Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > df-top | Structured version Visualization version GIF version |
Description: Define the class of
topologies. It is a proper class (see topnex 22155).
See istopg 22053 and istop2g 22054 for the corresponding characterizations,
using respectively binary intersections like in this definition and
nonempty finite intersections.
The final form of the definition is due to Bourbaki (Def. 1 of [BourbakiTop1] p. I.1), while the idea of defining a topology in terms of its open sets is due to Aleksandrov. For the convoluted history of the definitions of these notions, see Gregory H. Moore, The emergence of open sets, closed sets, and limit points in analysis and topology, Historia Mathematica 35 (2008) 220--241. (Contributed by NM, 3-Mar-2006.) (Revised by BJ, 20-Oct-2018.) |
Ref | Expression |
---|---|
df-top | ⊢ Top = {𝑥 ∣ (∀𝑦 ∈ 𝒫 𝑥∪ 𝑦 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 (𝑦 ∩ 𝑧) ∈ 𝑥)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ctop 22051 | . 2 class Top | |
2 | vy | . . . . . . . 8 setvar 𝑦 | |
3 | 2 | cv 1538 | . . . . . . 7 class 𝑦 |
4 | 3 | cuni 4840 | . . . . . 6 class ∪ 𝑦 |
5 | vx | . . . . . . 7 setvar 𝑥 | |
6 | 5 | cv 1538 | . . . . . 6 class 𝑥 |
7 | 4, 6 | wcel 2107 | . . . . 5 wff ∪ 𝑦 ∈ 𝑥 |
8 | 6 | cpw 4534 | . . . . 5 class 𝒫 𝑥 |
9 | 7, 2, 8 | wral 3065 | . . . 4 wff ∀𝑦 ∈ 𝒫 𝑥∪ 𝑦 ∈ 𝑥 |
10 | vz | . . . . . . . . 9 setvar 𝑧 | |
11 | 10 | cv 1538 | . . . . . . . 8 class 𝑧 |
12 | 3, 11 | cin 3887 | . . . . . . 7 class (𝑦 ∩ 𝑧) |
13 | 12, 6 | wcel 2107 | . . . . . 6 wff (𝑦 ∩ 𝑧) ∈ 𝑥 |
14 | 13, 10, 6 | wral 3065 | . . . . 5 wff ∀𝑧 ∈ 𝑥 (𝑦 ∩ 𝑧) ∈ 𝑥 |
15 | 14, 2, 6 | wral 3065 | . . . 4 wff ∀𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 (𝑦 ∩ 𝑧) ∈ 𝑥 |
16 | 9, 15 | wa 396 | . . 3 wff (∀𝑦 ∈ 𝒫 𝑥∪ 𝑦 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 (𝑦 ∩ 𝑧) ∈ 𝑥) |
17 | 16, 5 | cab 2716 | . 2 class {𝑥 ∣ (∀𝑦 ∈ 𝒫 𝑥∪ 𝑦 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 (𝑦 ∩ 𝑧) ∈ 𝑥)} |
18 | 1, 17 | wceq 1539 | 1 wff Top = {𝑥 ∣ (∀𝑦 ∈ 𝒫 𝑥∪ 𝑦 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 (𝑦 ∩ 𝑧) ∈ 𝑥)} |
Colors of variables: wff setvar class |
This definition is referenced by: istopg 22053 |
Copyright terms: Public domain | W3C validator |