Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > topnex | Structured version Visualization version GIF version |
Description: The class of all topologies is a proper class. The proof uses discrete topologies and pwnex 7587; an alternate proof uses indiscrete topologies (see indistop 22060) and the analogue of pwnex 7587 with pairs {∅, 𝑥} instead of power sets 𝒫 𝑥 (that analogue is also a consequence of abnex 7585). (Contributed by BJ, 2-May-2021.) |
Ref | Expression |
---|---|
topnex | ⊢ Top ∉ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pwnex 7587 | . . . 4 ⊢ {𝑦 ∣ ∃𝑥 𝑦 = 𝒫 𝑥} ∉ V | |
2 | 1 | neli 3050 | . . 3 ⊢ ¬ {𝑦 ∣ ∃𝑥 𝑦 = 𝒫 𝑥} ∈ V |
3 | distop 22053 | . . . . . . . 8 ⊢ (𝑥 ∈ V → 𝒫 𝑥 ∈ Top) | |
4 | 3 | elv 3428 | . . . . . . 7 ⊢ 𝒫 𝑥 ∈ Top |
5 | eleq1 2826 | . . . . . . 7 ⊢ (𝑦 = 𝒫 𝑥 → (𝑦 ∈ Top ↔ 𝒫 𝑥 ∈ Top)) | |
6 | 4, 5 | mpbiri 257 | . . . . . 6 ⊢ (𝑦 = 𝒫 𝑥 → 𝑦 ∈ Top) |
7 | 6 | exlimiv 1934 | . . . . 5 ⊢ (∃𝑥 𝑦 = 𝒫 𝑥 → 𝑦 ∈ Top) |
8 | 7 | abssi 3999 | . . . 4 ⊢ {𝑦 ∣ ∃𝑥 𝑦 = 𝒫 𝑥} ⊆ Top |
9 | ssexg 5242 | . . . 4 ⊢ (({𝑦 ∣ ∃𝑥 𝑦 = 𝒫 𝑥} ⊆ Top ∧ Top ∈ V) → {𝑦 ∣ ∃𝑥 𝑦 = 𝒫 𝑥} ∈ V) | |
10 | 8, 9 | mpan 686 | . . 3 ⊢ (Top ∈ V → {𝑦 ∣ ∃𝑥 𝑦 = 𝒫 𝑥} ∈ V) |
11 | 2, 10 | mto 196 | . 2 ⊢ ¬ Top ∈ V |
12 | 11 | nelir 3051 | 1 ⊢ Top ∉ V |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∃wex 1783 ∈ wcel 2108 {cab 2715 ∉ wnel 3048 Vcvv 3422 ⊆ wss 3883 𝒫 cpw 4530 Topctop 21950 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-nel 3049 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-pw 4532 df-sn 4559 df-pr 4561 df-uni 4837 df-iun 4923 df-top 21951 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |