| Metamath
Proof Explorer Theorem List (p. 174 of 497) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30845) |
(30846-32368) |
(32369-49617) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | grpbase 17301 | The base set of a constructed group. (Contributed by Mario Carneiro, 2-Aug-2013.) (Revised by Mario Carneiro, 30-Apr-2015.) (Revised by AV, 27-Oct-2024.) |
| ⊢ 𝐺 = {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉} ⇒ ⊢ (𝐵 ∈ 𝑉 → 𝐵 = (Base‘𝐺)) | ||
| Theorem | grpplusg 17302 | The operation of a constructed group. (Contributed by Mario Carneiro, 2-Aug-2013.) (Revised by Mario Carneiro, 30-Apr-2015.) (Revised by AV, 27-Oct-2024.) |
| ⊢ 𝐺 = {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉} ⇒ ⊢ ( + ∈ 𝑉 → + = (+g‘𝐺)) | ||
| Theorem | ressplusg 17303 | +g is unaffected by restriction. (Contributed by Stefan O'Rear, 27-Nov-2014.) |
| ⊢ 𝐻 = (𝐺 ↾s 𝐴) & ⊢ + = (+g‘𝐺) ⇒ ⊢ (𝐴 ∈ 𝑉 → + = (+g‘𝐻)) | ||
| Theorem | grpbasex 17304 | The base of an explicitly given group. Note: This theorem has hard-coded structure indices for demonstration purposes. It is not intended for general use; use grpbase 17301 instead. (New usage is discouraged.) (Contributed by NM, 17-Oct-2012.) |
| ⊢ 𝐵 ∈ V & ⊢ + ∈ V & ⊢ 𝐺 = {〈1, 𝐵〉, 〈2, + 〉} ⇒ ⊢ 𝐵 = (Base‘𝐺) | ||
| Theorem | grpplusgx 17305 | The operation of an explicitly given group. Note: This theorem has hard-coded structure indices for demonstration purposes. It is not intended for general use; use grpplusg 17302 instead. (New usage is discouraged.) (Contributed by NM, 17-Oct-2012.) |
| ⊢ 𝐵 ∈ V & ⊢ + ∈ V & ⊢ 𝐺 = {〈1, 𝐵〉, 〈2, + 〉} ⇒ ⊢ + = (+g‘𝐺) | ||
| Theorem | mulrndx 17306 | Index value of the df-mulr 17283 slot. (Contributed by Mario Carneiro, 14-Aug-2015.) (New usage is discouraged.) |
| ⊢ (.r‘ndx) = 3 | ||
| Theorem | mulridx 17307 | Utility theorem: index-independent form of df-mulr 17283. (Contributed by Mario Carneiro, 8-Jun-2013.) |
| ⊢ .r = Slot (.r‘ndx) | ||
| Theorem | basendxnmulrndx 17308 | The slot for the base set is not the slot for the ring (multiplication) operation in an extensible structure. (Contributed by AV, 16-Feb-2020.) (Proof shortened by AV, 28-Oct-2024.) |
| ⊢ (Base‘ndx) ≠ (.r‘ndx) | ||
| Theorem | plusgndxnmulrndx 17309 | The slot for the group (addition) operation is not the slot for the ring (multiplication) operation in an extensible structure. (Contributed by AV, 16-Feb-2020.) |
| ⊢ (+g‘ndx) ≠ (.r‘ndx) | ||
| Theorem | rngstr 17310 | A constructed ring is a structure. (Contributed by Mario Carneiro, 28-Sep-2013.) (Revised by Mario Carneiro, 29-Aug-2015.) |
| ⊢ 𝑅 = {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), · 〉} ⇒ ⊢ 𝑅 Struct 〈1, 3〉 | ||
| Theorem | rngbase 17311 | The base set of a constructed ring. (Contributed by Mario Carneiro, 2-Oct-2013.) (Revised by Mario Carneiro, 30-Apr-2015.) |
| ⊢ 𝑅 = {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), · 〉} ⇒ ⊢ (𝐵 ∈ 𝑉 → 𝐵 = (Base‘𝑅)) | ||
| Theorem | rngplusg 17312 | The additive operation of a constructed ring. (Contributed by Mario Carneiro, 2-Oct-2013.) (Revised by Mario Carneiro, 30-Apr-2015.) |
| ⊢ 𝑅 = {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), · 〉} ⇒ ⊢ ( + ∈ 𝑉 → + = (+g‘𝑅)) | ||
| Theorem | rngmulr 17313 | The multiplicative operation of a constructed ring. (Contributed by Mario Carneiro, 2-Oct-2013.) (Revised by Mario Carneiro, 30-Apr-2015.) |
| ⊢ 𝑅 = {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), · 〉} ⇒ ⊢ ( · ∈ 𝑉 → · = (.r‘𝑅)) | ||
| Theorem | starvndx 17314 | Index value of the df-starv 17284 slot. (Contributed by Mario Carneiro, 14-Aug-2015.) (New usage is discouraged.) |
| ⊢ (*𝑟‘ndx) = 4 | ||
| Theorem | starvid 17315 | Utility theorem: index-independent form of df-starv 17284. (Contributed by Mario Carneiro, 6-Oct-2013.) |
| ⊢ *𝑟 = Slot (*𝑟‘ndx) | ||
| Theorem | starvndxnbasendx 17316 | The slot for the involution function is not the slot for the base set in an extensible structure. Formerly part of proof for ressstarv 17320. (Contributed by AV, 18-Oct-2024.) |
| ⊢ (*𝑟‘ndx) ≠ (Base‘ndx) | ||
| Theorem | starvndxnplusgndx 17317 | The slot for the involution function is not the slot for the base set in an extensible structure. Formerly part of proof for ressstarv 17320. (Contributed by AV, 18-Oct-2024.) |
| ⊢ (*𝑟‘ndx) ≠ (+g‘ndx) | ||
| Theorem | starvndxnmulrndx 17318 | The slot for the involution function is not the slot for the base set in an extensible structure. Formerly part of proof for ressstarv 17320. (Contributed by AV, 18-Oct-2024.) |
| ⊢ (*𝑟‘ndx) ≠ (.r‘ndx) | ||
| Theorem | ressmulr 17319 | .r is unaffected by restriction. (Contributed by Stefan O'Rear, 27-Nov-2014.) |
| ⊢ 𝑆 = (𝑅 ↾s 𝐴) & ⊢ · = (.r‘𝑅) ⇒ ⊢ (𝐴 ∈ 𝑉 → · = (.r‘𝑆)) | ||
| Theorem | ressstarv 17320 | *𝑟 is unaffected by restriction. (Contributed by Mario Carneiro, 9-Oct-2015.) |
| ⊢ 𝑆 = (𝑅 ↾s 𝐴) & ⊢ ∗ = (*𝑟‘𝑅) ⇒ ⊢ (𝐴 ∈ 𝑉 → ∗ = (*𝑟‘𝑆)) | ||
| Theorem | srngstr 17321 | A constructed star ring is a structure. (Contributed by Mario Carneiro, 18-Nov-2013.) (Revised by Mario Carneiro, 14-Aug-2015.) |
| ⊢ 𝑅 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), · 〉} ∪ {〈(*𝑟‘ndx), ∗ 〉}) ⇒ ⊢ 𝑅 Struct 〈1, 4〉 | ||
| Theorem | srngbase 17322 | The base set of a constructed star ring. (Contributed by Mario Carneiro, 18-Nov-2013.) (Revised by Mario Carneiro, 6-May-2015.) |
| ⊢ 𝑅 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), · 〉} ∪ {〈(*𝑟‘ndx), ∗ 〉}) ⇒ ⊢ (𝐵 ∈ 𝑋 → 𝐵 = (Base‘𝑅)) | ||
| Theorem | srngplusg 17323 | The addition operation of a constructed star ring. (Contributed by Mario Carneiro, 20-Jun-2015.) |
