![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > topnex | Structured version Visualization version GIF version |
Description: The class of all topologies is a proper class. The proof uses discrete topologies and pwnex 7742; an alternate proof uses indiscrete topologies (see indistop 22496) and the analogue of pwnex 7742 with pairs {∅, 𝑥} instead of power sets 𝒫 𝑥 (that analogue is also a consequence of abnex 7740). (Contributed by BJ, 2-May-2021.) |
Ref | Expression |
---|---|
topnex | ⊢ Top ∉ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pwnex 7742 | . . . 4 ⊢ {𝑦 ∣ ∃𝑥 𝑦 = 𝒫 𝑥} ∉ V | |
2 | 1 | neli 3048 | . . 3 ⊢ ¬ {𝑦 ∣ ∃𝑥 𝑦 = 𝒫 𝑥} ∈ V |
3 | distop 22489 | . . . . . . . 8 ⊢ (𝑥 ∈ V → 𝒫 𝑥 ∈ Top) | |
4 | 3 | elv 3480 | . . . . . . 7 ⊢ 𝒫 𝑥 ∈ Top |
5 | eleq1 2821 | . . . . . . 7 ⊢ (𝑦 = 𝒫 𝑥 → (𝑦 ∈ Top ↔ 𝒫 𝑥 ∈ Top)) | |
6 | 4, 5 | mpbiri 257 | . . . . . 6 ⊢ (𝑦 = 𝒫 𝑥 → 𝑦 ∈ Top) |
7 | 6 | exlimiv 1933 | . . . . 5 ⊢ (∃𝑥 𝑦 = 𝒫 𝑥 → 𝑦 ∈ Top) |
8 | 7 | abssi 4066 | . . . 4 ⊢ {𝑦 ∣ ∃𝑥 𝑦 = 𝒫 𝑥} ⊆ Top |
9 | ssexg 5322 | . . . 4 ⊢ (({𝑦 ∣ ∃𝑥 𝑦 = 𝒫 𝑥} ⊆ Top ∧ Top ∈ V) → {𝑦 ∣ ∃𝑥 𝑦 = 𝒫 𝑥} ∈ V) | |
10 | 8, 9 | mpan 688 | . . 3 ⊢ (Top ∈ V → {𝑦 ∣ ∃𝑥 𝑦 = 𝒫 𝑥} ∈ V) |
11 | 2, 10 | mto 196 | . 2 ⊢ ¬ Top ∈ V |
12 | 11 | nelir 3049 | 1 ⊢ Top ∉ V |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1541 ∃wex 1781 ∈ wcel 2106 {cab 2709 ∉ wnel 3046 Vcvv 3474 ⊆ wss 3947 𝒫 cpw 4601 Topctop 22386 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-11 2154 ax-ext 2703 ax-sep 5298 ax-pow 5362 ax-pr 5426 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-tru 1544 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-nel 3047 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-un 3952 df-in 3954 df-ss 3964 df-pw 4603 df-sn 4628 df-pr 4630 df-uni 4908 df-iun 4998 df-top 22387 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |