| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > topnex | Structured version Visualization version GIF version | ||
| Description: The class of all topologies is a proper class. The proof uses discrete topologies and pwnex 7692; an alternate proof uses indiscrete topologies (see indistop 22917) and the analogue of pwnex 7692 with pairs {∅, 𝑥} instead of power sets 𝒫 𝑥 (that analogue is also a consequence of abnex 7690). (Contributed by BJ, 2-May-2021.) |
| Ref | Expression |
|---|---|
| topnex | ⊢ Top ∉ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pwnex 7692 | . . . 4 ⊢ {𝑦 ∣ ∃𝑥 𝑦 = 𝒫 𝑥} ∉ V | |
| 2 | 1 | neli 3034 | . . 3 ⊢ ¬ {𝑦 ∣ ∃𝑥 𝑦 = 𝒫 𝑥} ∈ V |
| 3 | distop 22910 | . . . . . . . 8 ⊢ (𝑥 ∈ V → 𝒫 𝑥 ∈ Top) | |
| 4 | 3 | elv 3441 | . . . . . . 7 ⊢ 𝒫 𝑥 ∈ Top |
| 5 | eleq1 2819 | . . . . . . 7 ⊢ (𝑦 = 𝒫 𝑥 → (𝑦 ∈ Top ↔ 𝒫 𝑥 ∈ Top)) | |
| 6 | 4, 5 | mpbiri 258 | . . . . . 6 ⊢ (𝑦 = 𝒫 𝑥 → 𝑦 ∈ Top) |
| 7 | 6 | exlimiv 1931 | . . . . 5 ⊢ (∃𝑥 𝑦 = 𝒫 𝑥 → 𝑦 ∈ Top) |
| 8 | 7 | abssi 4015 | . . . 4 ⊢ {𝑦 ∣ ∃𝑥 𝑦 = 𝒫 𝑥} ⊆ Top |
| 9 | ssexg 5259 | . . . 4 ⊢ (({𝑦 ∣ ∃𝑥 𝑦 = 𝒫 𝑥} ⊆ Top ∧ Top ∈ V) → {𝑦 ∣ ∃𝑥 𝑦 = 𝒫 𝑥} ∈ V) | |
| 10 | 8, 9 | mpan 690 | . . 3 ⊢ (Top ∈ V → {𝑦 ∣ ∃𝑥 𝑦 = 𝒫 𝑥} ∈ V) |
| 11 | 2, 10 | mto 197 | . 2 ⊢ ¬ Top ∈ V |
| 12 | 11 | nelir 3035 | 1 ⊢ Top ∉ V |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∃wex 1780 ∈ wcel 2111 {cab 2709 ∉ wnel 3032 Vcvv 3436 ⊆ wss 3897 𝒫 cpw 4547 Topctop 22808 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-11 2160 ax-ext 2703 ax-sep 5232 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-nel 3033 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-un 3902 df-in 3904 df-ss 3914 df-pw 4549 df-sn 4574 df-pr 4576 df-uni 4857 df-iun 4941 df-top 22809 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |