MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgval2 Structured version   Visualization version   GIF version

Theorem tgval2 22988
Description: Definition of a topology generated by a basis in [Munkres] p. 78. Later we show (in tgcl 23001) that (topGen‘𝐵) is indeed a topology (on 𝐵, see unitg 22999). See also tgval 22987 and tgval3 22995. (Contributed by NM, 15-Jul-2006.) (Revised by Mario Carneiro, 10-Jan-2015.)
Assertion
Ref Expression
tgval2 (𝐵𝑉 → (topGen‘𝐵) = {𝑥 ∣ (𝑥 𝐵 ∧ ∀𝑦𝑥𝑧𝐵 (𝑦𝑧𝑧𝑥))})
Distinct variable groups:   𝑥,𝑦,𝑧,𝐵   𝑥,𝑉,𝑦,𝑧

Proof of Theorem tgval2
StepHypRef Expression
1 tgval 22987 . 2 (𝐵𝑉 → (topGen‘𝐵) = {𝑥𝑥 (𝐵 ∩ 𝒫 𝑥)})
2 inss1 4248 . . . . . . . . 9 (𝐵 ∩ 𝒫 𝑥) ⊆ 𝐵
32unissi 4924 . . . . . . . 8 (𝐵 ∩ 𝒫 𝑥) ⊆ 𝐵
43sseli 3994 . . . . . . 7 (𝑦 (𝐵 ∩ 𝒫 𝑥) → 𝑦 𝐵)
54pm4.71ri 560 . . . . . 6 (𝑦 (𝐵 ∩ 𝒫 𝑥) ↔ (𝑦 𝐵𝑦 (𝐵 ∩ 𝒫 𝑥)))
65ralbii 3093 . . . . 5 (∀𝑦𝑥 𝑦 (𝐵 ∩ 𝒫 𝑥) ↔ ∀𝑦𝑥 (𝑦 𝐵𝑦 (𝐵 ∩ 𝒫 𝑥)))
7 r19.26 3111 . . . . 5 (∀𝑦𝑥 (𝑦 𝐵𝑦 (𝐵 ∩ 𝒫 𝑥)) ↔ (∀𝑦𝑥 𝑦 𝐵 ∧ ∀𝑦𝑥 𝑦 (𝐵 ∩ 𝒫 𝑥)))
86, 7bitri 275 . . . 4 (∀𝑦𝑥 𝑦 (𝐵 ∩ 𝒫 𝑥) ↔ (∀𝑦𝑥 𝑦 𝐵 ∧ ∀𝑦𝑥 𝑦 (𝐵 ∩ 𝒫 𝑥)))
9 dfss3 3987 . . . 4 (𝑥 (𝐵 ∩ 𝒫 𝑥) ↔ ∀𝑦𝑥 𝑦 (𝐵 ∩ 𝒫 𝑥))
10 dfss3 3987 . . . . 5 (𝑥 𝐵 ↔ ∀𝑦𝑥 𝑦 𝐵)
11 elin 3982 . . . . . . . . . . 11 (𝑧 ∈ (𝐵 ∩ 𝒫 𝑥) ↔ (𝑧𝐵𝑧 ∈ 𝒫 𝑥))
1211anbi2i 623 . . . . . . . . . 10 ((𝑦𝑧𝑧 ∈ (𝐵 ∩ 𝒫 𝑥)) ↔ (𝑦𝑧 ∧ (𝑧𝐵𝑧 ∈ 𝒫 𝑥)))
13 an12 645 . . . . . . . . . 10 ((𝑦𝑧 ∧ (𝑧𝐵𝑧 ∈ 𝒫 𝑥)) ↔ (𝑧𝐵 ∧ (𝑦𝑧𝑧 ∈ 𝒫 𝑥)))
1412, 13bitri 275 . . . . . . . . 9 ((𝑦𝑧𝑧 ∈ (𝐵 ∩ 𝒫 𝑥)) ↔ (𝑧𝐵 ∧ (𝑦𝑧𝑧 ∈ 𝒫 𝑥)))
1514exbii 1847 . . . . . . . 8 (∃𝑧(𝑦𝑧𝑧 ∈ (𝐵 ∩ 𝒫 𝑥)) ↔ ∃𝑧(𝑧𝐵 ∧ (𝑦𝑧𝑧 ∈ 𝒫 𝑥)))