| ⊢ 𝑅 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), · 〉} ∪ {〈(*𝑟‘ndx), ∗ 〉}) ⇒ ⊢ ( + ∈ 𝑋 → + = (+g‘𝑅)) | ||
| Theorem | srngmulr 17324 | The multiplication operation of a constructed star ring. (Contributed by Mario Carneiro, 20-Jun-2015.) |
| ⊢ 𝑅 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), · 〉} ∪ {〈(*𝑟‘ndx), ∗ 〉}) ⇒ ⊢ ( · ∈ 𝑋 → · = (.r‘𝑅)) | ||
| Theorem | srnginvl 17325 | The involution function of a constructed star ring. (Contributed by Mario Carneiro, 20-Jun-2015.) |
| ⊢ 𝑅 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), · 〉} ∪ {〈(*𝑟‘ndx), ∗ 〉}) ⇒ ⊢ ( ∗ ∈ 𝑋 → ∗ = (*𝑟‘𝑅)) | ||
| Theorem | scandx 17326 | Index value of the df-sca 17285 slot. (Contributed by Mario Carneiro, 14-Aug-2015.) (New usage is discouraged.) |
| ⊢ (Scalar‘ndx) = 5 | ||
| Theorem | scaid 17327 | Utility theorem: index-independent form of scalar df-sca 17285. (Contributed by Mario Carneiro, 19-Jun-2014.) |
| ⊢ Scalar = Slot (Scalar‘ndx) | ||
| Theorem | scandxnbasendx 17328 | The slot for the scalar is not the slot for the base set in an extensible structure. (Contributed by AV, 21-Oct-2024.) |
| ⊢ (Scalar‘ndx) ≠ (Base‘ndx) | ||
| Theorem | scandxnplusgndx 17329 | The slot for the scalar field is not the slot for the group operation in an extensible structure. Formerly part of proof for mgpsca 20104. (Contributed by AV, 18-Oct-2024.) |
| ⊢ (Scalar‘ndx) ≠ (+g‘ndx) | ||
| Theorem | scandxnmulrndx 17330 | The slot for the scalar field is not the slot for the ring (multiplication) operation in an extensible structure. Formerly part of proof for mgpsca 20104. (Contributed by AV, 29-Oct-2024.) |
| ⊢ (Scalar‘ndx) ≠ (.r‘ndx) | ||
| Theorem | vscandx 17331 | Index value of the df-vsca 17286 slot. (Contributed by Mario Carneiro, 14-Aug-2015.) (New usage is discouraged.) |
| ⊢ ( ·𝑠 ‘ndx) = 6 | ||
| Theorem | vscaid 17332 | Utility theorem: index-independent form of scalar product df-vsca 17286. (Contributed by Mario Carneiro, 2-Oct-2013.) (Revised by Mario Carneiro, 19-Jun-2014.) |
| ⊢ ·𝑠 = Slot ( ·𝑠 ‘ndx) | ||
| Theorem | vscandxnbasendx 17333 | The slot for the scalar product is not the slot for the base set in an extensible structure. Formerly part of proof for rmodislmod 20885. (Contributed by AV, 18-Oct-2024.) |
| ⊢ ( ·𝑠 ‘ndx) ≠ (Base‘ndx) | ||
| Theorem | vscandxnplusgndx 17334 | The slot for the scalar product is not the slot for the group operation in an extensible structure. Formerly part of proof for rmodislmod 20885. (Contributed by AV, 18-Oct-2024.) |
| ⊢ ( ·𝑠 ‘ndx) ≠ (+g‘ndx) | ||
| Theorem | vscandxnmulrndx 17335 | The slot for the scalar product is not the slot for the ring (multiplication) operation in an extensible structure. Formerly part of proof for rmodislmod 20885. (Contributed by AV, 29-Oct-2024.) |
| ⊢ ( ·𝑠 ‘ndx) ≠ (.r‘ndx) | ||
