| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-gsum | Structured version Visualization version GIF version | ||
| Description: Define a finite group sum
(also called "iterated sum") of a structure.
Given 𝐺 Σg 𝐹 where 𝐹:𝐴⟶(Base‘𝐺), the set of
indices is 𝐴 and the values are given by 𝐹 at each
index. A
group sum over a multiplicative group may be viewed as a product. The
definition is meaningful in different contexts, depending on the size of
the index set 𝐴 and each demanding different
properties of 𝐺.
1. If 𝐴 = ∅ and 𝐺 has an identity element, then the sum equals this identity. See gsum0 18697. 2. If 𝐴 = (𝑀...𝑁) and 𝐺 is any magma, then the sum is the sum of the elements, evaluated left-to-right, i.e., ((𝐹‘1) + (𝐹‘2)) + (𝐹‘3), etc. See gsumval2 18699 and gsumnunsn 34556. 3. If 𝐴 is a finite set (or is nonzero for finitely many indices) and 𝐺 is a commutative monoid, then the sum adds up these elements in some order, which is then uniquely defined. See gsumval3 19925. 4. If 𝐴 is an infinite set and 𝐺 is a Hausdorff topological group, then there is a meaningful sum, but Σg cannot handle this case. See df-tsms 24135. Remark: this definition is required here because the symbol Σg is already used in df-prds 17492 and df-imas 17553. The related theorems are provided later, see gsumvalx 18689. (Contributed by FL, 5-Sep-2010.) (Revised by FL, 17-Oct-2011.) (Revised by Mario Carneiro, 7-Dec-2014.) |
| Ref | Expression |
|---|---|
| df-gsum | ⊢ Σg = (𝑤 ∈ V, 𝑓 ∈ V ↦ ⦋{𝑥 ∈ (Base‘𝑤) ∣ ∀𝑦 ∈ (Base‘𝑤)((𝑥(+g‘𝑤)𝑦) = 𝑦 ∧ (𝑦(+g‘𝑤)𝑥) = 𝑦)} / 𝑜⦌if(ran 𝑓 ⊆ 𝑜, (0g‘𝑤), if(dom 𝑓 ∈ ran ..., (℩𝑥∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)(dom 𝑓 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g‘𝑤), 𝑓)‘𝑛))), (℩𝑥∃𝑔[(◡𝑓 “ (V ∖ 𝑜)) / 𝑦](𝑔:(1...(♯‘𝑦))–1-1-onto→𝑦 ∧ 𝑥 = (seq1((+g‘𝑤), (𝑓 ∘ 𝑔))‘(♯‘𝑦))))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cgsu 17485 | . 2 class Σg | |
| 2 | vw | . . 3 setvar 𝑤 | |
| 3 | vf | . . 3 setvar 𝑓 | |
| 4 | cvv 3480 | . . 3 class V | |
| 5 | vo | . . . 4 setvar 𝑜 | |
| 6 | vx | . . . . . . . . . 10 setvar 𝑥 | |
| 7 | 6 | cv 1539 | . . . . . . . . 9 class 𝑥 |
| 8 | vy | . . . . . . . . . 10 setvar 𝑦 | |
| 9 | 8 | cv 1539 | . . . . . . . . 9 class 𝑦 |
| 10 | 2 | cv 1539 | . . . . . . . . . 10 class 𝑤 |
| 11 | cplusg 17297 | . . . . . . . . . 10 class +g | |
| 12 | 10, 11 | cfv 6561 | . . . . . . . . 9 class (+g‘𝑤) |
| 13 | 7, 9, 12 | co 7431 | . . . . . . . 8 class (𝑥(+g‘𝑤)𝑦) |
| 14 | 13, 9 | wceq 1540 | . . . . . . 7 wff (𝑥(+g‘𝑤)𝑦) = 𝑦 |
| 15 | 9, 7, 12 | co 7431 | . . . . . . . 8 class (𝑦(+g‘𝑤)𝑥) |
| 16 | 15, 9 | wceq 1540 | . . . . . . 7 wff (𝑦(+g‘𝑤)𝑥) = 𝑦 |
| 17 | 14, 16 | wa 395 | . . . . . 6 wff ((𝑥(+g‘𝑤)𝑦) = 𝑦 ∧ (𝑦(+g‘𝑤)𝑥) = 𝑦) |
| 18 | cbs 17247 | . . . . . . 7 class Base | |
| 19 | 10, 18 | cfv 6561 | . . . . . 6 class (Base‘𝑤) |
| 20 | 17, 8, 19 | wral 3061 | . . . . 5 wff ∀𝑦 ∈ (Base‘𝑤)((𝑥(+g‘𝑤)𝑦) = 𝑦 ∧ (𝑦(+g‘𝑤)𝑥) = 𝑦) |
| 21 | 20, 6, 19 | crab 3436 | . . . 4 class {𝑥 ∈ (Base‘𝑤) ∣ ∀𝑦 ∈ (Base‘𝑤)((𝑥(+g‘𝑤)𝑦) = 𝑦 ∧ (𝑦(+g‘𝑤)𝑥) = 𝑦)} |
| 22 | 3 | cv 1539 | . . . . . . 7 class 𝑓 |
| 23 | 22 | crn 5686 | . . . . . 6 class ran 𝑓 |
| 24 | 5 | cv 1539 | . . . . . 6 class 𝑜 |
| 25 | 23, 24 | wss 3951 | . . . . 5 wff ran 𝑓 ⊆ 𝑜 |
| 26 | c0g 17484 | . . . . . 6 class 0g | |
| 27 | 10, 26 | cfv 6561 | . . . . 5 class (0g‘𝑤) |
| 28 | 22 | cdm 5685 | . . . . . . 7 class dom 𝑓 |
| 29 | cfz 13547 | . . . . . . . 8 class ... | |
| 30 | 29 | crn 5686 | . . . . . . 7 class ran ... |
| 31 | 28, 30 | wcel 2108 | . . . . . 6 wff dom 𝑓 ∈ ran ... |
| 32 | vm | . . . . . . . . . . . . 13 setvar 𝑚 | |
| 33 | 32 | cv 1539 | . . . . . . . . . . . 12 class 𝑚 |
| 34 | vn | . . . . . . . . . . . . 13 setvar 𝑛 | |
| 35 | 34 | cv 1539 | . . . . . . . . . . . 12 class 𝑛 |
| 36 | 33, 35, 29 | co 7431 | . . . . . . . . . . 11 class (𝑚...𝑛) |
| 37 | 28, 36 | wceq 1540 | . . . . . . . . . 10 wff dom 𝑓 = (𝑚...𝑛) |
| 38 | 12, 22, 33 | cseq 14042 | . . . . . . . . . . . 12 class seq𝑚((+g‘𝑤), 𝑓) |
| 39 | 35, 38 | cfv 6561 | . . . . . . . . . . 11 class (seq𝑚((+g‘𝑤), 𝑓)‘𝑛) |
| 40 | 7, 39 | wceq 1540 | . . . . . . . . . 10 wff 𝑥 = (seq𝑚((+g‘𝑤), 𝑓)‘𝑛) |
