![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tgval | Structured version Visualization version GIF version |
Description: The topology generated by a basis. See also tgval2 22858 and tgval3 22865. (Contributed by NM, 16-Jul-2006.) (Revised by Mario Carneiro, 10-Jan-2015.) |
Ref | Expression |
---|---|
tgval | ⊢ (𝐵 ∈ 𝑉 → (topGen‘𝐵) = {𝑥 ∣ 𝑥 ⊆ ∪ (𝐵 ∩ 𝒫 𝑥)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-topgen 17424 | . 2 ⊢ topGen = (𝑦 ∈ V ↦ {𝑥 ∣ 𝑥 ⊆ ∪ (𝑦 ∩ 𝒫 𝑥)}) | |
2 | ineq1 4205 | . . . . 5 ⊢ (𝑦 = 𝐵 → (𝑦 ∩ 𝒫 𝑥) = (𝐵 ∩ 𝒫 𝑥)) | |
3 | 2 | unieqd 4921 | . . . 4 ⊢ (𝑦 = 𝐵 → ∪ (𝑦 ∩ 𝒫 𝑥) = ∪ (𝐵 ∩ 𝒫 𝑥)) |
4 | 3 | sseq2d 4012 | . . 3 ⊢ (𝑦 = 𝐵 → (𝑥 ⊆ ∪ (𝑦 ∩ 𝒫 𝑥) ↔ 𝑥 ⊆ ∪ (𝐵 ∩ 𝒫 𝑥))) |
5 | 4 | abbidv 2797 | . 2 ⊢ (𝑦 = 𝐵 → {𝑥 ∣ 𝑥 ⊆ ∪ (𝑦 ∩ 𝒫 𝑥)} = {𝑥 ∣ 𝑥 ⊆ ∪ (𝐵 ∩ 𝒫 𝑥)}) |
6 | elex 3490 | . 2 ⊢ (𝐵 ∈ 𝑉 → 𝐵 ∈ V) | |
7 | uniexg 7745 | . . 3 ⊢ (𝐵 ∈ 𝑉 → ∪ 𝐵 ∈ V) | |
8 | abssexg 5382 | . . 3 ⊢ (∪ 𝐵 ∈ V → {𝑥 ∣ (𝑥 ⊆ ∪ 𝐵 ∧ 𝑥 ⊆ ∪ 𝒫 𝑥)} ∈ V) | |
9 | uniin 4934 | . . . . . . 7 ⊢ ∪ (𝐵 ∩ 𝒫 𝑥) ⊆ (∪ 𝐵 ∩ ∪ 𝒫 𝑥) | |
10 | sstr 3988 | . . . . . . 7 ⊢ ((𝑥 ⊆ ∪ (𝐵 ∩ 𝒫 𝑥) ∧ ∪ (𝐵 ∩ 𝒫 𝑥) ⊆ (∪ 𝐵 ∩ ∪ 𝒫 𝑥)) → 𝑥 ⊆ (∪ 𝐵 ∩ ∪ 𝒫 𝑥)) | |
11 | 9, 10 | mpan2 690 | . . . . . 6 ⊢ (𝑥 ⊆ ∪ (𝐵 ∩ 𝒫 𝑥) → 𝑥 ⊆ (∪ 𝐵 ∩ ∪ 𝒫 𝑥)) |
12 | ssin 4231 | . . . . . 6 ⊢ ((𝑥 ⊆ ∪ 𝐵 ∧ 𝑥 ⊆ ∪ 𝒫 𝑥) ↔ 𝑥 ⊆ (∪ 𝐵 ∩ ∪ 𝒫 𝑥)) | |
13 | 11, 12 | sylibr 233 | . . . . 5 ⊢ (𝑥 ⊆ ∪ (𝐵 ∩ 𝒫 𝑥) → (𝑥 ⊆ ∪ 𝐵 ∧ 𝑥 ⊆ ∪ 𝒫 𝑥)) |
14 | 13 | ss2abi 4061 | . . . 4 ⊢ {𝑥 ∣ 𝑥 ⊆ ∪ (𝐵 ∩ 𝒫 𝑥)} ⊆ {𝑥 ∣ (𝑥 ⊆ ∪ 𝐵 ∧ 𝑥 ⊆ ∪ 𝒫 𝑥)} |
15 | ssexg 5323 | . . . 4 ⊢ (({𝑥 ∣ 𝑥 ⊆ ∪ (𝐵 ∩ 𝒫 𝑥)} ⊆ {𝑥 ∣ (𝑥 ⊆ ∪ 𝐵 ∧ 𝑥 ⊆ ∪ 𝒫 𝑥)} ∧ {𝑥 ∣ (𝑥 ⊆ ∪ 𝐵 ∧ 𝑥 ⊆ ∪ 𝒫 𝑥)} ∈ V) → {𝑥 ∣ 𝑥 ⊆ ∪ (𝐵 ∩ 𝒫 𝑥)} ∈ V) | |
16 | 14, 15 | mpan 689 | . . 3 ⊢ ({𝑥 ∣ (𝑥 ⊆ ∪ 𝐵 ∧ 𝑥 ⊆ ∪ 𝒫 𝑥)} ∈ V → {𝑥 ∣ 𝑥 ⊆ ∪ (𝐵 ∩ 𝒫 𝑥)} ∈ V) |
17 | 7, 8, 16 | 3syl 18 | . 2 ⊢ (𝐵 ∈ 𝑉 → {𝑥 ∣ 𝑥 ⊆ ∪ (𝐵 ∩ 𝒫 𝑥)} ∈ V) |
18 | 1, 5, 6, 17 | fvmptd3 7028 | 1 ⊢ (𝐵 ∈ 𝑉 → (topGen‘𝐵) = {𝑥 ∣ 𝑥 ⊆ ∪ (𝐵 ∩ 𝒫 𝑥)}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1534 ∈ wcel 2099 {cab 2705 Vcvv 3471 ∩ cin 3946 ⊆ wss 3947 𝒫 cpw 4603 ∪ cuni 4908 ‘cfv 6548 topGenctg 17418 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ral 3059 df-rex 3068 df-rab 3430 df-v 3473 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-iota 6500 df-fun 6550 df-fv 6556 df-topgen 17424 |
This theorem is referenced by: tgval2 22858 eltg 22859 tgdif0 22894 |
Copyright terms: Public domain | W3C validator |