| Theorem | vscandxnscandx 17336 | The slot for the scalar product is not the slot for the scalar field in an extensible structure. Formerly part of proof for rmodislmod 20885. (Contributed by AV, 18-Oct-2024.) |
| ⊢ ( ·𝑠 ‘ndx) ≠ (Scalar‘ndx) | ||
| Theorem | lmodstr 17337 | A constructed left module or left vector space is a structure. (Contributed by Mario Carneiro, 1-Oct-2013.) (Revised by Mario Carneiro, 29-Aug-2015.) |
| ⊢ 𝑊 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(Scalar‘ndx), 𝐹〉} ∪ {〈( ·𝑠 ‘ndx), · 〉}) ⇒ ⊢ 𝑊 Struct 〈1, 6〉 | ||
| Theorem | lmodbase 17338 | The base set of a constructed left vector space. (Contributed by Mario Carneiro, 2-Oct-2013.) (Revised by Mario Carneiro, 29-Aug-2015.) |
| ⊢ 𝑊 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(Scalar‘ndx), 𝐹〉} ∪ {〈( ·𝑠 ‘ndx), · 〉}) ⇒ ⊢ (𝐵 ∈ 𝑋 → 𝐵 = (Base‘𝑊)) | ||
| Theorem | lmodplusg 17339 | The additive operation of a constructed left vector space. (Contributed by Mario Carneiro, 2-Oct-2013.) (Revised by Mario Carneiro, 29-Aug-2015.) |
| ⊢ 𝑊 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(Scalar‘ndx), 𝐹〉} ∪ {〈( ·𝑠 ‘ndx), · 〉}) ⇒ ⊢ ( + ∈ 𝑋 → + = (+g‘𝑊)) | ||
| Theorem | lmodsca 17340 | The set of scalars of a constructed left vector space. (Contributed by Mario Carneiro, 2-Oct-2013.) (Revised by Mario Carneiro, 29-Aug-2015.) |
| ⊢ 𝑊 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(Scalar‘ndx), 𝐹〉} ∪ {〈( ·𝑠 ‘ndx), · 〉}) ⇒ ⊢ (𝐹 ∈ 𝑋 → 𝐹 = (Scalar‘𝑊)) | ||
| Theorem | lmodvsca 17341 | The scalar product operation of a constructed left vector space. (Contributed by Mario Carneiro, 2-Oct-2013.) (Revised by Mario Carneiro, 29-Aug-2015.) |
| ⊢ 𝑊 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(Scalar‘ndx), 𝐹〉} ∪ {〈( ·𝑠 ‘ndx), · 〉}) ⇒ ⊢ ( · ∈ 𝑋 → · = ( ·𝑠 ‘𝑊)) | ||
| Theorem | ipndx 17342 | Index value of the df-ip 17287 slot. (Contributed by Mario Carneiro, 14-Aug-2015.) (New usage is discouraged.) |
| ⊢ (·𝑖‘ndx) = 8 | ||
| Theorem | ipid 17343 | Utility theorem: index-independent form of df-ip 17287. (Contributed by Mario Carneiro, 6-Oct-2013.) |
| ⊢ ·𝑖 = Slot (·𝑖‘ndx) | ||
| Theorem | ipndxnbasendx 17344 | The slot for the inner product is not the slot for the base set in an extensible structure. (Contributed by AV, 21-Oct-2024.) |
| ⊢ (·𝑖‘ndx) ≠ (Base‘ndx) | ||
| Theorem | ipndxnplusgndx 17345 | The slot for the inner product is not the slot for the group operation in an extensible structure. (Contributed by AV, 29-Oct-2024.) |
| ⊢ (·𝑖‘ndx) ≠ (+g‘ndx) | ||
| Theorem | ipndxnmulrndx 17346 | The slot for the inner product is not the slot for the ring (multiplication) operation in an extensible structure. Formerly part of proof for mgpsca 20104. (Contributed by AV, 29-Oct-2024.) |
| ⊢ (·𝑖‘ndx) ≠ (.r‘ndx) | ||
| Theorem | slotsdifipndx 17347 | The slot for the scalar is not the index of other slots. Formerly part of proof for srasca 21136 and sravsca 21137. (Contributed by AV, 12-Nov-2024.) |
