MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgval Structured version   Visualization version   GIF version

Theorem tgval 22849
Description: The topology generated by a basis. See also tgval2 22850 and tgval3 22857. (Contributed by NM, 16-Jul-2006.) (Revised by Mario Carneiro, 10-Jan-2015.)
Assertion
Ref Expression
tgval (𝐵𝑉 → (topGen‘𝐵) = {𝑥𝑥 (𝐵 ∩ 𝒫 𝑥)})
Distinct variable groups:   𝑥,𝐵   𝑥,𝑉

Proof of Theorem tgval
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-topgen 17413 . 2 topGen = (𝑦 ∈ V ↦ {𝑥𝑥 (𝑦 ∩ 𝒫 𝑥)})
2 ineq1 4179 . . . . 5 (𝑦 = 𝐵 → (𝑦 ∩ 𝒫 𝑥) = (𝐵 ∩ 𝒫 𝑥))
32unieqd 4887 . . . 4 (𝑦 = 𝐵 (𝑦 ∩ 𝒫 𝑥) = (𝐵 ∩ 𝒫 𝑥))
43sseq2d 3982 . . 3 (𝑦 = 𝐵 → (𝑥 (𝑦 ∩ 𝒫 𝑥) ↔ 𝑥 (𝐵 ∩ 𝒫 𝑥)))
54abbidv 2796 . 2 (𝑦 = 𝐵 → {𝑥𝑥 (𝑦 ∩ 𝒫 𝑥)} = {𝑥𝑥 (𝐵 ∩ 𝒫 𝑥)})
6 elex 3471 . 2 (𝐵𝑉𝐵 ∈ V)
7 uniexg 7719 . . 3 (𝐵𝑉 𝐵 ∈ V)
8 abssexg 5340 . . 3 ( 𝐵 ∈ V → {𝑥 ∣ (𝑥 𝐵𝑥 𝒫 𝑥)} ∈ V)
9 uniin 4898 . . . . . . 7 (𝐵 ∩ 𝒫 𝑥) ⊆ ( 𝐵 𝒫 𝑥)
10 sstr 3958 . . . . . . 7 ((𝑥 (𝐵 ∩ 𝒫 𝑥) ∧ (𝐵 ∩ 𝒫 𝑥) ⊆ ( 𝐵 𝒫 𝑥)) → 𝑥 ⊆ ( 𝐵 𝒫 𝑥))
119, 10mpan2 691 . . . . . 6 (𝑥 (𝐵 ∩ 𝒫 𝑥) → 𝑥 ⊆ ( 𝐵 𝒫 𝑥))
12 ssin 4205 . . . . . 6 ((𝑥 𝐵𝑥 𝒫 𝑥) ↔ 𝑥 ⊆ ( 𝐵 𝒫 𝑥))
1311, 12sylibr 234 . . . . 5 (𝑥 (𝐵 ∩ 𝒫 𝑥) → (𝑥 𝐵𝑥 𝒫 𝑥))
1413ss2abi 4033 . . . 4 {𝑥𝑥 (𝐵 ∩ 𝒫 𝑥)} ⊆ {𝑥 ∣ (𝑥 𝐵𝑥 𝒫 𝑥)}
15 ssexg 5281 . . . 4 (({𝑥𝑥 (𝐵 ∩ 𝒫 𝑥)} ⊆ {𝑥 ∣ (𝑥 𝐵𝑥 𝒫 𝑥)} ∧ {𝑥 ∣ (𝑥 𝐵𝑥 𝒫 𝑥)} ∈ V) → {𝑥𝑥 (𝐵 ∩ 𝒫 𝑥)} ∈ V)
1614, 15mpan 690 . . 3 ({𝑥 ∣ (𝑥 𝐵𝑥 𝒫 𝑥)} ∈ V → {𝑥𝑥 (𝐵 ∩ 𝒫 𝑥)} ∈ V)
177, 8, 163syl 18 . 2 (𝐵𝑉 → {𝑥𝑥 (𝐵 ∩ 𝒫 𝑥)} ∈ V)
181, 5, 6, 17fvmptd3 6994 1 (𝐵𝑉 → (topGen‘𝐵) = {𝑥𝑥 (𝐵 ∩ 𝒫 𝑥)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {cab 2708  Vcvv 3450  cin 3916  wss 3917  𝒫 cpw 4566   cuni 4874  cfv 6514  topGenctg 17407
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-iota 6467  df-fun 6516  df-fv 6522  df-topgen 17413
This theorem is referenced by:  tgval2  22850  eltg  22851  tgdif0  22886
  Copyright terms: Public domain W3C validator