Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > df-gsum | Structured version Visualization version GIF version |
Description: Define the group sum
(also called "iterated sum") for the structure
𝐺 of a finite sequence of elements
whose values are defined by the
expression 𝐵 and whose set of indices is 𝐴. It
may be viewed
as a product (if 𝐺 is a multiplication), a sum (if
𝐺
is an
addition) or any other operation. The variable 𝑘 is normally a free
variable in 𝐵 (i.e., 𝐵 can be thought of as
𝐵(𝑘)). The
definition is meaningful in different contexts, depending on the size of
the index set 𝐴 and each demanding different
properties of 𝐺.
1. If 𝐴 = ∅ and 𝐺 has an identity element, then the sum equals this identity. See gsum0 18377. 2. If 𝐴 = (𝑀...𝑁) and 𝐺 is any magma, then the sum is the sum of the elements, evaluated left-to-right, i.e., (𝐵(1) + 𝐵(2)) + 𝐵(3), etc. See gsumval2 18379 and gsumnunsn 32529. 3. If 𝐴 is a finite set (or is nonzero for finitely many indices) and 𝐺 is a commutative monoid, then the sum adds up these elements in some order, which is then uniquely defined. See gsumval3 19517. 4. If 𝐴 is an infinite set and 𝐺 is a Hausdorff topological group, then there is a meaningful sum, but Σg cannot handle this case. See df-tsms 23287. Remark: this definition is required here because the symbol Σg is already used in df-prds 17167 and df-imas 17228. The related theorems are provided later, see gsumvalx 18369. (Contributed by FL, 5-Sep-2010.) (Revised by FL, 17-Oct-2011.) (Revised by Mario Carneiro, 7-Dec-2014.) |
Ref | Expression |
---|---|
df-gsum | ⊢ Σg = (𝑤 ∈ V, 𝑓 ∈ V ↦ ⦋{𝑥 ∈ (Base‘𝑤) ∣ ∀𝑦 ∈ (Base‘𝑤)((𝑥(+g‘𝑤)𝑦) = 𝑦 ∧ (𝑦(+g‘𝑤)𝑥) = 𝑦)} / 𝑜⦌if(ran 𝑓 ⊆ 𝑜, (0g‘𝑤), if(dom 𝑓 ∈ ran ..., (℩𝑥∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)(dom 𝑓 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g‘𝑤), 𝑓)‘𝑛))), (℩𝑥∃𝑔[(◡𝑓 “ (V ∖ 𝑜)) / 𝑦](𝑔:(1...(♯‘𝑦))–1-1-onto→𝑦 ∧ 𝑥 = (seq1((+g‘𝑤), (𝑓 ∘ 𝑔))‘(♯‘𝑦))))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cgsu 17160 | . 2 class Σg | |
2 | vw | . . 3 setvar 𝑤 | |
