MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  topnex Structured version   Visualization version   GIF version

Theorem topnex 22054
Description: The class of all topologies is a proper class. The proof uses discrete topologies and pwnex 7587; an alternate proof uses indiscrete topologies (see indistop 22060) and the analogue of pwnex 7587 with pairs {∅, 𝑥} instead of power sets 𝒫 𝑥 (that analogue is also a consequence of abnex 7585). (Contributed by BJ, 2-May-2021.)
Assertion
Ref Expression
topnex Top ∉ V

Proof of Theorem topnex
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pwnex 7587 . . . 4 {𝑦 ∣ ∃𝑥 𝑦 = 𝒫 𝑥} ∉ V
21neli 3050 . . 3 ¬ {𝑦 ∣ ∃𝑥 𝑦 = 𝒫 𝑥} ∈ V
3 distop 22053 . . . . . . . 8 (𝑥 ∈ V → 𝒫 𝑥 ∈ Top)
43elv 3428 . . . . . . 7 𝒫 𝑥 ∈ Top
5 eleq1 2826 . . . . . . 7 (𝑦 = 𝒫 𝑥 → (𝑦 ∈ Top ↔ 𝒫 𝑥 ∈ Top))
64, 5mpbiri 257 . . . . . 6 (𝑦 = 𝒫 𝑥𝑦 ∈ Top)
76exlimiv 1934 . . . . 5 (∃𝑥 𝑦 = 𝒫 𝑥𝑦 ∈ Top)
87abssi 3999 . . . 4 {𝑦 ∣ ∃𝑥 𝑦 = 𝒫 𝑥} ⊆ Top
9 ssexg 5242 . . . 4 (({𝑦 ∣ ∃𝑥 𝑦 = 𝒫 𝑥} ⊆ Top ∧ Top ∈ V) → {𝑦 ∣ ∃𝑥 𝑦 = 𝒫 𝑥} ∈ V)
108, 9mpan 686 . . 3 (Top ∈ V → {𝑦 ∣ ∃𝑥 𝑦 = 𝒫 𝑥} ∈ V)
112, 10mto 196 . 2 ¬ Top ∈ V
1211nelir 3051 1 Top ∉ V
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  wex 1783  wcel 2108  {cab 2715  wnel 3048  Vcvv 3422  wss 3883  𝒫 cpw 4530  Topctop 21950
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-nel 3049  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-pw 4532  df-sn 4559  df-pr 4561  df-uni 4837  df-iun 4923  df-top 21951
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator