MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgval Structured version   Visualization version   GIF version

Theorem tgval 22871
Description: The topology generated by a basis. See also tgval2 22872 and tgval3 22879. (Contributed by NM, 16-Jul-2006.) (Revised by Mario Carneiro, 10-Jan-2015.)
Assertion
Ref Expression
tgval (𝐵𝑉 → (topGen‘𝐵) = {𝑥𝑥 (𝐵 ∩ 𝒫 𝑥)})
Distinct variable groups:   𝑥,𝐵   𝑥,𝑉

Proof of Theorem tgval
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-topgen 17347 . 2 topGen = (𝑦 ∈ V ↦ {𝑥𝑥 (𝑦 ∩ 𝒫 𝑥)})
2 ineq1 4163 . . . . 5 (𝑦 = 𝐵 → (𝑦 ∩ 𝒫 𝑥) = (𝐵 ∩ 𝒫 𝑥))
32unieqd 4872 . . . 4 (𝑦 = 𝐵 (𝑦 ∩ 𝒫 𝑥) = (𝐵 ∩ 𝒫 𝑥))
43sseq2d 3967 . . 3 (𝑦 = 𝐵 → (𝑥 (𝑦 ∩ 𝒫 𝑥) ↔ 𝑥 (𝐵 ∩ 𝒫 𝑥)))
54abbidv 2797 . 2 (𝑦 = 𝐵 → {𝑥𝑥 (𝑦 ∩ 𝒫 𝑥)} = {𝑥𝑥 (𝐵 ∩ 𝒫 𝑥)})
6 elex 3457 . 2 (𝐵𝑉𝐵 ∈ V)
7 uniexg 7673 . . 3 (𝐵𝑉 𝐵 ∈ V)
8 abssexg 5320 . . 3 ( 𝐵 ∈ V → {𝑥 ∣ (𝑥 𝐵𝑥 𝒫 𝑥)} ∈ V)
9 uniin 4883 . . . . . . 7 (𝐵 ∩ 𝒫 𝑥) ⊆ ( 𝐵 𝒫 𝑥)
10 sstr 3943 . . . . . . 7 ((𝑥 (𝐵 ∩ 𝒫 𝑥) ∧ (𝐵 ∩ 𝒫 𝑥) ⊆ ( 𝐵 𝒫 𝑥)) → 𝑥 ⊆ ( 𝐵 𝒫 𝑥))
119, 10mpan2 691 . . . . . 6 (𝑥 (𝐵 ∩ 𝒫 𝑥) → 𝑥 ⊆ ( 𝐵 𝒫 𝑥))
12 ssin 4189 . . . . . 6 ((𝑥 𝐵𝑥 𝒫 𝑥) ↔ 𝑥 ⊆ ( 𝐵 𝒫 𝑥))
1311, 12sylibr 234 . . . . 5 (𝑥 (𝐵 ∩ 𝒫 𝑥) → (𝑥 𝐵𝑥 𝒫 𝑥))
1413ss2abi 4018 . . . 4 {𝑥𝑥 (𝐵 ∩ 𝒫 𝑥)} ⊆ {𝑥 ∣ (𝑥 𝐵𝑥 𝒫 𝑥)}
15 ssexg 5261 . . . 4 (({𝑥𝑥 (𝐵 ∩ 𝒫 𝑥)} ⊆ {𝑥 ∣ (𝑥 𝐵𝑥 𝒫 𝑥)} ∧ {𝑥 ∣ (𝑥 𝐵𝑥 𝒫 𝑥)} ∈ V) → {𝑥𝑥 (𝐵 ∩ 𝒫 𝑥)} ∈ V)
1614, 15mpan 690 . . 3 ({𝑥 ∣ (𝑥 𝐵𝑥 𝒫 𝑥)} ∈ V → {𝑥𝑥 (𝐵 ∩ 𝒫 𝑥)} ∈ V)
177, 8, 163syl 18 . 2 (𝐵𝑉 → {𝑥𝑥 (𝐵 ∩ 𝒫 𝑥)} ∈ V)
181, 5, 6, 17fvmptd3 6952 1 (𝐵𝑉 → (topGen‘𝐵) = {𝑥𝑥 (𝐵 ∩ 𝒫 𝑥)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  {cab 2709  Vcvv 3436  cin 3901  wss 3902  𝒫 cpw 4550   cuni 4859  cfv 6481  topGenctg 17341
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-iota 6437  df-fun 6483  df-fv 6489  df-topgen 17347
This theorem is referenced by:  tgval2  22872  eltg  22873  tgdif0  22908
  Copyright terms: Public domain W3C validator