3 | vf | . . 3 setvar 𝑓 | |
4 | cvv 3433 | . . 3 class V | |
5 | vo | . . . 4 setvar 𝑜 | |
6 | vx | . . . . . . . . . 10 setvar 𝑥 | |
7 | 6 | cv 1538 | . . . . . . . . 9 class 𝑥 |
8 | vy | . . . . . . . . . 10 setvar 𝑦 | |
9 | 8 | cv 1538 | . . . . . . . . 9 class 𝑦 |
10 | 2 | cv 1538 | . . . . . . . . . 10 class 𝑤 |
11 | cplusg 16971 | . . . . . . . . . 10 class +g | |
12 | 10, 11 | cfv 6437 | . . . . . . . . 9 class (+g‘𝑤) |
13 | 7, 9, 12 | co 7284 | . . . . . . . 8 class (𝑥(+g‘𝑤)𝑦) |
14 | 13, 9 | wceq 1539 | . . . . . . 7 wff (𝑥(+g‘𝑤)𝑦) = 𝑦 |
15 | 9, 7, 12 | co 7284 | . . . . . . . 8 class (𝑦(+g‘𝑤)𝑥) |
16 | 15, 9 | wceq 1539 | . . . . . . 7 wff (𝑦(+g‘𝑤)𝑥) = 𝑦 |
17 | 14, 16 | wa 396 | . . . . . 6 wff ((𝑥(+g‘𝑤)𝑦) = 𝑦 ∧ (𝑦(+g‘𝑤)𝑥) = 𝑦) |
18 | cbs 16921 | . . . . . . 7 class Base | |
19 | 10, 18 | cfv 6437 | . . . . . 6 class (Base‘𝑤) |
20 | 17, 8, 19 | wral 3065 | . . . . 5 wff ∀𝑦 ∈ (Base‘𝑤)((𝑥(+g‘𝑤)𝑦) = 𝑦 ∧ (𝑦(+g‘𝑤)𝑥) = 𝑦) |
21 | 20, 6, 19 | crab 3069 | . . . 4 class {𝑥 ∈ (Base‘𝑤) ∣ ∀𝑦 ∈ (Base‘𝑤)((𝑥(+g‘𝑤)𝑦) = 𝑦 ∧ (𝑦(+g‘𝑤)𝑥) = 𝑦)} |
22 | 3 | cv 1538 | . . . . . . 7 class 𝑓 |
23 | 22 | crn 5591 | . . . . . 6 class ran 𝑓 |
24 | 5 | cv 1538 | . . . . . 6 class 𝑜 |
25 | 23, 24 | wss 3888 | . . . . 5 wff ran 𝑓 ⊆ 𝑜 |
26 | c0g 17159 | . . . . . 6 class 0g | |
27 | 10, 26 | cfv 6437 | . . . . 5 class (0g‘𝑤) |
28 | 22 | cdm 5590 | . . . . . . 7 class dom 𝑓 |
29 | cfz 13248 | . . . . . . . 8 class ... | |
30 | 29 | crn 5591 | . . . . . . 7 class ran ... |
31 | 28, 30 | wcel 2107 | . . . . . 6 wff dom 𝑓 ∈ ran ... |
32 | vm | . . . . . . . . . . . . 13 setvar 𝑚 | |
33 | 32 | cv 1538 | . . . . . . . . . . . 12 class 𝑚 |
34 | vn | . . . . . . . . . . . . 13 setvar 𝑛 | |
35 | 34 | cv 1538 | . . . . . . . . . . . 12 class 𝑛 |
36 | 33, 35, 29 | co 7284 | . . . . . . . . . . 11 class (𝑚...𝑛) |
37 | 28, 36 | wceq 1539 | . . . . . . . . . 10 wff dom 𝑓 = (𝑚...𝑛) |
38 | 12, 22, 33 | cseq 13730 | . . . . . . . . . . . 12 class seq𝑚((+g‘𝑤), 𝑓) |
39 | 35, 38 | cfv 6437 | . . . . . . . . . . 11 class (seq𝑚((+g‘𝑤), 𝑓)‘𝑛) |
40 | 7, 39 | wceq 1539 | . . . . . . . . . 10 wff 𝑥 = (seq𝑚((+g‘𝑤), 𝑓)‘𝑛) |
41 | 37, 40 | wa 396 | . . . . . . . . 9 wff (dom 𝑓 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g‘𝑤), 𝑓)‘𝑛)) |
42 | cuz 12591 | . . . . . . . . . 10 class ℤ≥ | |
43 | 33, 42 | cfv 6437 | . . . . . . . . 9 class (ℤ≥‘𝑚) |
44 | 41, 34, 43 | wrex 3066 | . . . . . . . 8 wff ∃𝑛 ∈ (ℤ≥‘𝑚)(dom 𝑓 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g‘𝑤), 𝑓)‘𝑛)) |
45 | 44, 32 | wex 1782 | . . . . . . 7 wff ∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)(dom 𝑓 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g‘𝑤), 𝑓)‘𝑛)) |
46 | 45, 6 | cio 6393 | . . . . . 6 class (℩𝑥∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)(dom 𝑓 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g‘𝑤), 𝑓)‘𝑛))) |
47 | c1 10881 | . . . . . . . . . . . 12 class 1 | |
48 | chash 14053 | . . . . . . . . . . . . 13 class ♯ | |
49 | 9, 48 | cfv 6437 | . . . . . . . . . . . 12 class (♯‘𝑦) |
50 | 47, 49, 29 | co 7284 | . . . . . . . . . . 11 class (1...(♯‘𝑦)) |
51 | vg | . . . . . . . . . . . 12 setvar 𝑔 | |
52 | 51 | cv 1538 | . . . . . . . . . . 11 class 𝑔 |
53 | 50, 9, 52 | wf1o 6436 | . . . . . . . . . 10 wff 𝑔:(1...(♯‘𝑦))–1-1-onto→𝑦 |
54 | 22, 52 | ccom 5594 | . . . . . . . . . . . . 13 class (𝑓 ∘ 𝑔) |
55 | 12, 54, 47 | cseq 13730 | . . . . . . . . . . . 12 class seq1((+g‘𝑤), (𝑓 ∘ 𝑔)) |
56 | 49, 55 | cfv 6437 | . . . . . . . . . . 11 class (seq1((+g‘𝑤), (𝑓 ∘ 𝑔))‘(♯‘𝑦)) |
57 | 7, 56 | wceq 1539 | . . . . . . . . . 10 wff 𝑥 = (seq1((+g‘𝑤), (𝑓 ∘ 𝑔))‘(♯‘𝑦)) |
58 | 53, 57 | wa 396 | . . . . . . . . 9 wff (𝑔:(1...(♯‘𝑦))–1-1-onto→𝑦 ∧ 𝑥 = (seq1((+g‘𝑤), (𝑓 ∘ 𝑔))‘(♯‘𝑦))) |
59 | 22 | ccnv 5589 | . . . . . . . . . 10 class ◡𝑓 |
60 | 4, 24 | cdif 3885 | . . . . . . . . . 10 class (V ∖ 𝑜) |
61 | 59, 60 | cima 5593 | . . . . . . . . 9 class (◡𝑓 “ (V ∖ 𝑜)) |
62 | 58, 8, 61 | wsbc 3717 | . . . . . . . 8 wff [(◡𝑓 “ (V ∖ 𝑜)) / 𝑦](𝑔:(1...(♯‘𝑦))–1-1-onto→𝑦 ∧ 𝑥 = (seq1((+g‘𝑤), (𝑓 ∘ 𝑔))‘(♯‘𝑦))) |
63 | 62, 51 | wex 1782 | . . . . . . 7 wff ∃𝑔[(◡𝑓 “ (V ∖ 𝑜)) / 𝑦](𝑔:(1...(♯‘𝑦))–1-1-onto→𝑦 ∧ 𝑥 = (seq1((+g‘𝑤), (𝑓 ∘ 𝑔))‘(♯‘𝑦))) |