16 eluni 4918 . . . . . . . 8 (𝑦 (𝐵 ∩ 𝒫 𝑥) ↔ ∃𝑧(𝑦𝑧𝑧 ∈ (𝐵 ∩ 𝒫 𝑥)))
17 df-rex 3071 . . . . . . . 8 (∃𝑧𝐵 (𝑦𝑧𝑧 ∈ 𝒫 𝑥) ↔ ∃𝑧(𝑧𝐵 ∧ (𝑦𝑧𝑧 ∈ 𝒫 𝑥)))
1815, 16, 173bitr4i 303 . . . . . . 7 (𝑦 (𝐵 ∩ 𝒫 𝑥) ↔ ∃𝑧𝐵 (𝑦𝑧𝑧 ∈ 𝒫 𝑥))
19 velpw 4613 . . . . . . . . 9 (𝑧 ∈ 𝒫 𝑥𝑧𝑥)
2019anbi2i 623 . . . . . . . 8 ((𝑦𝑧𝑧 ∈ 𝒫 𝑥) ↔ (𝑦𝑧𝑧𝑥))
2120rexbii 3094 . . . . . . 7 (∃𝑧𝐵 (𝑦𝑧𝑧 ∈ 𝒫 𝑥) ↔ ∃𝑧𝐵 (𝑦𝑧𝑧𝑥))
2218, 21bitr2i 276 . . . . . 6 (∃𝑧𝐵 (𝑦𝑧𝑧𝑥) ↔ 𝑦 (𝐵 ∩ 𝒫 𝑥))
2322ralbii 3093 . . . . 5 (∀𝑦𝑥𝑧𝐵 (𝑦𝑧𝑧𝑥) ↔ ∀𝑦𝑥 𝑦 (𝐵 ∩ 𝒫 𝑥))
2410, 23anbi12i 628 . . . 4 ((𝑥 𝐵 ∧ ∀𝑦𝑥𝑧𝐵 (𝑦𝑧𝑧𝑥)) ↔ (∀𝑦𝑥 𝑦 𝐵 ∧ ∀𝑦𝑥 𝑦 (𝐵 ∩ 𝒫 𝑥)))
258, 9, 243bitr4i 303 . . 3 (𝑥 (𝐵 ∩ 𝒫 𝑥) ↔ (𝑥 𝐵 ∧ ∀𝑦𝑥𝑧𝐵 (𝑦𝑧𝑧𝑥)))
2625abbii 2809 . 2 {𝑥𝑥 (𝐵 ∩ 𝒫 𝑥)} = {𝑥 ∣ (𝑥 𝐵 ∧ ∀𝑦𝑥𝑧𝐵 (𝑦𝑧𝑧𝑥))}
271, 26eqtrdi 2793 1 (𝐵𝑉 → (topGen‘𝐵) = {𝑥 ∣ (𝑥 𝐵 ∧ ∀𝑦𝑥𝑧𝐵 (𝑦𝑧𝑧𝑥))})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wex 1778  wcel 2108  {cab 2714  wral 3061  wrex 3070  cin 3965  wss 3966  𝒫 cpw 4608   cuni 4915  cfv 6569  topGenctg 17493
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5305  ax-nul 5315  ax-pow 5374  ax-pr 5441  ax-un 7761
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3483  df-dif 3969  df-un 3971  df-in 3973  df-ss 3983  df-nul 4343  df-if 4535  df-pw 4610  df-sn 4635  df-pr 4637  df-op 4641  df-uni 4916  df-br 5152  df-opab 5214  df-mpt 5235  df-id 5587  df-xp 5699  df-rel 5700  df-cnv 5701  df-co 5702  df-dm 5703  df-iota 6522  df-fun 6571  df-fv 6577  df-topgen 17499
This theorem is referenced by:  eltg2  22990
  Copyright terms: Public domain W3C validator