| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tgval | Structured version Visualization version GIF version | ||
| Description: The topology generated by a basis. See also tgval2 22874 and tgval3 22881. (Contributed by NM, 16-Jul-2006.) (Revised by Mario Carneiro, 10-Jan-2015.) |
| Ref | Expression |
|---|---|
| tgval | ⊢ (𝐵 ∈ 𝑉 → (topGen‘𝐵) = {𝑥 ∣ 𝑥 ⊆ ∪ (𝐵 ∩ 𝒫 𝑥)}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-topgen 17351 | . 2 ⊢ topGen = (𝑦 ∈ V ↦ {𝑥 ∣ 𝑥 ⊆ ∪ (𝑦 ∩ 𝒫 𝑥)}) | |
| 2 | ineq1 4162 | . . . . 5 ⊢ (𝑦 = 𝐵 → (𝑦 ∩ 𝒫 𝑥) = (𝐵 ∩ 𝒫 𝑥)) | |
| 3 | 2 | unieqd 4873 | . . . 4 ⊢ (𝑦 = 𝐵 → ∪ (𝑦 ∩ 𝒫 𝑥) = ∪ (𝐵 ∩ 𝒫 𝑥)) |
| 4 | 3 | sseq2d 3963 | . . 3 ⊢ (𝑦 = 𝐵 → (𝑥 ⊆ ∪ (𝑦 ∩ 𝒫 𝑥) ↔ 𝑥 ⊆ ∪ (𝐵 ∩ 𝒫 𝑥))) |
| 5 | 4 | abbidv 2799 | . 2 ⊢ (𝑦 = 𝐵 → {𝑥 ∣ 𝑥 ⊆ ∪ (𝑦 ∩ 𝒫 𝑥)} = {𝑥 ∣ 𝑥 ⊆ ∪ (𝐵 ∩ 𝒫 𝑥)}) |
| 6 | elex 3458 | . 2 ⊢ (𝐵 ∈ 𝑉 → 𝐵 ∈ V) | |
| 7 | uniexg 7681 | . . 3 ⊢ (𝐵 ∈ 𝑉 → ∪ 𝐵 ∈ V) | |
| 8 | abssexg 5324 | . . 3 ⊢ (∪ 𝐵 ∈ V → {𝑥 ∣ (𝑥 ⊆ ∪ 𝐵 ∧ 𝑥 ⊆ ∪ 𝒫 𝑥)} ∈ V) | |
| 9 | uniin 4884 | . . . . . . 7 ⊢ ∪ (𝐵 ∩ 𝒫 𝑥) ⊆ (∪ 𝐵 ∩ ∪ 𝒫 𝑥) | |
| 10 | sstr 3939 | . . . . . . 7 ⊢ ((𝑥 ⊆ ∪ (𝐵 ∩ 𝒫 𝑥) ∧ ∪ (𝐵 ∩ 𝒫 𝑥) ⊆ (∪ 𝐵 ∩ ∪ 𝒫 𝑥)) → 𝑥 ⊆ (∪ 𝐵 ∩ ∪ 𝒫 𝑥)) | |
| 11 | 9, 10 | mpan2 691 | . . . . . 6 ⊢ (𝑥 ⊆ ∪ (𝐵 ∩ 𝒫 𝑥) → 𝑥 ⊆ (∪ 𝐵 ∩ ∪ 𝒫 𝑥)) |
| 12 | ssin 4188 | . . . . . 6 ⊢ ((𝑥 ⊆ ∪ 𝐵 ∧ 𝑥 ⊆ ∪ 𝒫 𝑥) ↔ 𝑥 ⊆ (∪ 𝐵 ∩ ∪ 𝒫 𝑥)) | |
| 13 | 11, 12 | sylibr 234 | . . . . 5 ⊢ (𝑥 ⊆ ∪ (𝐵 ∩ 𝒫 𝑥) → (𝑥 ⊆ ∪ 𝐵 ∧ 𝑥 ⊆ ∪ 𝒫 𝑥)) |
| 14 | 13 | ss2abi 4015 | . . . 4 ⊢ {𝑥 ∣ 𝑥 ⊆ ∪ (𝐵 ∩ 𝒫 𝑥)} ⊆ {𝑥 ∣ (𝑥 ⊆ ∪ 𝐵 ∧ 𝑥 ⊆ ∪ 𝒫 𝑥)} |
| 15 | ssexg 5265 | . . . 4 ⊢ (({𝑥 ∣ 𝑥 ⊆ ∪ (𝐵 ∩ 𝒫 𝑥)} ⊆ {𝑥 ∣ (𝑥 ⊆ ∪ 𝐵 ∧ 𝑥 ⊆ ∪ 𝒫 𝑥)} ∧ {𝑥 ∣ (𝑥 ⊆ ∪ 𝐵 ∧ 𝑥 ⊆ ∪ 𝒫 𝑥)} ∈ V) → {𝑥 ∣ 𝑥 ⊆ ∪ (𝐵 ∩ 𝒫 𝑥)} ∈ V) | |
| 16 | 14, 15 | mpan 690 | . . 3 ⊢ ({𝑥 ∣ (𝑥 ⊆ ∪ 𝐵 ∧ 𝑥 ⊆ ∪ 𝒫 𝑥)} ∈ V → {𝑥 ∣ 𝑥 ⊆ ∪ (𝐵 ∩ 𝒫 𝑥)} ∈ V) |
| 17 | 7, 8, 16 | 3syl 18 | . 2 ⊢ (𝐵 ∈ 𝑉 → {𝑥 ∣ 𝑥 ⊆ ∪ (𝐵 ∩ 𝒫 𝑥)} ∈ V) |
| 18 | 1, 5, 6, 17 | fvmptd3 6960 | 1 ⊢ (𝐵 ∈ 𝑉 → (topGen‘𝐵) = {𝑥 ∣ 𝑥 ⊆ ∪ (𝐵 ∩ 𝒫 𝑥)}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 {cab 2711 Vcvv 3437 ∩ cin 3897 ⊆ wss 3898 𝒫 cpw 4551 ∪ cuni 4860 ‘cfv 6488 topGenctg 17345 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7676 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-iota 6444 df-fun 6490 df-fv 6496 df-topgen 17351 |
| This theorem is referenced by: tgval2 22874 eltg 22875 tgdif0 22910 |
| Copyright terms: Public domain | W3C validator |