| ⊢ (( ·𝑠 ‘ndx) ≠ (·𝑖‘ndx) ∧ (Scalar‘ndx) ≠ (·𝑖‘ndx)) | ||
| Theorem | ipsstr 17348 | Lemma to shorten proofs of ipsbase 17349 through ipsvsca 17353. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 29-Aug-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) |
| ⊢ 𝐴 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} ∪ {〈(Scalar‘ndx), 𝑆〉, 〈( ·𝑠 ‘ndx), · 〉, 〈(·𝑖‘ndx), 𝐼〉}) ⇒ ⊢ 𝐴 Struct 〈1, 8〉 | ||
| Theorem | ipsbase 17349 | The base set of a constructed inner product space. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 29-Aug-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) |
| ⊢ 𝐴 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} ∪ {〈(Scalar‘ndx), 𝑆〉, 〈( ·𝑠 ‘ndx), · 〉, 〈(·𝑖‘ndx), 𝐼〉}) ⇒ ⊢ (𝐵 ∈ 𝑉 → 𝐵 = (Base‘𝐴)) | ||
| Theorem | ipsaddg 17350 | The additive operation of a constructed inner product space. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 29-Aug-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) |
| ⊢ 𝐴 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} ∪ {〈(Scalar‘ndx), 𝑆〉, 〈( ·𝑠 ‘ndx), · 〉, 〈(·𝑖‘ndx), 𝐼〉}) ⇒ ⊢ ( + ∈ 𝑉 → + = (+g‘𝐴)) | ||
| Theorem | ipsmulr 17351 | The multiplicative operation of a constructed inner product space. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 29-Aug-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) |
| ⊢ 𝐴 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} ∪ {〈(Scalar‘ndx), 𝑆〉, 〈( ·𝑠 ‘ndx), · 〉, 〈(·𝑖‘ndx), 𝐼〉}) ⇒ ⊢ ( × ∈ 𝑉 → × = (.r‘𝐴)) | ||
| Theorem | ipssca 17352 | The set of scalars of a constructed inner product space. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 29-Aug-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) |
| ⊢ 𝐴 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} ∪ {〈(Scalar‘ndx), 𝑆〉, 〈( ·𝑠 ‘ndx), · 〉, 〈(·𝑖‘ndx), 𝐼〉}) ⇒ ⊢ (𝑆 ∈ 𝑉 → 𝑆 = (Scalar‘𝐴)) | ||
| Theorem | ipsvsca 17353 | The scalar product operation of a constructed inner product space. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 29-Aug-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) |
| ⊢ 𝐴 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} ∪ {〈(Scalar‘ndx), 𝑆〉, 〈( ·𝑠 ‘ndx), · 〉, 〈(·𝑖‘ndx), 𝐼〉}) ⇒ ⊢ ( · ∈ 𝑉 → · = ( ·𝑠 ‘𝐴)) | ||
| Theorem | ipsip 17354 | The multiplicative operation of a constructed inner product space. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 29-Aug-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) |
| ⊢ 𝐴 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} ∪ {〈(Scalar‘ndx), 𝑆〉, 〈( ·𝑠 ‘ndx), · 〉, 〈(·𝑖‘ndx), 𝐼〉}) ⇒ ⊢ (𝐼 ∈ 𝑉 → 𝐼 = (·𝑖‘𝐴)) | ||
| Theorem | resssca 17355 | Scalar is unaffected by restriction. (Contributed by Mario Carneiro, 7-Dec-2014.) |
| ⊢ 𝐻 = (𝐺 ↾s 𝐴) & ⊢ 𝐹 = (Scalar‘𝐺) ⇒ ⊢ (𝐴 ∈ 𝑉 → 𝐹 = (Scalar‘𝐻)) | ||