| 41 | 37, 40 | wa 395 | . . . . . . . . 9 wff (dom 𝑓 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g‘𝑤), 𝑓)‘𝑛)) |
| 42 | cuz 12878 | . . . . . . . . . 10 class ℤ≥ | |
| 43 | 33, 42 | cfv 6561 | . . . . . . . . 9 class (ℤ≥‘𝑚) |
| 44 | 41, 34, 43 | wrex 3070 | . . . . . . . 8 wff ∃𝑛 ∈ (ℤ≥‘𝑚)(dom 𝑓 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g‘𝑤), 𝑓)‘𝑛)) |
| 45 | 44, 32 | wex 1779 | . . . . . . 7 wff ∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)(dom 𝑓 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g‘𝑤), 𝑓)‘𝑛)) |
| 46 | 45, 6 | cio 6512 | . . . . . 6 class (℩𝑥∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)(dom 𝑓 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g‘𝑤), 𝑓)‘𝑛))) |
| 47 | c1 11156 | . . . . . . . . . . . 12 class 1 | |
| 48 | chash 14369 | . . . . . . . . . . . . 13 class ♯ | |
| 49 | 9, 48 | cfv 6561 | . . . . . . . . . . . 12 class (♯‘𝑦) |
| 50 | 47, 49, 29 | co 7431 | . . . . . . . . . . 11 class (1...(♯‘𝑦)) |
| 51 | vg | . . . . . . . . . . . 12 setvar 𝑔 | |
| 52 | 51 | cv 1539 | . . . . . . . . . . 11 class 𝑔 |
| 53 | 50, 9, 52 | wf1o 6560 | . . . . . . . . . 10 wff 𝑔:(1...(♯‘𝑦))–1-1-onto→𝑦 |
| 54 | 22, 52 | ccom 5689 | . . . . . . . . . . . . 13 class (𝑓 ∘ 𝑔) |
| 55 | 12, 54, 47 | cseq 14042 | . . . . . . . . . . . 12 class seq1((+g‘𝑤), (𝑓 ∘ 𝑔)) |
| 56 | 49, 55 | cfv 6561 | . . . . . . . . . . 11 class (seq1((+g‘𝑤), (𝑓 ∘ 𝑔))‘(♯‘𝑦)) |
| 57 | 7, 56 | wceq 1540 | . . . . . . . . . 10 wff 𝑥 = (seq1((+g‘𝑤), (𝑓 ∘ 𝑔))‘(♯‘𝑦)) |
| 58 | 53, 57 | wa 395 | . . . . . . . . 9 wff (𝑔:(1...(♯‘𝑦))–1-1-onto→𝑦 ∧ 𝑥 = (seq1((+g‘𝑤), (𝑓 ∘ 𝑔))‘(♯‘𝑦))) |
| 59 | 22 | ccnv 5684 | . . . . . . . . . 10 class ◡𝑓 |
| 60 | 4, 24 | cdif 3948 | . . . . . . . . . 10 class (V ∖ 𝑜) |
| 61 | 59, 60 | cima 5688 | . . . . . . . . 9 class (◡𝑓 “ (V ∖ 𝑜)) |
| 62 | 58, 8, 61 | wsbc 3788 | . . . . . . . 8 wff [(◡𝑓 “ (V ∖ 𝑜)) / 𝑦](𝑔:(1...(♯‘𝑦))–1-1-onto→𝑦 ∧ 𝑥 = (seq1((+g‘𝑤), (𝑓 ∘ 𝑔))‘(♯‘𝑦))) |
| 63 | 62, 51 | wex 1779 | . . . . . . 7 wff ∃𝑔[(◡𝑓 “ (V ∖ 𝑜)) / 𝑦](𝑔:(1...(♯‘𝑦))–1-1-onto→𝑦 ∧ 𝑥 = (seq1((+g‘𝑤), (𝑓 ∘ 𝑔))‘(♯‘𝑦))) |
| 64 | 63, 6 | cio 6512 | . . . . . 6 class (℩𝑥∃𝑔[(◡𝑓 “ (V ∖ 𝑜)) / 𝑦](𝑔:(1...(♯‘𝑦))–1-1-onto→𝑦 ∧ 𝑥 = (seq1((+g‘𝑤), (𝑓 ∘ 𝑔))‘(♯‘𝑦)))) |
| 65 | 31, 46, 64 | cif 4525 | . . . . 5 class if(dom 𝑓 ∈ ran ..., (℩𝑥∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)(dom 𝑓 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g‘𝑤), 𝑓)‘𝑛))), (℩𝑥∃𝑔[(◡𝑓 “ (V ∖ 𝑜)) / 𝑦](𝑔:(1...(♯‘𝑦))–1-1-onto→𝑦 ∧ 𝑥 = (seq1((+g‘𝑤), (𝑓 ∘ 𝑔))‘(♯‘𝑦))))) |
| 66 | 25, 27, 65 | cif 4525 | . . . 4 class if(ran 𝑓 ⊆ 𝑜, (0g‘𝑤), if(dom 𝑓 ∈ ran ..., (℩𝑥∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)(dom 𝑓 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g‘𝑤), 𝑓)‘𝑛))), (℩𝑥∃𝑔[(◡𝑓 “ (V ∖ 𝑜)) / 𝑦](𝑔:(1...(♯‘𝑦))–1-1-onto→𝑦 ∧ 𝑥 = (seq1((+g‘𝑤), (𝑓 ∘ 𝑔))‘(♯‘𝑦)))))) |
| 67 | 5, 21, 66 | csb 3899 | . . 3 class ⦋{𝑥 ∈ (Base‘𝑤) ∣ ∀𝑦 ∈ (Base‘𝑤)((𝑥(+g‘𝑤)𝑦) = 𝑦 ∧ (𝑦(+g‘𝑤)𝑥) = 𝑦)} / 𝑜⦌if(ran 𝑓 ⊆ 𝑜, (0g‘𝑤), if(dom 𝑓 ∈ ran ..., (℩𝑥∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)(dom 𝑓 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g‘𝑤), 𝑓)‘𝑛))), (℩𝑥∃𝑔[(◡𝑓 “ (V ∖ 𝑜)) / 𝑦](𝑔:(1...(♯‘𝑦))–1-1-onto→𝑦 ∧ 𝑥 = (seq1((+g‘𝑤), (𝑓 ∘ 𝑔))‘(♯‘𝑦)))))) |
| 68 | 2, 3, 4, 4, 67 | cmpo 7433 | . 2 class (𝑤 ∈ V, 𝑓 ∈ V ↦ ⦋{𝑥 ∈ (Base‘𝑤) ∣ ∀𝑦 ∈ (Base‘𝑤)((𝑥(+g‘𝑤)𝑦) = 𝑦 ∧ (𝑦(+g‘𝑤)𝑥) = 𝑦)} / 𝑜⦌if(ran 𝑓 ⊆ 𝑜, (0g‘𝑤), if(dom 𝑓 ∈ ran ..., (℩𝑥∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)(dom 𝑓 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g‘𝑤), 𝑓)‘𝑛))), (℩𝑥∃𝑔[(◡𝑓 “ (V ∖ 𝑜)) / 𝑦](𝑔:(1...(♯‘𝑦))–1-1-onto→𝑦 ∧ 𝑥 = (seq1((+g‘𝑤), (𝑓 ∘ 𝑔))‘(♯‘𝑦))))))) |
| 69 | 1, 68 | wceq 1540 | 1 wff Σg = (𝑤 ∈ V, 𝑓 ∈ V ↦ ⦋{𝑥 ∈ (Base‘𝑤) ∣ ∀𝑦 ∈ (Base‘𝑤)((𝑥(+g‘𝑤)𝑦) = 𝑦 ∧ (𝑦(+g‘𝑤)𝑥) = 𝑦)} / 𝑜⦌if(ran 𝑓 ⊆ 𝑜, (0g‘𝑤), if(dom 𝑓 ∈ ran ..., (℩𝑥∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)(dom 𝑓 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g‘𝑤), 𝑓)‘𝑛))), (℩𝑥∃𝑔[(◡𝑓 “ (V ∖ 𝑜)) / 𝑦](𝑔:(1...(♯‘𝑦))–1-1-onto→𝑦 ∧ 𝑥 = (seq1((+g‘𝑤), (𝑓 ∘ 𝑔))‘(♯‘𝑦))))))) |
| Colors of variables: wff setvar class |
| This definition is referenced by: gsumvalx 18689 gsum0 18697 |
| Copyright terms: Public domain | W3C validator |