MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  istopg Structured version   Visualization version   GIF version

Theorem istopg 22798
Description: Express the predicate "𝐽 is a topology". See istop2g 22799 for another characterization using nonempty finite intersections instead of binary intersections.

Note: In the literature, a topology is often represented by a calligraphic letter T, which resembles the letter J. This confusion may have led to J being used by some authors (e.g., K. D. Joshi, Introduction to General Topology (1983), p. 114) and it is convenient for us since we later use 𝑇 to represent linear transformations (operators). (Contributed by Stefan Allan, 3-Mar-2006.) (Revised by Mario Carneiro, 11-Nov-2013.)

Assertion
Ref Expression
istopg (𝐽𝐴 → (𝐽 ∈ Top ↔ (∀𝑥(𝑥𝐽 𝑥𝐽) ∧ ∀𝑥𝐽𝑦𝐽 (𝑥𝑦) ∈ 𝐽)))
Distinct variable groups:   𝑥,𝑦,𝐽   𝑥,𝐴
Allowed substitution hint:   𝐴(𝑦)

Proof of Theorem istopg
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 pweq 4567 . . . . 5 (𝑧 = 𝐽 → 𝒫 𝑧 = 𝒫 𝐽)
2 eleq2 2817 . . . . 5 (𝑧 = 𝐽 → ( 𝑥𝑧 𝑥𝐽))
31, 2raleqbidv 3310 . . . 4 (𝑧 = 𝐽 → (∀𝑥 ∈ 𝒫 𝑧 𝑥𝑧 ↔ ∀𝑥 ∈ 𝒫 𝐽 𝑥𝐽))
4 eleq2 2817 . . . . . 6 (𝑧 = 𝐽 → ((𝑥𝑦) ∈ 𝑧 ↔ (𝑥𝑦) ∈ 𝐽))
54raleqbi1dv 3302 . . . . 5 (𝑧 = 𝐽 → (∀𝑦𝑧 (𝑥𝑦) ∈ 𝑧 ↔ ∀𝑦𝐽 (𝑥𝑦) ∈ 𝐽))
65raleqbi1dv 3302 . . . 4 (𝑧 = 𝐽 → (∀𝑥𝑧𝑦𝑧 (𝑥𝑦) ∈ 𝑧 ↔ ∀𝑥𝐽𝑦𝐽 (𝑥𝑦) ∈ 𝐽))
73, 6anbi12d 632 . . 3 (𝑧 = 𝐽 → ((∀𝑥 ∈ 𝒫 𝑧 𝑥𝑧 ∧ ∀𝑥𝑧𝑦𝑧 (𝑥𝑦) ∈ 𝑧) ↔ (∀𝑥 ∈ 𝒫 𝐽 𝑥𝐽 ∧ ∀𝑥𝐽𝑦𝐽 (𝑥𝑦) ∈ 𝐽)))
8 df-top 22797 . . 3 Top = {𝑧 ∣ (∀𝑥 ∈ 𝒫 𝑧 𝑥𝑧 ∧ ∀𝑥𝑧𝑦𝑧 (𝑥𝑦) ∈ 𝑧)}
97, 8elab2g 3638 . 2 (𝐽𝐴 → (𝐽 ∈ Top ↔ (∀𝑥 ∈ 𝒫 𝐽 𝑥𝐽 ∧ ∀𝑥𝐽𝑦𝐽 (𝑥𝑦) ∈ 𝐽)))
10 df-ral 3045 . . . 4 (∀𝑥 ∈ 𝒫 𝐽 𝑥𝐽 ↔ ∀𝑥(𝑥 ∈ 𝒫 𝐽 𝑥𝐽))
11 elpw2g 5275 . . . . . 6 (𝐽𝐴 → (𝑥 ∈ 𝒫 𝐽𝑥𝐽))
1211imbi1d 341 . . . . 5 (𝐽𝐴 → ((𝑥 ∈ 𝒫 𝐽 𝑥𝐽) ↔ (𝑥𝐽 𝑥𝐽)))
1312albidv 1920 . . . 4 (𝐽𝐴 → (∀𝑥(𝑥 ∈ 𝒫 𝐽 𝑥𝐽) ↔ ∀𝑥(𝑥𝐽 𝑥𝐽)))
1410, 13bitrid 283 . . 3 (𝐽𝐴 → (∀𝑥 ∈ 𝒫 𝐽 𝑥𝐽 ↔ ∀𝑥(𝑥𝐽 𝑥𝐽)))
1514anbi1d 631 . 2 (𝐽𝐴 → ((∀𝑥 ∈ 𝒫 𝐽 𝑥𝐽 ∧ ∀𝑥𝐽𝑦𝐽 (𝑥𝑦) ∈ 𝐽) ↔ (∀𝑥(𝑥𝐽 𝑥𝐽) ∧ ∀𝑥𝐽𝑦𝐽 (𝑥𝑦) ∈ 𝐽)))
169, 15bitrd 279 1 (𝐽𝐴 → (𝐽 ∈ Top ↔ (∀𝑥(𝑥𝐽 𝑥𝐽) ∧ ∀𝑥𝐽𝑦𝐽 (𝑥𝑦) ∈ 𝐽)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1538   = wceq 1540  wcel 2109  wral 3044  cin 3904  wss 3905  𝒫 cpw 4553   cuni 4861  Topctop 22796
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5238
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-in 3912  df-ss 3922  df-pw 4555  df-top 22797
This theorem is referenced by:  istop2g  22799  uniopn  22800  inopn  22802  tgcl  22872  distop  22898  indistopon  22904  fctop  22907  cctop  22909  ppttop  22910  epttop  22912  mretopd  22995  toponmre  22996  neiptoptop  23034  kgentopon  23441  qtoptop2  23602  filconn  23786  utoptop  24138  neibastop1  36335
  Copyright terms: Public domain W3C validator