![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > istopg | Structured version Visualization version GIF version |
Description: Express the predicate
"𝐽 is a topology". See istop2g 22927 for another
characterization using nonempty finite intersections instead of binary
intersections.
Note: In the literature, a topology is often represented by a calligraphic letter T, which resembles the letter J. This confusion may have led to J being used by some authors (e.g., K. D. Joshi, Introduction to General Topology (1983), p. 114) and it is convenient for us since we later use 𝑇 to represent linear transformations (operators). (Contributed by Stefan Allan, 3-Mar-2006.) (Revised by Mario Carneiro, 11-Nov-2013.) |
Ref | Expression |
---|---|
istopg | ⊢ (𝐽 ∈ 𝐴 → (𝐽 ∈ Top ↔ (∀𝑥(𝑥 ⊆ 𝐽 → ∪ 𝑥 ∈ 𝐽) ∧ ∀𝑥 ∈ 𝐽 ∀𝑦 ∈ 𝐽 (𝑥 ∩ 𝑦) ∈ 𝐽))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pweq 4622 | . . . . 5 ⊢ (𝑧 = 𝐽 → 𝒫 𝑧 = 𝒫 𝐽) | |
2 | eleq2 2830 | . . . . 5 ⊢ (𝑧 = 𝐽 → (∪ 𝑥 ∈ 𝑧 ↔ ∪ 𝑥 ∈ 𝐽)) | |
3 | 1, 2 | raleqbidv 3346 | . . . 4 ⊢ (𝑧 = 𝐽 → (∀𝑥 ∈ 𝒫 𝑧∪ 𝑥 ∈ 𝑧 ↔ ∀𝑥 ∈ 𝒫 𝐽∪ 𝑥 ∈ 𝐽)) |
4 | eleq2 2830 | . . . . . 6 ⊢ (𝑧 = 𝐽 → ((𝑥 ∩ 𝑦) ∈ 𝑧 ↔ (𝑥 ∩ 𝑦) ∈ 𝐽)) | |
5 | 4 | raleqbi1dv 3338 | . . . . 5 ⊢ (𝑧 = 𝐽 → (∀𝑦 ∈ 𝑧 (𝑥 ∩ 𝑦) ∈ 𝑧 ↔ ∀𝑦 ∈ 𝐽 (𝑥 ∩ 𝑦) ∈ 𝐽)) |
6 | 5 | raleqbi1dv 3338 | . . . 4 ⊢ (𝑧 = 𝐽 → (∀𝑥 ∈ 𝑧 ∀𝑦 ∈ 𝑧 (𝑥 ∩ 𝑦) ∈ 𝑧 ↔ ∀𝑥 ∈ 𝐽 ∀𝑦 ∈ 𝐽 (𝑥 ∩ 𝑦) ∈ 𝐽)) |
7 | 3, 6 | anbi12d 632 | . . 3 ⊢ (𝑧 = 𝐽 → ((∀𝑥 ∈ 𝒫 𝑧∪ 𝑥 ∈ 𝑧 ∧ ∀𝑥 ∈ 𝑧 ∀𝑦 ∈ 𝑧 (𝑥 ∩ 𝑦) ∈ 𝑧) ↔ (∀𝑥 ∈ 𝒫 𝐽∪ 𝑥 ∈ 𝐽 ∧ ∀𝑥 ∈ 𝐽 ∀𝑦 ∈ 𝐽 (𝑥 ∩ 𝑦) ∈ 𝐽))) |
