| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-topgen | Structured version Visualization version GIF version | ||
| Description: Define a function that converts a basis to its corresponding topology. Equivalent to the definition of a topology generated by a basis in [Munkres] p. 78 (see tgval2 22963). The first use of this definition is tgval 22962 but the token is used in df-pt 17489. See tgval3 22970 for an alternate expression for the value. (Contributed by NM, 16-Jul-2006.) |
| Ref | Expression |
|---|---|
| df-topgen | ⊢ topGen = (𝑥 ∈ V ↦ {𝑦 ∣ 𝑦 ⊆ ∪ (𝑥 ∩ 𝒫 𝑦)}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ctg 17482 | . 2 class topGen | |
| 2 | vx | . . 3 setvar 𝑥 | |
| 3 | cvv 3480 | . . 3 class V | |
| 4 | vy | . . . . . 6 setvar 𝑦 | |
| 5 | 4 | cv 1539 | . . . . 5 class 𝑦 |
| 6 | 2 | cv 1539 | . . . . . . 7 class 𝑥 |
| 7 | 5 | cpw 4600 | . . . . . . 7 class 𝒫 𝑦 |
| 8 | 6, 7 | cin 3950 | . . . . . 6 class (𝑥 ∩ 𝒫 𝑦) |
| 9 | 8 | cuni 4907 | . . . . 5 class ∪ (𝑥 ∩ 𝒫 𝑦) |
| 10 | 5, 9 | wss 3951 | . . . 4 wff 𝑦 ⊆ ∪ (𝑥 ∩ 𝒫 𝑦) |
| 11 | 10, 4 | cab 2714 | . . 3 class {𝑦 ∣ 𝑦 ⊆ ∪ (𝑥 ∩ 𝒫 𝑦)} |
| 12 | 2, 3, 11 | cmpt 5225 | . 2 class (𝑥 ∈ V ↦ {𝑦 ∣ 𝑦 ⊆ ∪ (𝑥 ∩ 𝒫 𝑦)}) |
| 13 | 1, 12 | wceq 1540 | 1 wff topGen = (𝑥 ∈ V ↦ {𝑦 ∣ 𝑦 ⊆ ∪ (𝑥 ∩ 𝒫 𝑦)}) |
| Colors of variables: wff setvar class |
| This definition is referenced by: tgval 22962 |
| Copyright terms: Public domain | W3C validator |