Proof of Theorem tgval2
Step | Hyp | Ref
| Expression |
1 | | tgval 22013 |
. 2
⊢ (𝐵 ∈ 𝑉 → (topGen‘𝐵) = {𝑥 ∣ 𝑥 ⊆ ∪ (𝐵 ∩ 𝒫 𝑥)}) |
2 | | inss1 4159 |
. . . . . . . . 9
⊢ (𝐵 ∩ 𝒫 𝑥) ⊆ 𝐵 |
3 | 2 | unissi 4845 |
. . . . . . . 8
⊢ ∪ (𝐵
∩ 𝒫 𝑥) ⊆
∪ 𝐵 |
4 | 3 | sseli 3913 |
. . . . . . 7
⊢ (𝑦 ∈ ∪ (𝐵
∩ 𝒫 𝑥) →
𝑦 ∈ ∪ 𝐵) |
5 | 4 | pm4.71ri 560 |
. . . . . 6
⊢ (𝑦 ∈ ∪ (𝐵
∩ 𝒫 𝑥) ↔
(𝑦 ∈ ∪ 𝐵
∧ 𝑦 ∈ ∪ (𝐵
∩ 𝒫 𝑥))) |
6 | 5 | ralbii 3090 |
. . . . 5
⊢
(∀𝑦 ∈
𝑥 𝑦 ∈ ∪ (𝐵 ∩ 𝒫 𝑥) ↔ ∀𝑦 ∈ 𝑥 (𝑦 ∈ ∪ 𝐵 ∧ 𝑦 ∈ ∪ (𝐵 ∩ 𝒫 𝑥))) |
7 | | r19.26 3094 |
. . . . 5
⊢
(∀𝑦 ∈
𝑥 (𝑦 ∈ ∪ 𝐵 ∧ 𝑦 ∈ ∪ (𝐵 ∩ 𝒫 𝑥)) ↔ (∀𝑦 ∈ 𝑥 𝑦 ∈ ∪ 𝐵 ∧ ∀𝑦 ∈ 𝑥 𝑦 ∈ ∪ (𝐵 ∩ 𝒫 𝑥))) |
8 | 6, 7 | bitri 274 |
. . . 4
⊢
(∀𝑦 ∈
𝑥 𝑦 ∈ ∪ (𝐵 ∩ 𝒫 𝑥) ↔ (∀𝑦 ∈ 𝑥 𝑦 ∈ ∪ 𝐵 ∧ ∀𝑦 ∈ 𝑥 𝑦 ∈ ∪ (𝐵 ∩ 𝒫 𝑥))) |
9 | | dfss3 3905 |
. . . 4
⊢ (𝑥 ⊆ ∪ (𝐵
∩ 𝒫 𝑥) ↔
∀𝑦 ∈ 𝑥 𝑦 ∈ ∪ (𝐵 ∩ 𝒫 𝑥)) |
10 | | dfss3 3905 |
. . . . 5
⊢ (𝑥 ⊆ ∪ 𝐵
↔ ∀𝑦 ∈
𝑥 𝑦 ∈ ∪ 𝐵) |
11 | | elin 3899 |
. . . . . . . . . . 11
⊢ (𝑧 ∈ (𝐵 ∩ 𝒫 𝑥) ↔ (𝑧 ∈ 𝐵 ∧ 𝑧 ∈ 𝒫 𝑥)) |
12 | 11 | anbi2i 622 |
. . . . . . . . . 10
⊢ ((𝑦 ∈ 𝑧 ∧ 𝑧 ∈ (𝐵 ∩ 𝒫 𝑥)) ↔ (𝑦 ∈ 𝑧 ∧ (𝑧 ∈ 𝐵 ∧ 𝑧 ∈ 𝒫 𝑥))) |
13 | | an12 641 |
. . . . . . . . . 10
⊢ ((𝑦 ∈ 𝑧 ∧ (𝑧 ∈ 𝐵 ∧ 𝑧 ∈ 𝒫 𝑥)) ↔ (𝑧 ∈ 𝐵 ∧ (𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝒫 𝑥))) |
14 | 12, 13 | bitri 274 |
. . . . . . . . 9
⊢ ((𝑦 ∈ 𝑧 ∧ 𝑧 ∈ (𝐵 ∩ 𝒫 𝑥)) ↔ (𝑧 ∈ 𝐵 ∧ (𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝒫 𝑥))) |
15 | 14 | exbii 1851 |
. . . . . . . 8
⊢
(∃𝑧(𝑦 ∈ 𝑧 ∧ 𝑧 ∈ (𝐵 ∩ 𝒫 𝑥)) ↔ ∃𝑧(𝑧 ∈ 𝐵 ∧ (𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝒫 𝑥))) |
16 | | eluni 4839 |
. . . . . . . 8
⊢ (𝑦 ∈ ∪ (𝐵
∩ 𝒫 𝑥) ↔
∃𝑧(𝑦 ∈ 𝑧 ∧ 𝑧 ∈ (𝐵 ∩ 𝒫 𝑥))) |
17 | | df-rex 3069 |
. . . . . . . 8
⊢
(∃𝑧 ∈
𝐵 (𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝒫 𝑥) ↔ ∃𝑧(𝑧 ∈ 𝐵 ∧ (𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝒫 𝑥))) |
18 | 15, 16, 17 | 3bitr4i 302 |
. . . . . . 7
⊢ (𝑦 ∈ ∪ (𝐵
∩ 𝒫 𝑥) ↔
∃𝑧 ∈ 𝐵 (𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝒫 𝑥)) |
19 | | velpw 4535 |
. . . . . . . . 9
⊢ (𝑧 ∈ 𝒫 𝑥 ↔ 𝑧 ⊆ 𝑥) |
20 | 19 | anbi2i 622 |
. . . . . . . 8
⊢ ((𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝒫 𝑥) ↔ (𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑥)) |
21 | 20 | rexbii 3177 |
. . . . . . 7
⊢
(∃𝑧 ∈
𝐵 (𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝒫 𝑥) ↔ ∃𝑧 ∈ 𝐵 (𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑥)) |
22 | 18, 21 | bitr2i 275 |
. . . . . 6
⊢
(∃𝑧 ∈
𝐵 (𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑥) ↔ 𝑦 ∈ ∪ (𝐵 ∩ 𝒫 𝑥)) |
23 | 22 | ralbii 3090 |
. . . . 5
⊢
(∀𝑦 ∈
𝑥 ∃𝑧 ∈ 𝐵 (𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑥) ↔ ∀𝑦 ∈ 𝑥 𝑦 ∈ ∪ (𝐵 ∩ 𝒫 𝑥)) |
24 | 10, 23 | anbi12i 626 |
. . . 4
⊢ ((𝑥 ⊆ ∪ 𝐵
∧ ∀𝑦 ∈
𝑥 ∃𝑧 ∈ 𝐵 (𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑥)) ↔ (∀𝑦 ∈ 𝑥 𝑦 ∈ ∪ 𝐵 ∧ ∀𝑦 ∈ 𝑥 𝑦 ∈ ∪ (𝐵 ∩ 𝒫 𝑥))) |
25 | 8, 9, 24 | 3bitr4i 302 |
. . 3
⊢ (𝑥 ⊆ ∪ (𝐵
∩ 𝒫 𝑥) ↔
(𝑥 ⊆ ∪ 𝐵
∧ ∀𝑦 ∈
𝑥 ∃𝑧 ∈ 𝐵 (𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑥))) |
26 | 25 | abbii 2809 |
. 2
⊢ {𝑥 ∣ 𝑥 ⊆ ∪ (𝐵 ∩ 𝒫 𝑥)} = {𝑥 ∣ (𝑥 ⊆ ∪ 𝐵 ∧ ∀𝑦 ∈ 𝑥 ∃𝑧 ∈ 𝐵 (𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑥))} |
27 | 1, 26 | eqtrdi 2795 |
1
⊢ (𝐵 ∈ 𝑉 → (topGen‘𝐵) = {𝑥 ∣ (𝑥 ⊆ ∪ 𝐵 ∧ ∀𝑦 ∈ 𝑥 ∃𝑧 ∈ 𝐵 (𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑥))}) |