| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > topnex | Structured version Visualization version GIF version | ||
| Description: The class of all topologies is a proper class. The proof uses discrete topologies and pwnex 7715; an alternate proof uses indiscrete topologies (see indistop 22865) and the analogue of pwnex 7715 with pairs {∅, 𝑥} instead of power sets 𝒫 𝑥 (that analogue is also a consequence of abnex 7713). (Contributed by BJ, 2-May-2021.) |
| Ref | Expression |
|---|---|
| topnex | ⊢ Top ∉ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pwnex 7715 | . . . 4 ⊢ {𝑦 ∣ ∃𝑥 𝑦 = 𝒫 𝑥} ∉ V | |
| 2 | 1 | neli 3031 | . . 3 ⊢ ¬ {𝑦 ∣ ∃𝑥 𝑦 = 𝒫 𝑥} ∈ V |
| 3 | distop 22858 | . . . . . . . 8 ⊢ (𝑥 ∈ V → 𝒫 𝑥 ∈ Top) | |
| 4 | 3 | elv 3449 | . . . . . . 7 ⊢ 𝒫 𝑥 ∈ Top |
| 5 | eleq1 2816 | . . . . . . 7 ⊢ (𝑦 = 𝒫 𝑥 → (𝑦 ∈ Top ↔ 𝒫 𝑥 ∈ Top)) | |
| 6 | 4, 5 | mpbiri 258 | . . . . . 6 ⊢ (𝑦 = 𝒫 𝑥 → 𝑦 ∈ Top) |
| 7 | 6 | exlimiv 1930 | . . . . 5 ⊢ (∃𝑥 𝑦 = 𝒫 𝑥 → 𝑦 ∈ Top) |
| 8 | 7 | abssi 4029 | . . . 4 ⊢ {𝑦 ∣ ∃𝑥 𝑦 = 𝒫 𝑥} ⊆ Top |
| 9 | ssexg 5273 | . . . 4 ⊢ (({𝑦 ∣ ∃𝑥 𝑦 = 𝒫 𝑥} ⊆ Top ∧ Top ∈ V) → {𝑦 ∣ ∃𝑥 𝑦 = 𝒫 𝑥} ∈ V) | |
| 10 | 8, 9 | mpan 690 | . . 3 ⊢ (Top ∈ V → {𝑦 ∣ ∃𝑥 𝑦 = 𝒫 𝑥} ∈ V) |
| 11 | 2, 10 | mto 197 | . 2 ⊢ ¬ Top ∈ V |
| 12 | 11 | nelir 3032 | 1 ⊢ Top ∉ V |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∃wex 1779 ∈ wcel 2109 {cab 2707 ∉ wnel 3029 Vcvv 3444 ⊆ wss 3911 𝒫 cpw 4559 Topctop 22756 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-11 2158 ax-ext 2701 ax-sep 5246 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-un 3916 df-in 3918 df-ss 3928 df-pw 4561 df-sn 4586 df-pr 4588 df-uni 4868 df-iun 4953 df-top 22757 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |