MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgval2 Structured version   Visualization version   GIF version

Theorem tgval2 22106
Description: Definition of a topology generated by a basis in [Munkres] p. 78. Later we show (in tgcl 22119) that (topGen‘𝐵) is indeed a topology (on 𝐵, see unitg 22117). See also tgval 22105 and tgval3 22113. (Contributed by NM, 15-Jul-2006.) (Revised by Mario Carneiro, 10-Jan-2015.)
Assertion
Ref Expression
tgval2 (𝐵𝑉 → (topGen‘𝐵) = {𝑥 ∣ (𝑥 𝐵 ∧ ∀𝑦𝑥𝑧𝐵 (𝑦𝑧𝑧𝑥))})
Distinct variable groups:   𝑥,𝑦,𝑧,𝐵   𝑥,𝑉,𝑦,𝑧

Proof of Theorem tgval2
StepHypRef Expression
1 tgval 22105 . 2 (𝐵𝑉 → (topGen‘𝐵) = {𝑥𝑥 (𝐵 ∩ 𝒫 𝑥)})
2 inss1 4162 . . . . . . . . 9 (𝐵 ∩ 𝒫 𝑥) ⊆ 𝐵
32unissi 4848 . . . . . . . 8 (𝐵 ∩ 𝒫 𝑥) ⊆ 𝐵
43sseli 3917 . . . . . . 7 (𝑦 (𝐵 ∩ 𝒫 𝑥) → 𝑦 𝐵)
54pm4.71ri 561 . . . . . 6 (𝑦 (𝐵 ∩ 𝒫 𝑥) ↔ (𝑦 𝐵𝑦 (𝐵 ∩ 𝒫 𝑥)))
65ralbii 3092 . . . . 5 (∀𝑦𝑥 𝑦 (𝐵 ∩ 𝒫 𝑥) ↔ ∀𝑦𝑥 (𝑦 𝐵𝑦 (𝐵 ∩ 𝒫 𝑥)))
7 r19.26 3095 . . . . 5 (∀𝑦𝑥 (𝑦 𝐵𝑦 (𝐵 ∩ 𝒫 𝑥)) ↔ (∀𝑦𝑥 𝑦 𝐵 ∧ ∀𝑦𝑥 𝑦 (𝐵 ∩ 𝒫 𝑥)))
86, 7bitri 274 . . . 4 (∀𝑦𝑥 𝑦 (𝐵 ∩ 𝒫 𝑥) ↔ (∀𝑦𝑥 𝑦 𝐵 ∧ ∀𝑦𝑥 𝑦 (𝐵 ∩ 𝒫 𝑥)))
9 dfss3 3909 . . . 4 (𝑥 (𝐵 ∩ 𝒫 𝑥) ↔ ∀𝑦𝑥 𝑦 (𝐵 ∩ 𝒫 𝑥))
10 dfss3 3909 . . . . 5 (𝑥 𝐵 ↔ ∀𝑦𝑥 𝑦 𝐵)
11 elin 3903 . . . . . . . . . . 11 (𝑧 ∈ (𝐵 ∩ 𝒫 𝑥) ↔ (𝑧𝐵𝑧 ∈ 𝒫 𝑥))
1211anbi2i 623 . . . . . . . . . 10 ((𝑦𝑧𝑧 ∈ (𝐵 ∩ 𝒫 𝑥)) ↔ (𝑦𝑧 ∧ (𝑧𝐵𝑧 ∈ 𝒫 𝑥)))
13 an12 642 . . . . . . . . . 10 ((𝑦𝑧 ∧ (𝑧𝐵𝑧 ∈ 𝒫 𝑥)) ↔ (𝑧𝐵 ∧ (𝑦𝑧𝑧 ∈ 𝒫 𝑥)))
1412, 13bitri 274 . . . . . . . . 9 ((𝑦𝑧𝑧 ∈ (𝐵 ∩ 𝒫 𝑥)) ↔ (𝑧𝐵 ∧ (𝑦𝑧𝑧 ∈ 𝒫 𝑥)))
1514exbii 1850 . . . . . . . 8 (∃𝑧(𝑦𝑧𝑧 ∈ (𝐵 ∩ 𝒫 𝑥)) ↔ ∃𝑧(𝑧𝐵 ∧ (𝑦𝑧𝑧 ∈ 𝒫 𝑥)))
16 eluni 4842 . . . . . . . 8 (𝑦 (𝐵 ∩ 𝒫 𝑥) ↔ ∃𝑧(𝑦𝑧𝑧 ∈ (𝐵 ∩ 𝒫 𝑥)))
17 df-rex 3070 . . . . . . . 8 (∃𝑧𝐵 (𝑦𝑧𝑧 ∈ 𝒫 𝑥) ↔ ∃𝑧(𝑧𝐵 ∧ (𝑦𝑧𝑧 ∈ 𝒫 𝑥)))
1815, 16, 173bitr4i 303 . . . . . . 7 (𝑦 (𝐵 ∩ 𝒫 𝑥) ↔ ∃𝑧𝐵 (𝑦𝑧𝑧 ∈ 𝒫 𝑥))
19 velpw 4538 . . . . . . . . 9 (𝑧 ∈ 𝒫 𝑥𝑧𝑥)
2019anbi2i 623 . . . . . . . 8 ((𝑦𝑧𝑧 ∈ 𝒫 𝑥) ↔ (𝑦𝑧𝑧𝑥))
2120rexbii 3181 . . . . . . 7 (∃𝑧𝐵 (𝑦𝑧𝑧 ∈ 𝒫 𝑥) ↔ ∃𝑧𝐵 (𝑦𝑧𝑧𝑥))
2218, 21bitr2i 275 . . . . . 6 (∃𝑧𝐵 (𝑦𝑧𝑧𝑥) ↔ 𝑦 (𝐵 ∩ 𝒫 𝑥))
2322ralbii 3092 . . . . 5 (∀𝑦𝑥𝑧𝐵 (𝑦𝑧𝑧𝑥) ↔ ∀𝑦𝑥 𝑦 (𝐵 ∩ 𝒫 𝑥))
2410, 23anbi12i 627 . . . 4 ((𝑥 𝐵 ∧ ∀𝑦𝑥𝑧𝐵 (𝑦𝑧𝑧𝑥)) ↔ (∀𝑦𝑥 𝑦 𝐵 ∧ ∀𝑦𝑥 𝑦 (𝐵 ∩ 𝒫 𝑥)))
258, 9, 243bitr4i 303 . . 3 (𝑥 (𝐵 ∩ 𝒫 𝑥) ↔ (𝑥 𝐵 ∧ ∀𝑦𝑥𝑧𝐵 (𝑦𝑧𝑧𝑥)))
2625abbii 2808 . 2 {𝑥𝑥 (𝐵 ∩ 𝒫 𝑥)} = {𝑥 ∣ (𝑥 𝐵 ∧ ∀𝑦𝑥𝑧𝐵 (𝑦𝑧𝑧𝑥))}
271, 26eqtrdi 2794 1 (𝐵𝑉 → (topGen‘𝐵) = {𝑥 ∣ (𝑥 𝐵 ∧ ∀𝑦𝑥𝑧𝐵 (𝑦𝑧𝑧𝑥))})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wex 1782  wcel 2106  {cab 2715  wral 3064  wrex 3065  cin 3886  wss 3887  𝒫 cpw 4533   cuni 4839  cfv 6433  topGenctg 17148
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-iota 6391  df-fun 6435  df-fv 6441  df-topgen 17154
This theorem is referenced by:  eltg2  22108
  Copyright terms: Public domain W3C validator