![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > istopg | Structured version Visualization version GIF version |
Description: Express the predicate
"𝐽 is a topology". See istop2g 22398 for another
characterization using nonempty finite intersections instead of binary
intersections.
Note: In the literature, a topology is often represented by a calligraphic letter T, which resembles the letter J. This confusion may have led to J being used by some authors (e.g., K. D. Joshi, Introduction to General Topology (1983), p. 114) and it is convenient for us since we later use 𝑇 to represent linear transformations (operators). (Contributed by Stefan Allan, 3-Mar-2006.) (Revised by Mario Carneiro, 11-Nov-2013.) |
Ref | Expression |
---|---|
istopg | ⊢ (𝐽 ∈ 𝐴 → (𝐽 ∈ Top ↔ (∀𝑥(𝑥 ⊆ 𝐽 → ∪ 𝑥 ∈ 𝐽) ∧ ∀𝑥 ∈ 𝐽 ∀𝑦 ∈ 𝐽 (𝑥 ∩ 𝑦) ∈ 𝐽))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pweq 4617 | . . . . 5 ⊢ (𝑧 = 𝐽 → 𝒫 𝑧 = 𝒫 𝐽) | |
2 | eleq2 2823 | . . . . 5 ⊢ (𝑧 = 𝐽 → (∪ 𝑥 ∈ 𝑧 ↔ ∪ 𝑥 ∈ 𝐽)) | |
3 | 1, 2 | raleqbidv 3343 | . . . 4 ⊢ (𝑧 = 𝐽 → (∀𝑥 ∈ 𝒫 𝑧∪ 𝑥 ∈ 𝑧 ↔ ∀𝑥 ∈ 𝒫 𝐽∪ 𝑥 ∈ 𝐽)) |
4 | eleq2 2823 | . . . . . 6 ⊢ (𝑧 = 𝐽 → ((𝑥 ∩ 𝑦) ∈ 𝑧 ↔ (𝑥 ∩ 𝑦) ∈ 𝐽)) | |
5 | 4 | raleqbi1dv 3334 | . . . . 5 ⊢ (𝑧 = 𝐽 → (∀𝑦 ∈ 𝑧 (𝑥 ∩ 𝑦) ∈ 𝑧 ↔ ∀𝑦 ∈ 𝐽 (𝑥 ∩ 𝑦) ∈ 𝐽)) |
6 | 5 | raleqbi1dv 3334 | . . . 4 ⊢ (𝑧 = 𝐽 → (∀𝑥 ∈ 𝑧 ∀𝑦 ∈ 𝑧 (𝑥 ∩ 𝑦) ∈ 𝑧 ↔ ∀𝑥 ∈ 𝐽 ∀𝑦 ∈ 𝐽 (𝑥 ∩ 𝑦) ∈ 𝐽)) |
7 | 3, 6 | anbi12d 632 | . . 3 ⊢ (𝑧 = 𝐽 → ((∀𝑥 ∈ 𝒫 𝑧∪ 𝑥 ∈ 𝑧 ∧ ∀𝑥 ∈ 𝑧 ∀𝑦 ∈ 𝑧 (𝑥 ∩ 𝑦) ∈ 𝑧) ↔ (∀𝑥 ∈ 𝒫 𝐽∪ 𝑥 ∈ 𝐽 ∧ ∀𝑥 ∈ 𝐽 ∀𝑦 ∈ 𝐽 (𝑥 ∩ 𝑦) ∈ 𝐽))) |
8 | df-top 22396 | . . 3 ⊢ Top = {𝑧 ∣ (∀𝑥 ∈ 𝒫 𝑧∪ 𝑥 ∈ 𝑧 ∧ ∀𝑥 ∈ 𝑧 ∀𝑦 ∈ 𝑧 (𝑥 ∩ 𝑦) ∈ 𝑧)} | |
9 | 7, 8 | elab2g 3671 | . 2 ⊢ (𝐽 ∈ 𝐴 → (𝐽 ∈ Top ↔ (∀𝑥 ∈ 𝒫 𝐽∪ 𝑥 ∈ 𝐽 ∧ ∀𝑥 ∈ 𝐽 ∀𝑦 ∈ 𝐽 (𝑥 ∩ 𝑦) ∈ 𝐽))) |
10 | df-ral 3063 | . . . 4 ⊢ (∀𝑥 ∈ 𝒫 𝐽∪ 𝑥 ∈ 𝐽 ↔ ∀𝑥(𝑥 ∈ 𝒫 𝐽 → ∪ 𝑥 ∈ 𝐽)) | |
11 | elpw2g 5345 | . . . . . 6 ⊢ (𝐽 ∈ 𝐴 → (𝑥 ∈ 𝒫 𝐽 ↔ 𝑥 ⊆ 𝐽)) | |
12 | 11 | imbi1d 342 | . . . . 5 ⊢ (𝐽 ∈ 𝐴 → ((𝑥 ∈ 𝒫 𝐽 → ∪ 𝑥 ∈ 𝐽) ↔ (𝑥 ⊆ 𝐽 → ∪ 𝑥 ∈ 𝐽))) |
13 | 12 | albidv 1924 | . . . 4 ⊢ (𝐽 ∈ 𝐴 → (∀𝑥(𝑥 ∈ 𝒫 𝐽 → ∪ 𝑥 ∈ 𝐽) ↔ ∀𝑥(𝑥 ⊆ 𝐽 → ∪ 𝑥 ∈ 𝐽))) |
14 | 10, 13 | bitrid 283 | . . 3 ⊢ (𝐽 ∈ 𝐴 → (∀𝑥 ∈ 𝒫 𝐽∪ 𝑥 ∈ 𝐽 ↔ ∀𝑥(𝑥 ⊆ 𝐽 → ∪ 𝑥 ∈ 𝐽))) |
15 | 14 | anbi1d 631 | . 2 ⊢ (𝐽 ∈ 𝐴 → ((∀𝑥 ∈ 𝒫 𝐽∪ 𝑥 ∈ 𝐽 ∧ ∀𝑥 ∈ 𝐽 ∀𝑦 ∈ 𝐽 (𝑥 ∩ 𝑦) ∈ 𝐽) ↔ (∀𝑥(𝑥 ⊆ 𝐽 → ∪ 𝑥 ∈ 𝐽) ∧ ∀𝑥 ∈ 𝐽 ∀𝑦 ∈ 𝐽 (𝑥 ∩ 𝑦) ∈ 𝐽))) |
16 | 9, 15 | bitrd 279 | 1 ⊢ (𝐽 ∈ 𝐴 → (𝐽 ∈ Top ↔ (∀𝑥(𝑥 ⊆ 𝐽 → ∪ 𝑥 ∈ 𝐽) ∧ ∀𝑥 ∈ 𝐽 ∀𝑦 ∈ 𝐽 (𝑥 ∩ 𝑦) ∈ 𝐽))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 ∀wal 1540 = wceq 1542 ∈ wcel 2107 ∀wral 3062 ∩ cin 3948 ⊆ wss 3949 𝒫 cpw 4603 ∪ cuni 4909 Topctop 22395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 ax-sep 5300 |
This theorem depends on definitions: df-bi 206 df-an 398 df-tru 1545 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-in 3956 df-ss 3966 df-pw 4605 df-top 22396 |
This theorem is referenced by: istop2g 22398 uniopn 22399 inopn 22401 tgcl 22472 distop 22498 indistopon 22504 fctop 22507 cctop 22509 ppttop 22510 epttop 22512 mretopd 22596 toponmre 22597 neiptoptop 22635 kgentopon 23042 qtoptop2 23203 filconn 23387 utoptop 23739 neibastop1 35292 |
Copyright terms: Public domain | W3C validator |