MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-top Structured version   Visualization version   GIF version

Definition df-top 22814
Description: Define the class of topologies. It is a proper class (see topnex 22917). See istopg 22815 and istop2g 22816 for the corresponding characterizations, using respectively binary intersections like in this definition and nonempty finite intersections.

The final form of the definition is due to Bourbaki (Def. 1 of [BourbakiTop1] p. I.1), while the idea of defining a topology in terms of its open sets is due to Aleksandrov. For the convoluted history of the definitions of these notions, see

Gregory H. Moore, The emergence of open sets, closed sets, and limit points in analysis and topology, Historia Mathematica 35 (2008) 220--241.

(Contributed by NM, 3-Mar-2006.) (Revised by BJ, 20-Oct-2018.)

Assertion
Ref Expression
df-top Top = {𝑥 ∣ (∀𝑦 ∈ 𝒫 𝑥 𝑦𝑥 ∧ ∀𝑦𝑥𝑧𝑥 (𝑦𝑧) ∈ 𝑥)}
Distinct variable group:   𝑥,𝑦,𝑧

Detailed syntax breakdown of Definition df-top
StepHypRef Expression
1 ctop 22813 . 2 class Top
2 vy . . . . . . . 8 setvar 𝑦
32cv 1532 . . . . . . 7 class 𝑦
43cuni 4910 . . . . . 6 class 𝑦
5 vx . . . . . . 7 setvar 𝑥
65cv 1532 . . . . . 6 class 𝑥
74, 6wcel 2098 . . . . 5 wff 𝑦𝑥
86cpw 4604 . . . . 5 class 𝒫 𝑥
97, 2, 8wral 3057 . . . 4 wff 𝑦 ∈ 𝒫 𝑥 𝑦𝑥
10 vz . . . . . . . . 9 setvar 𝑧
1110cv 1532 . . . . . . . 8 class 𝑧
123, 11cin 3946 . . . . . . 7 class (𝑦𝑧)
1312, 6wcel 2098 . . . . . 6 wff (𝑦𝑧) ∈ 𝑥
1413, 10, 6wral 3057 . . . . 5 wff 𝑧𝑥 (𝑦𝑧) ∈ 𝑥
1514, 2, 6wral 3057 . . . 4 wff 𝑦𝑥𝑧𝑥 (𝑦𝑧) ∈ 𝑥
169, 15wa 394 . . 3 wff (∀𝑦 ∈ 𝒫 𝑥 𝑦𝑥 ∧ ∀𝑦𝑥𝑧𝑥 (𝑦𝑧) ∈ 𝑥)
1716, 5cab 2704 . 2 class {𝑥 ∣ (∀𝑦 ∈ 𝒫 𝑥 𝑦𝑥 ∧ ∀𝑦𝑥𝑧𝑥 (𝑦𝑧) ∈ 𝑥)}
181, 17wceq 1533 1 wff Top = {𝑥 ∣ (∀𝑦 ∈ 𝒫 𝑥 𝑦𝑥 ∧ ∀𝑦𝑥𝑧𝑥 (𝑦𝑧) ∈ 𝑥)}
Colors of variables: wff setvar class
This definition is referenced by:  istopg  22815
  Copyright terms: Public domain W3C validator