Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > istopg | Structured version Visualization version GIF version |
Description: Express the predicate
"𝐽 is a topology". See istop2g 22045 for another
characterization using nonempty finite intersections instead of binary
intersections.
Note: In the literature, a topology is often represented by a calligraphic letter T, which resembles the letter J. This confusion may have led to J being used by some authors (e.g., K. D. Joshi, Introduction to General Topology (1983), p. 114) and it is convenient for us since we later use 𝑇 to represent linear transformations (operators). (Contributed by Stefan Allan, 3-Mar-2006.) (Revised by Mario Carneiro, 11-Nov-2013.) |
Ref | Expression |
---|---|
istopg | ⊢ (𝐽 ∈ 𝐴 → (𝐽 ∈ Top ↔ (∀𝑥(𝑥 ⊆ 𝐽 → ∪ 𝑥 ∈ 𝐽) ∧ ∀𝑥 ∈ 𝐽 ∀𝑦 ∈ 𝐽 (𝑥 ∩ 𝑦) ∈ 𝐽))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pweq 4549 | . . . . 5 ⊢ (𝑧 = 𝐽 → 𝒫 𝑧 = 𝒫 𝐽) | |
2 | eleq2 2827 | . . . . 5 ⊢ (𝑧 = 𝐽 → (∪ 𝑥 ∈ 𝑧 ↔ ∪ 𝑥 ∈ 𝐽)) | |
3 | 1, 2 | raleqbidv 3336 | . . . 4 ⊢ (𝑧 = 𝐽 → (∀𝑥 ∈ 𝒫 𝑧∪ 𝑥 ∈ 𝑧 ↔ ∀𝑥 ∈ 𝒫 𝐽∪ 𝑥 ∈ 𝐽)) |
4 | eleq2 2827 | . . . . . 6 ⊢ (𝑧 = 𝐽 → ((𝑥 ∩ 𝑦) ∈ 𝑧 ↔ (𝑥 ∩ 𝑦) ∈ 𝐽)) | |
5 | 4 | raleqbi1dv 3340 | . . . . 5 ⊢ (𝑧 = 𝐽 → (∀𝑦 ∈ 𝑧 (𝑥 ∩ 𝑦) ∈ 𝑧 ↔ ∀𝑦 ∈ 𝐽 (𝑥 ∩ 𝑦) ∈ 𝐽)) |
6 | 5 | raleqbi1dv 3340 | . . . 4 ⊢ (𝑧 = 𝐽 → (∀𝑥 ∈ 𝑧 ∀𝑦 ∈ 𝑧 (𝑥 ∩ 𝑦) ∈ 𝑧 ↔ ∀𝑥 ∈ 𝐽 ∀𝑦 ∈ 𝐽 (𝑥 ∩ 𝑦) ∈ 𝐽)) |
7 | 3, 6 | anbi12d 631 | . . 3 ⊢ (𝑧 = 𝐽 → ((∀𝑥 ∈ 𝒫 𝑧∪ 𝑥 ∈ 𝑧 ∧ ∀𝑥 ∈ 𝑧 ∀𝑦 ∈ 𝑧 (𝑥 ∩ 𝑦) ∈ 𝑧) ↔ (∀𝑥 ∈ 𝒫 𝐽∪ 𝑥 ∈ 𝐽 ∧ ∀𝑥 ∈ 𝐽 ∀𝑦 ∈ 𝐽 (𝑥 ∩ 𝑦) ∈ 𝐽))) |
8 | df-top 22043 | . . 3 ⊢ Top = {𝑧 ∣ (∀𝑥 ∈ 𝒫 𝑧∪ 𝑥 ∈ 𝑧 ∧ ∀𝑥 ∈ 𝑧 ∀𝑦 ∈ 𝑧 (𝑥 ∩ 𝑦) ∈ 𝑧)} | |
9 | 7, 8 | elab2g 3611 | . 2 ⊢ (𝐽 ∈ 𝐴 → (𝐽 ∈ Top ↔ (∀𝑥 ∈ 𝒫 𝐽∪ 𝑥 ∈ 𝐽 ∧ ∀𝑥 ∈ 𝐽 ∀𝑦 ∈ 𝐽 (𝑥 ∩ 𝑦) ∈ 𝐽))) |
10 | df-ral 3069 | . . . 4 ⊢ (∀𝑥 ∈ 𝒫 𝐽∪ 𝑥 ∈ 𝐽 ↔ ∀𝑥(𝑥 ∈ 𝒫 𝐽 → ∪ 𝑥 ∈ 𝐽)) | |
11 | elpw2g 5268 | . . . . . 6 ⊢ (𝐽 ∈ 𝐴 → (𝑥 ∈ 𝒫 𝐽 ↔ 𝑥 ⊆ 𝐽)) | |
12 | 11 | imbi1d 342 | . . . . 5 ⊢ (𝐽 ∈ 𝐴 → ((𝑥 ∈ 𝒫 𝐽 → ∪ 𝑥 ∈ 𝐽) ↔ (𝑥 ⊆ 𝐽 → ∪ 𝑥 ∈ 𝐽))) |
13 | 12 | albidv 1923 | . . . 4 ⊢ (𝐽 ∈ 𝐴 → (∀𝑥(𝑥 ∈ 𝒫 𝐽 → ∪ 𝑥 ∈ 𝐽) ↔ ∀𝑥(𝑥 ⊆ 𝐽 → ∪ 𝑥 ∈ 𝐽))) |
14 | 10, 13 | bitrid 282 | . . 3 ⊢ (𝐽 ∈ 𝐴 → (∀𝑥 ∈ 𝒫 𝐽∪ 𝑥 ∈ 𝐽 ↔ ∀𝑥(𝑥 ⊆ 𝐽 → ∪ 𝑥 ∈ 𝐽))) |
15 | 14 | anbi1d 630 | . 2 ⊢ (𝐽 ∈ 𝐴 → ((∀𝑥 ∈ 𝒫 𝐽∪ 𝑥 ∈ 𝐽 ∧ ∀𝑥 ∈ 𝐽 ∀𝑦 ∈ 𝐽 (𝑥 ∩ 𝑦) ∈ 𝐽) ↔ (∀𝑥(𝑥 ⊆ 𝐽 → ∪ 𝑥 ∈ 𝐽) ∧ ∀𝑥 ∈ 𝐽 ∀𝑦 ∈ 𝐽 (𝑥 ∩ 𝑦) ∈ 𝐽))) |
16 | 9, 15 | bitrd 278 | 1 ⊢ (𝐽 ∈ 𝐴 → (𝐽 ∈ Top ↔ (∀𝑥(𝑥 ⊆ 𝐽 → ∪ 𝑥 ∈ 𝐽) ∧ ∀𝑥 ∈ 𝐽 ∀𝑦 ∈ 𝐽 (𝑥 ∩ 𝑦) ∈ 𝐽))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∀wal 1537 = wceq 1539 ∈ wcel 2106 ∀wral 3064 ∩ cin 3886 ⊆ wss 3887 𝒫 cpw 4533 ∪ cuni 4839 Topctop 22042 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-sep 5223 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rab 3073 df-v 3434 df-in 3894 df-ss 3904 df-pw 4535 df-top 22043 |
This theorem is referenced by: istop2g 22045 uniopn 22046 inopn 22048 tgcl 22119 distop 22145 indistopon 22151 fctop 22154 cctop 22156 ppttop 22157 epttop 22159 mretopd 22243 toponmre 22244 neiptoptop 22282 kgentopon 22689 qtoptop2 22850 filconn 23034 utoptop 23386 neibastop1 34548 |
Copyright terms: Public domain | W3C validator |