Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  topnex Structured version   Visualization version   GIF version

Theorem topnex 21601
 Description: The class of all topologies is a proper class. The proof uses discrete topologies and pwnex 7461; an alternate proof uses indiscrete topologies (see indistop 21607) and the analogue of pwnex 7461 with pairs {∅, 𝑥} instead of power sets 𝒫 𝑥 (that analogue is also a consequence of abnex 7459). (Contributed by BJ, 2-May-2021.)
Assertion
Ref Expression
topnex Top ∉ V

Proof of Theorem topnex
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pwnex 7461 . . . 4 {𝑦 ∣ ∃𝑥 𝑦 = 𝒫 𝑥} ∉ V
21neli 3093 . . 3 ¬ {𝑦 ∣ ∃𝑥 𝑦 = 𝒫 𝑥} ∈ V
3 distop 21600 . . . . . . . 8 (𝑥 ∈ V → 𝒫 𝑥 ∈ Top)
43elv 3446 . . . . . . 7 𝒫 𝑥 ∈ Top
5 eleq1 2877 . . . . . . 7 (𝑦 = 𝒫 𝑥 → (𝑦 ∈ Top ↔ 𝒫 𝑥 ∈ Top))
64, 5mpbiri 261 . . . . . 6 (𝑦 = 𝒫 𝑥𝑦 ∈ Top)
76exlimiv 1931 . . . . 5 (∃𝑥 𝑦 = 𝒫 𝑥𝑦 ∈ Top)
87abssi 3997 . . . 4 {𝑦 ∣ ∃𝑥 𝑦 = 𝒫 𝑥} ⊆ Top
9 ssexg 5191 . . . 4 (({𝑦 ∣ ∃𝑥 𝑦 = 𝒫 𝑥} ⊆ Top ∧ Top ∈ V) → {𝑦 ∣ ∃𝑥 𝑦 = 𝒫 𝑥} ∈ V)
108, 9mpan 689 . . 3 (Top ∈ V → {𝑦 ∣ ∃𝑥 𝑦 = 𝒫 𝑥} ∈ V)
112, 10mto 200 . 2 ¬ Top ∈ V
1211nelir 3094 1 Top ∉ V
 Colors of variables: wff setvar class Syntax hints:   = wceq 1538  ∃wex 1781   ∈ wcel 2111  {cab 2776   ∉ wnel 3091  Vcvv 3441   ⊆ wss 3881  𝒫 cpw 4497  Topctop 21498 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-nel 3092  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-pw 4499  df-sn 4526  df-pr 4528  df-uni 4801  df-iun 4883  df-top 21499 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator