![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > istopg | Structured version Visualization version GIF version |
Description: Express the predicate
"𝐽 is a topology". See istop2g 22842 for another
characterization using nonempty finite intersections instead of binary
intersections.
Note: In the literature, a topology is often represented by a calligraphic letter T, which resembles the letter J. This confusion may have led to J being used by some authors (e.g., K. D. Joshi, Introduction to General Topology (1983), p. 114) and it is convenient for us since we later use 𝑇 to represent linear transformations (operators). (Contributed by Stefan Allan, 3-Mar-2006.) (Revised by Mario Carneiro, 11-Nov-2013.) |
Ref | Expression |
---|---|
istopg | ⊢ (𝐽 ∈ 𝐴 → (𝐽 ∈ Top ↔ (∀𝑥(𝑥 ⊆ 𝐽 → ∪ 𝑥 ∈ 𝐽) ∧ ∀𝑥 ∈ 𝐽 ∀𝑦 ∈ 𝐽 (𝑥 ∩ 𝑦) ∈ 𝐽))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pweq 4618 | . . . . 5 ⊢ (𝑧 = 𝐽 → 𝒫 𝑧 = 𝒫 𝐽) | |
2 | eleq2 2814 | . . . . 5 ⊢ (𝑧 = 𝐽 → (∪ 𝑥 ∈ 𝑧 ↔ ∪ 𝑥 ∈ 𝐽)) | |
3 | 1, 2 | raleqbidv 3329 | . . . 4 ⊢ (𝑧 = 𝐽 → (∀𝑥 ∈ 𝒫 𝑧∪ 𝑥 ∈ 𝑧 ↔ ∀𝑥 ∈ 𝒫 𝐽∪ 𝑥 ∈ 𝐽)) |
4 | eleq2 2814 | . . . . . 6 ⊢ (𝑧 = 𝐽 → ((𝑥 ∩ 𝑦) ∈ 𝑧 ↔ (𝑥 ∩ 𝑦) ∈ 𝐽)) | |
5 | 4 | raleqbi1dv 3322 | . . . . 5 ⊢ (𝑧 = 𝐽 → (∀𝑦 ∈ 𝑧 (𝑥 ∩ 𝑦) ∈ 𝑧 ↔ ∀𝑦 ∈ 𝐽 (𝑥 ∩ 𝑦) ∈ 𝐽)) |
6 | 5 | raleqbi1dv 3322 | . . . 4 ⊢ (𝑧 = 𝐽 → (∀𝑥 ∈ 𝑧 ∀𝑦 ∈ 𝑧 (𝑥 ∩ 𝑦) ∈ 𝑧 ↔ ∀𝑥 ∈ 𝐽 ∀𝑦 ∈ 𝐽 (𝑥 ∩ 𝑦) ∈ 𝐽)) |
7 | 3, 6 | anbi12d 630 | . . 3 ⊢ (𝑧 = 𝐽 → ((∀𝑥 ∈ 𝒫 𝑧∪ 𝑥 ∈ 𝑧 ∧ ∀𝑥 ∈ 𝑧 ∀𝑦 ∈ 𝑧 (𝑥 ∩ 𝑦) ∈ 𝑧) ↔ (∀𝑥 ∈ 𝒫 𝐽∪ 𝑥 ∈ 𝐽 ∧ ∀𝑥 ∈ 𝐽 ∀𝑦 ∈ 𝐽 (𝑥 ∩ 𝑦) ∈ 𝐽))) |
8 | df-top 22840 | . . 3 ⊢ Top = {𝑧 ∣ (∀𝑥 ∈ 𝒫 𝑧∪ 𝑥 ∈ 𝑧 ∧ ∀𝑥 ∈ 𝑧 ∀𝑦 ∈ 𝑧 (𝑥 ∩ 𝑦) ∈ 𝑧)} | |
