MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgval3 Structured version   Visualization version   GIF version

Theorem tgval3 21664
Description: Alternate expression for the topology generated by a basis. Lemma 2.1 of [Munkres] p. 80. See also tgval 21656 and tgval2 21657. (Contributed by NM, 17-Jul-2006.) (Revised by Mario Carneiro, 30-Aug-2015.)
Assertion
Ref Expression
tgval3 (𝐵𝑉 → (topGen‘𝐵) = {𝑥 ∣ ∃𝑦(𝑦𝐵𝑥 = 𝑦)})
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝑉,𝑦

Proof of Theorem tgval3
StepHypRef Expression
1 eltg3 21663 . 2 (𝐵𝑉 → (𝑥 ∈ (topGen‘𝐵) ↔ ∃𝑦(𝑦𝐵𝑥 = 𝑦)))
21abbi2dv 2890 1 (𝐵𝑉 → (topGen‘𝐵) = {𝑥 ∣ ∃𝑦(𝑦𝐵𝑥 = 𝑦)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 400   = wceq 1539  wex 1782  wcel 2112  {cab 2736  wss 3859   cuni 4799  cfv 6336  topGenctg 16770
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-sep 5170  ax-nul 5177  ax-pow 5235  ax-pr 5299  ax-un 7460
This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2902  df-ne 2953  df-ral 3076  df-rex 3077  df-rab 3080  df-v 3412  df-sbc 3698  df-dif 3862  df-un 3864  df-in 3866  df-ss 3876  df-nul 4227  df-if 4422  df-pw 4497  df-sn 4524  df-pr 4526  df-op 4530  df-uni 4800  df-br 5034  df-opab 5096  df-mpt 5114  df-id 5431  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-iota 6295  df-fun 6338  df-fv 6344  df-topgen 16776
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator