MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgval Structured version   Visualization version   GIF version

Theorem tgval 22449
Description: The topology generated by a basis. See also tgval2 22450 and tgval3 22457. (Contributed by NM, 16-Jul-2006.) (Revised by Mario Carneiro, 10-Jan-2015.)
Assertion
Ref Expression
tgval (𝐡 ∈ 𝑉 β†’ (topGenβ€˜π΅) = {π‘₯ ∣ π‘₯ βŠ† βˆͺ (𝐡 ∩ 𝒫 π‘₯)})
Distinct variable groups:   π‘₯,𝐡   π‘₯,𝑉

Proof of Theorem tgval
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-topgen 17385 . 2 topGen = (𝑦 ∈ V ↦ {π‘₯ ∣ π‘₯ βŠ† βˆͺ (𝑦 ∩ 𝒫 π‘₯)})
2 ineq1 4204 . . . . 5 (𝑦 = 𝐡 β†’ (𝑦 ∩ 𝒫 π‘₯) = (𝐡 ∩ 𝒫 π‘₯))
32unieqd 4921 . . . 4 (𝑦 = 𝐡 β†’ βˆͺ (𝑦 ∩ 𝒫 π‘₯) = βˆͺ (𝐡 ∩ 𝒫 π‘₯))
43sseq2d 4013 . . 3 (𝑦 = 𝐡 β†’ (π‘₯ βŠ† βˆͺ (𝑦 ∩ 𝒫 π‘₯) ↔ π‘₯ βŠ† βˆͺ (𝐡 ∩ 𝒫 π‘₯)))
54abbidv 2801 . 2 (𝑦 = 𝐡 β†’ {π‘₯ ∣ π‘₯ βŠ† βˆͺ (𝑦 ∩ 𝒫 π‘₯)} = {π‘₯ ∣ π‘₯ βŠ† βˆͺ (𝐡 ∩ 𝒫 π‘₯)})
6 elex 3492 . 2 (𝐡 ∈ 𝑉 β†’ 𝐡 ∈ V)
7 uniexg 7726 . . 3 (𝐡 ∈ 𝑉 β†’ βˆͺ 𝐡 ∈ V)
8 abssexg 5379 . . 3 (βˆͺ 𝐡 ∈ V β†’ {π‘₯ ∣ (π‘₯ βŠ† βˆͺ 𝐡 ∧ π‘₯ βŠ† βˆͺ 𝒫 π‘₯)} ∈ V)
9 uniin 4934 . . . . . . 7 βˆͺ (𝐡 ∩ 𝒫 π‘₯) βŠ† (βˆͺ 𝐡 ∩ βˆͺ 𝒫 π‘₯)
10 sstr 3989 . . . . . . 7 ((π‘₯ βŠ† βˆͺ (𝐡 ∩ 𝒫 π‘₯) ∧ βˆͺ (𝐡 ∩ 𝒫 π‘₯) βŠ† (βˆͺ 𝐡 ∩ βˆͺ 𝒫 π‘₯)) β†’ π‘₯ βŠ† (βˆͺ 𝐡 ∩ βˆͺ 𝒫 π‘₯))
119, 10mpan2 689 . . . . . 6 (π‘₯ βŠ† βˆͺ (𝐡 ∩ 𝒫 π‘₯) β†’ π‘₯ βŠ† (βˆͺ 𝐡 ∩ βˆͺ 𝒫 π‘₯))
12 ssin 4229 . . . . . 6 ((π‘₯ βŠ† βˆͺ 𝐡 ∧ π‘₯ βŠ† βˆͺ 𝒫 π‘₯) ↔ π‘₯ βŠ† (βˆͺ 𝐡 ∩ βˆͺ 𝒫 π‘₯))
1311, 12sylibr 233 . . . . 5 (π‘₯ βŠ† βˆͺ (𝐡 ∩ 𝒫 π‘₯) β†’ (π‘₯ βŠ† βˆͺ 𝐡 ∧ π‘₯ βŠ† βˆͺ 𝒫 π‘₯))
1413ss2abi 4062 . . . 4 {π‘₯ ∣ π‘₯ βŠ† βˆͺ (𝐡 ∩ 𝒫 π‘₯)} βŠ† {π‘₯ ∣ (π‘₯ βŠ† βˆͺ 𝐡 ∧ π‘₯ βŠ† βˆͺ 𝒫 π‘₯)}
15 ssexg 5322 . . . 4 (({π‘₯ ∣ π‘₯ βŠ† βˆͺ (𝐡 ∩ 𝒫 π‘₯)} βŠ† {π‘₯ ∣ (π‘₯ βŠ† βˆͺ 𝐡 ∧ π‘₯ βŠ† βˆͺ 𝒫 π‘₯)} ∧ {π‘₯ ∣ (π‘₯ βŠ† βˆͺ 𝐡 ∧ π‘₯ βŠ† βˆͺ 𝒫 π‘₯)} ∈ V) β†’ {π‘₯ ∣ π‘₯ βŠ† βˆͺ (𝐡 ∩ 𝒫 π‘₯)} ∈ V)
1614, 15mpan 688 . . 3 ({π‘₯ ∣ (π‘₯ βŠ† βˆͺ 𝐡 ∧ π‘₯ βŠ† βˆͺ 𝒫 π‘₯)} ∈ V β†’ {π‘₯ ∣ π‘₯ βŠ† βˆͺ (𝐡 ∩ 𝒫 π‘₯)} ∈ V)
177, 8, 163syl 18 . 2 (𝐡 ∈ 𝑉 β†’ {π‘₯ ∣ π‘₯ βŠ† βˆͺ (𝐡 ∩ 𝒫 π‘₯)} ∈ V)
181, 5, 6, 17fvmptd3 7018 1 (𝐡 ∈ 𝑉 β†’ (topGenβ€˜π΅) = {π‘₯ ∣ π‘₯ βŠ† βˆͺ (𝐡 ∩ 𝒫 π‘₯)})
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 396   = wceq 1541   ∈ wcel 2106  {cab 2709  Vcvv 3474   ∩ cin 3946   βŠ† wss 3947  π’« cpw 4601  βˆͺ cuni 4907  β€˜cfv 6540  topGenctg 17379
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-iota 6492  df-fun 6542  df-fv 6548  df-topgen 17385
This theorem is referenced by:  tgval2  22450  eltg  22451  tgdif0  22486
  Copyright terms: Public domain W3C validator