64 | 63, 6 | cio 6393 | . . . . . 6 class (℩𝑥∃𝑔[(◡𝑓 “ (V ∖ 𝑜)) / 𝑦](𝑔:(1...(♯‘𝑦))–1-1-onto→𝑦 ∧ 𝑥 = (seq1((+g‘𝑤), (𝑓 ∘ 𝑔))‘(♯‘𝑦)))) |
65 | 31, 46, 64 | cif 4460 | . . . . 5 class if(dom 𝑓 ∈ ran ..., (℩𝑥∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)(dom 𝑓 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g‘𝑤), 𝑓)‘𝑛))), (℩𝑥∃𝑔[(◡𝑓 “ (V ∖ 𝑜)) / 𝑦](𝑔:(1...(♯‘𝑦))–1-1-onto→𝑦 ∧ 𝑥 = (seq1((+g‘𝑤), (𝑓 ∘ 𝑔))‘(♯‘𝑦))))) |
66 | 25, 27, 65 | cif 4460 | . . . 4 class if(ran 𝑓 ⊆ 𝑜, (0g‘𝑤), if(dom 𝑓 ∈ ran ..., (℩𝑥∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)(dom 𝑓 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g‘𝑤), 𝑓)‘𝑛))), (℩𝑥∃𝑔[(◡𝑓 “ (V ∖ 𝑜)) / 𝑦](𝑔:(1...(♯‘𝑦))–1-1-onto→𝑦 ∧ 𝑥 = (seq1((+g‘𝑤), (𝑓 ∘ 𝑔))‘(♯‘𝑦)))))) |
67 | 5, 21, 66 | csb 3833 | . . 3 class ⦋{𝑥 ∈ (Base‘𝑤) ∣ ∀𝑦 ∈ (Base‘𝑤)((𝑥(+g‘𝑤)𝑦) = 𝑦 ∧ (𝑦(+g‘𝑤)𝑥) = 𝑦)} / 𝑜⦌if(ran 𝑓 ⊆ 𝑜, (0g‘𝑤), if(dom 𝑓 ∈ ran ..., (℩𝑥∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)(dom 𝑓 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g‘𝑤), 𝑓)‘𝑛))), (℩𝑥∃𝑔[(◡𝑓 “ (V ∖ 𝑜)) / 𝑦](𝑔:(1...(♯‘𝑦))–1-1-onto→𝑦 ∧ 𝑥 = (seq1((+g‘𝑤), (𝑓 ∘ 𝑔))‘(♯‘𝑦)))))) |
68 | 2, 3, 4, 4, 67 | cmpo 7286 | . 2 class (𝑤 ∈ V, 𝑓 ∈ V ↦ ⦋{𝑥 ∈ (Base‘𝑤) ∣ ∀𝑦 ∈ (Base‘𝑤)((𝑥(+g‘𝑤)𝑦) = 𝑦 ∧ (𝑦(+g‘𝑤)𝑥) = 𝑦)} / 𝑜⦌if(ran 𝑓 ⊆ 𝑜, (0g‘𝑤), if(dom 𝑓 ∈ ran ..., (℩𝑥∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)(dom 𝑓 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g‘𝑤), 𝑓)‘𝑛))), (℩𝑥∃𝑔[(◡𝑓 “ (V ∖ 𝑜)) / 𝑦](𝑔:(1...(♯‘𝑦))–1-1-onto→𝑦 ∧ 𝑥 = (seq1((+g‘𝑤), (𝑓 ∘ 𝑔))‘(♯‘𝑦))))))) |
69 | 1, 68 | wceq 1539 | 1 wff Σg = (𝑤 ∈ V, 𝑓 ∈ V ↦ ⦋{𝑥 ∈ (Base‘𝑤) ∣ ∀𝑦 ∈ (Base‘𝑤)((𝑥(+g‘𝑤)𝑦) = 𝑦 ∧ (𝑦(+g‘𝑤)𝑥) = 𝑦)} / 𝑜⦌if(ran 𝑓 ⊆ 𝑜, (0g‘𝑤), if(dom 𝑓 ∈ ran ..., (℩𝑥∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)(dom 𝑓 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g‘𝑤), 𝑓)‘𝑛))), (℩𝑥∃𝑔[(◡𝑓 “ (V ∖ 𝑜)) / 𝑦](𝑔:(1...(♯‘𝑦))–1-1-onto→𝑦 ∧ 𝑥 = (seq1((+g‘𝑤), (𝑓 ∘ 𝑔))‘(♯‘𝑦))))))) |
Colors of variables: wff setvar class |
This definition is referenced by: gsumvalx 18369 gsum0 18377 |
Copyright terms: Public domain | W3C validator |