9 | 7, 8 | elab2g 3666 | . 2 ⊢ (𝐽 ∈ 𝐴 → (𝐽 ∈ Top ↔ (∀𝑥 ∈ 𝒫 𝐽∪ 𝑥 ∈ 𝐽 ∧ ∀𝑥 ∈ 𝐽 ∀𝑦 ∈ 𝐽 (𝑥 ∩ 𝑦) ∈ 𝐽))) |
10 | df-ral 3051 | . . . 4 ⊢ (∀𝑥 ∈ 𝒫 𝐽∪ 𝑥 ∈ 𝐽 ↔ ∀𝑥(𝑥 ∈ 𝒫 𝐽 → ∪ 𝑥 ∈ 𝐽)) | |
11 | elpw2g 5347 | . . . . . 6 ⊢ (𝐽 ∈ 𝐴 → (𝑥 ∈ 𝒫 𝐽 ↔ 𝑥 ⊆ 𝐽)) | |
12 | 11 | imbi1d 340 | . . . . 5 ⊢ (𝐽 ∈ 𝐴 → ((𝑥 ∈ 𝒫 𝐽 → ∪ 𝑥 ∈ 𝐽) ↔ (𝑥 ⊆ 𝐽 → ∪ 𝑥 ∈ 𝐽))) |
13 | 12 | albidv 1915 | . . . 4 ⊢ (𝐽 ∈ 𝐴 → (∀𝑥(𝑥 ∈ 𝒫 𝐽 → ∪ 𝑥 ∈ 𝐽) ↔ ∀𝑥(𝑥 ⊆ 𝐽 → ∪ 𝑥 ∈ 𝐽))) |
14 | 10, 13 | bitrid 282 | . . 3 ⊢ (𝐽 ∈ 𝐴 → (∀𝑥 ∈ 𝒫 𝐽∪ 𝑥 ∈ 𝐽 ↔ ∀𝑥(𝑥 ⊆ 𝐽 → ∪ 𝑥 ∈ 𝐽))) |
15 | 14 | anbi1d 629 | . 2 ⊢ (𝐽 ∈ 𝐴 → ((∀𝑥 ∈ 𝒫 𝐽∪ 𝑥 ∈ 𝐽 ∧ ∀𝑥 ∈ 𝐽 ∀𝑦 ∈ 𝐽 (𝑥 ∩ 𝑦) ∈ 𝐽) ↔ (∀𝑥(𝑥 ⊆ 𝐽 → ∪ 𝑥 ∈ 𝐽) ∧ ∀𝑥 ∈ 𝐽 ∀𝑦 ∈ 𝐽 (𝑥 ∩ 𝑦) ∈ 𝐽))) |
16 | 9, 15 | bitrd 278 | 1 ⊢ (𝐽 ∈ 𝐴 → (𝐽 ∈ Top ↔ (∀𝑥(𝑥 ⊆ 𝐽 → ∪ 𝑥 ∈ 𝐽) ∧ ∀𝑥 ∈ 𝐽 ∀𝑦 ∈ 𝐽 (𝑥 ∩ 𝑦) ∈ 𝐽))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 ∀wal 1531 = wceq 1533 ∈ wcel 2098 ∀wral 3050 ∩ cin 3943 ⊆ wss 3944 𝒫 cpw 4604 ∪ cuni 4909 Topctop 22839 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2696 ax-sep 5300 |
This theorem depends on definitions: df-bi 206 df-an 395 df-3an 1086 df-tru 1536 df-ex 1774 df-sb 2060 df-clab 2703 df-cleq 2717 df-clel 2802 df-ral 3051 df-rex 3060 df-rab 3419 df-v 3463 df-in 3951 df-ss 3961 df-pw 4606 df-top 22840 |
This theorem is referenced by: istop2g 22842 uniopn 22843 inopn 22845 tgcl 22916 distop 22942 indistopon 22948 fctop 22951 cctop 22953 ppttop 22954 epttop 22956 mretopd 23040 toponmre 23041 neiptoptop 23079 kgentopon 23486 qtoptop2 23647 filconn 23831 utoptop 24183 neibastop1 35974 |
Copyright terms: Public domain | W3C validator |