MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  topnex Structured version   Visualization version   GIF version

Theorem topnex 22934
Description: The class of all topologies is a proper class. The proof uses discrete topologies and pwnex 7753; an alternate proof uses indiscrete topologies (see indistop 22940) and the analogue of pwnex 7753 with pairs {∅, 𝑥} instead of power sets 𝒫 𝑥 (that analogue is also a consequence of abnex 7751). (Contributed by BJ, 2-May-2021.)
Assertion
Ref Expression
topnex Top ∉ V

Proof of Theorem topnex
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pwnex 7753 . . . 4 {𝑦 ∣ ∃𝑥 𝑦 = 𝒫 𝑥} ∉ V
21neli 3038 . . 3 ¬ {𝑦 ∣ ∃𝑥 𝑦 = 𝒫 𝑥} ∈ V
3 distop 22933 . . . . . . . 8 (𝑥 ∈ V → 𝒫 𝑥 ∈ Top)
43elv 3464 . . . . . . 7 𝒫 𝑥 ∈ Top
5 eleq1 2822 . . . . . . 7 (𝑦 = 𝒫 𝑥 → (𝑦 ∈ Top ↔ 𝒫 𝑥 ∈ Top))
64, 5mpbiri 258 . . . . . 6 (𝑦 = 𝒫 𝑥𝑦 ∈ Top)
76exlimiv 1930 . . . . 5 (∃𝑥 𝑦 = 𝒫 𝑥𝑦 ∈ Top)
87abssi 4045 . . . 4 {𝑦 ∣ ∃𝑥 𝑦 = 𝒫 𝑥} ⊆ Top
9 ssexg 5293 . . . 4 (({𝑦 ∣ ∃𝑥 𝑦 = 𝒫 𝑥} ⊆ Top ∧ Top ∈ V) → {𝑦 ∣ ∃𝑥 𝑦 = 𝒫 𝑥} ∈ V)
108, 9mpan 690 . . 3 (Top ∈ V → {𝑦 ∣ ∃𝑥 𝑦 = 𝒫 𝑥} ∈ V)
112, 10mto 197 . 2 ¬ Top ∈ V
1211nelir 3039 1 Top ∉ V
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wex 1779  wcel 2108  {cab 2713  wnel 3036  Vcvv 3459  wss 3926  𝒫 cpw 4575  Topctop 22831
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-11 2157  ax-ext 2707  ax-sep 5266  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-nel 3037  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-un 3931  df-in 3933  df-ss 3943  df-pw 4577  df-sn 4602  df-pr 4604  df-uni 4884  df-iun 4969  df-top 22832
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator