MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  topnex Structured version   Visualization version   GIF version

Theorem topnex 21847
Description: The class of all topologies is a proper class. The proof uses discrete topologies and pwnex 7522; an alternate proof uses indiscrete topologies (see indistop 21853) and the analogue of pwnex 7522 with pairs {∅, 𝑥} instead of power sets 𝒫 𝑥 (that analogue is also a consequence of abnex 7520). (Contributed by BJ, 2-May-2021.)
Assertion
Ref Expression
topnex Top ∉ V

Proof of Theorem topnex
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pwnex 7522 . . . 4 {𝑦 ∣ ∃𝑥 𝑦 = 𝒫 𝑥} ∉ V
21neli 3038 . . 3 ¬ {𝑦 ∣ ∃𝑥 𝑦 = 𝒫 𝑥} ∈ V
3 distop 21846 . . . . . . . 8 (𝑥 ∈ V → 𝒫 𝑥 ∈ Top)
43elv 3404 . . . . . . 7 𝒫 𝑥 ∈ Top
5 eleq1 2818 . . . . . . 7 (𝑦 = 𝒫 𝑥 → (𝑦 ∈ Top ↔ 𝒫 𝑥 ∈ Top))
64, 5mpbiri 261 . . . . . 6 (𝑦 = 𝒫 𝑥𝑦 ∈ Top)
76exlimiv 1938 . . . . 5 (∃𝑥 𝑦 = 𝒫 𝑥𝑦 ∈ Top)
87abssi 3969 . . . 4 {𝑦 ∣ ∃𝑥 𝑦 = 𝒫 𝑥} ⊆ Top
9 ssexg 5201 . . . 4 (({𝑦 ∣ ∃𝑥 𝑦 = 𝒫 𝑥} ⊆ Top ∧ Top ∈ V) → {𝑦 ∣ ∃𝑥 𝑦 = 𝒫 𝑥} ∈ V)
108, 9mpan 690 . . 3 (Top ∈ V → {𝑦 ∣ ∃𝑥 𝑦 = 𝒫 𝑥} ∈ V)
112, 10mto 200 . 2 ¬ Top ∈ V
1211nelir 3039 1 Top ∉ V
Colors of variables: wff setvar class
Syntax hints:   = wceq 1543  wex 1787  wcel 2112  {cab 2714  wnel 3036  Vcvv 3398  wss 3853  𝒫 cpw 4499  Topctop 21744
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-nel 3037  df-ral 3056  df-rex 3057  df-rab 3060  df-v 3400  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-nul 4224  df-pw 4501  df-sn 4528  df-pr 4530  df-uni 4806  df-iun 4892  df-top 21745
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator