑁 ∘ βˆ’ ))
10 tngval.d . . . . . . . 8 𝐷 = (𝑁 ∘ βˆ’ )
119, 10eqtr4di 2791 . . . . . . 7 ((𝑔 = 𝐺 ∧ 𝑓 = 𝑁) β†’ (𝑓 ∘ (-gβ€˜π‘”)) = 𝐷)
1211opeq2d 4881 . . . . . 6 ((𝑔 = 𝐺 ∧ 𝑓 = 𝑁) β†’ ⟨(distβ€˜ndx), (𝑓 ∘ (-gβ€˜π‘”))⟩ = ⟨(distβ€˜ndx), 𝐷⟩)
134, 12oveq12d 7427 . . . . 5 ((𝑔 = 𝐺 ∧ 𝑓 = 𝑁) β†’ (𝑔 sSet ⟨(distβ€˜ndx), (𝑓 ∘ (-gβ€˜π‘”))⟩) = (𝐺 sSet ⟨(distβ€˜ndx), 𝐷⟩))
1411fveq2d 6896 . . . . . . 7 ((𝑔 = 𝐺 ∧ 𝑓 = 𝑁) β†’ (MetOpenβ€˜(𝑓 ∘ (-gβ€˜π‘”))) = (MetOpenβ€˜π·))
15 tngval.j . . . . . . 7 𝐽 = (MetOpenβ€˜π·)
1614, 15eqtr4di 2791 . . . . . 6 ((𝑔 = 𝐺 ∧ 𝑓 = 𝑁) β†’ (MetOpenβ€˜(𝑓 ∘ (-gβ€˜π‘”))) = 𝐽)
1716opeq2d 4881 . . . . 5 ((𝑔 = 𝐺 ∧ 𝑓 = 𝑁) β†’ ⟨(TopSetβ€˜ndx), (MetOpenβ€˜(𝑓 ∘ (-gβ€˜π‘”)))⟩ = ⟨(TopSetβ€˜ndx), 𝐽⟩)
1813, 17oveq12d 7427 . . . 4 ((𝑔 = 𝐺 ∧ 𝑓 = 𝑁) β†’ ((𝑔 sSet ⟨(distβ€˜ndx), (𝑓 ∘ (-gβ€˜π‘”))⟩) sSet ⟨(TopSetβ€˜ndx), (MetOpenβ€˜(𝑓 ∘ (-gβ€˜π‘”)))⟩) = ((𝐺 sSet ⟨(distβ€˜ndx), 𝐷⟩) sSet ⟨(TopSetβ€˜ndx), 𝐽⟩))
19 df-tng 24093 . . . 4 toNrmGrp = (𝑔 ∈ V, 𝑓 ∈ V ↦ ((𝑔 sSet ⟨(distβ€˜ndx), (𝑓 ∘ (-gβ€˜π‘”))⟩) sSet ⟨(TopSetβ€˜ndx), (MetOpenβ€˜(𝑓 ∘ (-gβ€˜π‘”)))⟩))
20 ovex 7442 . . . 4 ((𝐺 sSet ⟨(distβ€˜ndx), 𝐷⟩) sSet ⟨(TopSetβ€˜ndx), 𝐽⟩) ∈ V
2118, 19, 20ovmpoa 7563 . . 3 ((𝐺 ∈ V ∧ 𝑁 ∈ V) β†’ (𝐺 toNrmGrp 𝑁) = ((𝐺 sSet ⟨(distβ€˜ndx), 𝐷⟩) sSet ⟨(TopSetβ€˜ndx), 𝐽⟩))
222, 3, 21syl2an 597 . 2 ((𝐺 ∈ 𝑉 ∧ 𝑁 ∈ π‘Š) β†’ (𝐺 toNrmGrp 𝑁) = ((𝐺 sSet ⟨(distβ€˜ndx), 𝐷⟩) sSet ⟨(TopSetβ€˜ndx), 𝐽⟩))
231, 22eqtrid 2785 1 ((𝐺 ∈ 𝑉 ∧ 𝑁 ∈ π‘Š) β†’ 𝑇 = ((𝐺 sSet ⟨(distβ€˜ndx), 𝐷⟩) sSet ⟨(TopSetβ€˜ndx), 𝐽⟩))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 397   = wceq 1542   ∈ wcel 2107  Vcvv 3475  βŸ¨cop 4635   ∘ ccom 5681  β€˜cfv 6544  (class class class)co 7409   sSet csts 17096  ndxcnx 17126  TopSetcts 17203  distcds 17206  -gcsg 18821  MetOpencmopn 20934   toNrmGrp ctng 24087
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-sbc 3779  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-iota 6496  df-fun 6546  df-fv 6552  df-ov 7412  df-oprab 7413  df-mpo 7414  df-tng 24093
This theorem is referenced by:  tnglem  24149  tnglemOLD  24150  tngds  24164  tngdsOLD  24165  tngtset  24166
  Copyright terms: Public domain W3C validator