8 | df-top 22925 | . . 3 ⊢ Top = {𝑧 ∣ (∀𝑥 ∈ 𝒫 𝑧∪ 𝑥 ∈ 𝑧 ∧ ∀𝑥 ∈ 𝑧 ∀𝑦 ∈ 𝑧 (𝑥 ∩ 𝑦) ∈ 𝑧)} | |
9 | 7, 8 | elab2g 3686 | . 2 ⊢ (𝐽 ∈ 𝐴 → (𝐽 ∈ Top ↔ (∀𝑥 ∈ 𝒫 𝐽∪ 𝑥 ∈ 𝐽 ∧ ∀𝑥 ∈ 𝐽 ∀𝑦 ∈ 𝐽 (𝑥 ∩ 𝑦) ∈ 𝐽))) |
10 | df-ral 3062 | . . . 4 ⊢ (∀𝑥 ∈ 𝒫 𝐽∪ 𝑥 ∈ 𝐽 ↔ ∀𝑥(𝑥 ∈ 𝒫 𝐽 → ∪ 𝑥 ∈ 𝐽)) | |
11 | elpw2g 5342 | . . . . . 6 ⊢ (𝐽 ∈ 𝐴 → (𝑥 ∈ 𝒫 𝐽 ↔ 𝑥 ⊆ 𝐽)) | |
12 | 11 | imbi1d 341 | . . . . 5 ⊢ (𝐽 ∈ 𝐴 → ((𝑥 ∈ 𝒫 𝐽 → ∪ 𝑥 ∈ 𝐽) ↔ (𝑥 ⊆ 𝐽 → ∪ 𝑥 ∈ 𝐽))) |
13 | 12 | albidv 1920 | . . . 4 ⊢ (𝐽 ∈ 𝐴 → (∀𝑥(𝑥 ∈ 𝒫 𝐽 → ∪ 𝑥 ∈ 𝐽) ↔ ∀𝑥(𝑥 ⊆ 𝐽 → ∪ 𝑥 ∈ 𝐽))) |
14 | 10, 13 | bitrid 283 | . . 3 ⊢ (𝐽 ∈ 𝐴 → (∀𝑥 ∈ 𝒫 𝐽∪ 𝑥 ∈ 𝐽 ↔ ∀𝑥(𝑥 ⊆ 𝐽 → ∪ 𝑥 ∈ 𝐽))) |
15 | 14 | anbi1d 631 | . 2 ⊢ (𝐽 ∈ 𝐴 → ((∀𝑥 ∈ 𝒫 𝐽∪ 𝑥 ∈ 𝐽 ∧ ∀𝑥 ∈ 𝐽 ∀𝑦 ∈ 𝐽 (𝑥 ∩ 𝑦) ∈ 𝐽) ↔ (∀𝑥(𝑥 ⊆ 𝐽 → ∪ 𝑥 ∈ 𝐽) ∧ ∀𝑥 ∈ 𝐽 ∀𝑦 ∈ 𝐽 (𝑥 ∩ 𝑦) ∈ 𝐽))) |
16 | 9, 15 | bitrd 279 | 1 ⊢ (𝐽 ∈ 𝐴 → (𝐽 ∈ Top ↔ (∀𝑥(𝑥 ⊆ 𝐽 → ∪ 𝑥 ∈ 𝐽) ∧ ∀𝑥 ∈ 𝐽 ∀𝑦 ∈ 𝐽 (𝑥 ∩ 𝑦) ∈ 𝐽))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1537 = wceq 1539 ∈ wcel 2108 ∀wral 3061 ∩ cin 3965 ⊆ wss 3966 𝒫 cpw 4608 ∪ cuni 4915 Topctop 22924 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 ax-sep 5305 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 df-tru 1542 df-ex 1779 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3483 df-in 3973 df-ss 3983 df-pw 4610 df-top 22925 |
This theorem is referenced by: istop2g 22927 uniopn 22928 inopn 22930 tgcl 23001 distop 23027 indistopon 23033 fctop 23036 cctop 23038 ppttop 23039 epttop 23041 mretopd 23125 toponmre 23126 neiptoptop 23164 kgentopon 23571 qtoptop2 23732 filconn 23916 utoptop 24268 neibastop1 36354 |
Copyright terms: Public domain | W3C validator |