Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > df-top | Structured version Visualization version GIF version |
Description: Define the class of
topologies. It is a proper class (see topnex 22054).
See istopg 21952 and istop2g 21953 for the corresponding characterizations,
using respectively binary intersections like in this definition and
nonempty finite intersections.
The final form of the definition is due to Bourbaki (Def. 1 of [BourbakiTop1] p. I.1), while the idea of defining a topology in terms of its open sets is due to Aleksandrov. For the convoluted history of the definitions of these notions, see Gregory H. Moore, The emergence of open sets, closed sets, and limit points in analysis and topology, Historia Mathematica 35 (2008) 220--241. (Contributed by NM, 3-Mar-2006.) (Revised by BJ, 20-Oct-2018.) |
Ref | Expression |
---|---|
df-top | ⊢ Top = {𝑥 ∣ (∀𝑦 ∈ 𝒫 𝑥∪ 𝑦 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 (𝑦 ∩ 𝑧) ∈ 𝑥)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ctop 21950 | . 2 class Top | |
2 | vy | . . . . . . . 8 setvar 𝑦 | |
3 | 2 | cv 1538 | . . . . . . 7 class 𝑦 |
4 | 3 | cuni 4836 | . . . . . 6 class ∪ 𝑦 |
5 | vx | . . . . . . 7 setvar 𝑥 | |
6 | 5 | cv 1538 | . . . . . 6 class 𝑥 |
7 | 4, 6 | wcel 2108 | . . . . 5 wff ∪ 𝑦 ∈ 𝑥 |
8 | 6 | cpw 4530 | . . . . 5 class 𝒫 𝑥 |
9 | 7, 2, 8 | wral 3063 | . . . 4 wff ∀𝑦 ∈ 𝒫 𝑥∪ 𝑦 ∈ 𝑥 |
10 | vz | . . . . . . . . 9 setvar 𝑧 | |
11 | 10 | cv 1538 | . . . . . . . 8 class 𝑧 |
12 | 3, 11 | cin 3882 | . . . . . . 7 class (𝑦 ∩ 𝑧) |
13 | 12, 6 | wcel 2108 | . . . . . 6 wff (𝑦 ∩ 𝑧) ∈ 𝑥 |
14 | 13, 10, 6 | wral 3063 | . . . . 5 wff ∀𝑧 ∈ 𝑥 (𝑦 ∩ 𝑧) ∈ 𝑥 |
15 | 14, 2, 6 | wral 3063 | . . . 4 wff ∀𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 (𝑦 ∩ 𝑧) ∈ 𝑥 |
16 | 9, 15 | wa 395 | . . 3 wff (∀𝑦 ∈ 𝒫 𝑥∪ 𝑦 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 (𝑦 ∩ 𝑧) ∈ 𝑥) |
17 | 16, 5 | cab 2715 | . 2 class {𝑥 ∣ (∀𝑦 ∈ 𝒫 𝑥∪ 𝑦 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 (𝑦 ∩ 𝑧) ∈ 𝑥)} |
18 | 1, 17 | wceq 1539 | 1 wff Top = {𝑥 ∣ (∀𝑦 ∈ 𝒫 𝑥∪ 𝑦 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 (𝑦 ∩ 𝑧) ∈ 𝑥)} |
Colors of variables: wff setvar class |
This definition is referenced by: istopg 21952 |
Copyright terms: Public domain | W3C validator |