MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgval Structured version   Visualization version   GIF version

Theorem tgval 22983
Description: The topology generated by a basis. See also tgval2 22984 and tgval3 22991. (Contributed by NM, 16-Jul-2006.) (Revised by Mario Carneiro, 10-Jan-2015.)
Assertion
Ref Expression
tgval (𝐵𝑉 → (topGen‘𝐵) = {𝑥𝑥 (𝐵 ∩ 𝒫 𝑥)})
Distinct variable groups:   𝑥,𝐵   𝑥,𝑉

Proof of Theorem tgval
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-topgen 17503 . 2 topGen = (𝑦 ∈ V ↦ {𝑥𝑥 (𝑦 ∩ 𝒫 𝑥)})
2 ineq1 4234 . . . . 5 (𝑦 = 𝐵 → (𝑦 ∩ 𝒫 𝑥) = (𝐵 ∩ 𝒫 𝑥))
32unieqd 4944 . . . 4 (𝑦 = 𝐵 (𝑦 ∩ 𝒫 𝑥) = (𝐵 ∩ 𝒫 𝑥))
43sseq2d 4041 . . 3 (𝑦 = 𝐵 → (𝑥 (𝑦 ∩ 𝒫 𝑥) ↔ 𝑥 (𝐵 ∩ 𝒫 𝑥)))
54abbidv 2811 . 2 (𝑦 = 𝐵 → {𝑥𝑥 (𝑦 ∩ 𝒫 𝑥)} = {𝑥𝑥 (𝐵 ∩ 𝒫 𝑥)})
6 elex 3509 . 2 (𝐵𝑉𝐵 ∈ V)
7 uniexg 7775 . . 3 (𝐵𝑉 𝐵 ∈ V)
8 abssexg 5400 . . 3 ( 𝐵 ∈ V → {𝑥 ∣ (𝑥 𝐵𝑥 𝒫 𝑥)} ∈ V)
9 uniin 4955 . . . . . . 7 (𝐵 ∩ 𝒫 𝑥) ⊆ ( 𝐵 𝒫 𝑥)
10 sstr 4017 . . . . . . 7 ((𝑥 (𝐵 ∩ 𝒫 𝑥) ∧ (𝐵 ∩ 𝒫 𝑥) ⊆ ( 𝐵 𝒫 𝑥)) → 𝑥 ⊆ ( 𝐵 𝒫 𝑥))
119, 10mpan2 690 . . . . . 6 (𝑥 (𝐵 ∩ 𝒫 𝑥) → 𝑥 ⊆ ( 𝐵 𝒫 𝑥))
12 ssin 4260 . . . . . 6 ((𝑥 𝐵𝑥 𝒫 𝑥) ↔ 𝑥 ⊆ ( 𝐵 𝒫 𝑥))
1311, 12sylibr 234 . . . . 5 (𝑥 (𝐵 ∩ 𝒫 𝑥) → (𝑥 𝐵𝑥 𝒫 𝑥))
1413ss2abi 4090 . . . 4 {𝑥𝑥 (𝐵 ∩ 𝒫 𝑥)} ⊆ {𝑥 ∣ (𝑥 𝐵𝑥 𝒫 𝑥)}
15 ssexg 5341 . . . 4 (({𝑥𝑥 (𝐵 ∩ 𝒫 𝑥)} ⊆ {𝑥 ∣ (𝑥 𝐵𝑥 𝒫 𝑥)} ∧ {𝑥 ∣ (𝑥 𝐵𝑥 𝒫 𝑥)} ∈ V) → {𝑥𝑥 (𝐵 ∩ 𝒫 𝑥)} ∈ V)
1614, 15mpan 689 . . 3 ({𝑥 ∣ (𝑥 𝐵𝑥 𝒫 𝑥)} ∈ V → {𝑥𝑥 (𝐵 ∩ 𝒫 𝑥)} ∈ V)
177, 8, 163syl 18 . 2 (𝐵𝑉 → {𝑥𝑥 (𝐵 ∩ 𝒫 𝑥)} ∈ V)
181, 5, 6, 17fvmptd3 7052 1 (𝐵𝑉 → (topGen‘𝐵) = {𝑥𝑥 (𝐵 ∩ 𝒫 𝑥)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  {cab 2717  Vcvv 3488  cin 3975  wss 3976  𝒫 cpw 4622   cuni 4931  cfv 6573  topGenctg 17497
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-iota 6525  df-fun 6575  df-fv 6581  df-topgen 17503
This theorem is referenced by:  tgval2  22984  eltg  22985  tgdif0  23020
  Copyright terms: Public domain W3C validator