| Theorem | ressvsca 17356 | ·𝑠 is unaffected by restriction. (Contributed by Mario Carneiro, 7-Dec-2014.) |
| ⊢ 𝐻 = (𝐺 ↾s 𝐴) & ⊢ · = ( ·𝑠 ‘𝐺) ⇒ ⊢ (𝐴 ∈ 𝑉 → · = ( ·𝑠 ‘𝐻)) | ||
| Theorem | ressip 17357 | The inner product is unaffected by restriction. (Contributed by Thierry Arnoux, 16-Jun-2019.) |
| ⊢ 𝐻 = (𝐺 ↾s 𝐴) & ⊢ , = (·𝑖‘𝐺) ⇒ ⊢ (𝐴 ∈ 𝑉 → , = (·𝑖‘𝐻)) | ||
| Theorem | phlstr 17358 | A constructed pre-Hilbert space is a structure. Starting from lmodstr 17337 (which has 4 members), we chain strleun 17174 once more, adding an ordered pair to the function, to get all 5 members. (Contributed by Mario Carneiro, 1-Oct-2013.) (Revised by Mario Carneiro, 29-Aug-2015.) |
| ⊢ 𝐻 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(Scalar‘ndx), 𝑇〉} ∪ {〈( ·𝑠 ‘ndx), · 〉, 〈(·𝑖‘ndx), , 〉}) ⇒ ⊢ 𝐻 Struct 〈1, 8〉 | ||
| Theorem | phlbase 17359 | The base set of a constructed pre-Hilbert space. (Contributed by Mario Carneiro, 6-Oct-2013.) (Revised by Mario Carneiro, 29-Aug-2015.) |
| ⊢ 𝐻 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(Scalar‘ndx), 𝑇〉} ∪ {〈( ·𝑠 ‘ndx), · 〉, 〈(·𝑖‘ndx), , 〉}) ⇒ ⊢ (𝐵 ∈ 𝑋 → 𝐵 = (Base‘𝐻)) | ||
| Theorem | phlplusg 17360 | The additive operation of a constructed pre-Hilbert space. (Contributed by Mario Carneiro, 6-Oct-2013.) (Revised by Mario Carneiro, 29-Aug-2015.) |
| ⊢ 𝐻 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(Scalar‘ndx), 𝑇〉} ∪ {〈( ·𝑠 ‘ndx), · 〉, 〈(·𝑖‘ndx), , 〉}) ⇒ ⊢ ( + ∈ 𝑋 → + = (+g‘𝐻)) | ||
| Theorem | phlsca 17361 | The ring of scalars of a constructed pre-Hilbert space. (Contributed by Mario Carneiro, 6-Oct-2013.) (Revised by Mario Carneiro, 29-Aug-2015.) |
| ⊢ 𝐻 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(Scalar‘ndx), 𝑇〉} ∪ {〈( ·𝑠 ‘ndx), · 〉, 〈(·𝑖‘ndx), , 〉}) ⇒ ⊢ (𝑇 ∈ 𝑋 → 𝑇 = (Scalar‘𝐻)) | ||
| Theorem | phlvsca 17362 | The scalar product operation of a constructed pre-Hilbert space. (Contributed by Mario Carneiro, 6-Oct-2013.) (Revised by Mario Carneiro, 29-Aug-2015.) |
| ⊢ 𝐻 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(Scalar‘ndx), 𝑇〉} ∪ {〈( ·𝑠 ‘ndx), · 〉, 〈(·𝑖‘ndx), , 〉}) ⇒ ⊢ ( · ∈ 𝑋 → · = ( ·𝑠 ‘𝐻)) | ||
| Theorem | phlip 17363 | The inner product (Hermitian form) operation of a constructed pre-Hilbert space. (Contributed by Mario Carneiro, 6-Oct-2013.) (Revised by Mario Carneiro, 29-Aug-2015.) |
| ⊢ 𝐻 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(Scalar‘ndx), 𝑇〉} ∪ {〈( ·𝑠 ‘ndx), · 〉, 〈(·𝑖‘ndx), , 〉}) ⇒ ⊢ ( , ∈ 𝑋 → , = (·𝑖‘𝐻)) | ||
| Theorem | tsetndx 17364 | Index value of the df-tset 17288 slot. (Contributed by Mario Carneiro, 14-Aug-2015.) (New usage is discouraged.) |
| ⊢ (TopSet‘ndx) = 9 | ||
| Theorem | tsetid 17365 | Utility theorem: index-independent form of df-tset 17288. (Contributed by NM, 20-Oct-2012.) |
| ⊢ TopSet = Slot (TopSet‘ndx) | ||
| Theorem | tsetndxnn 17366 | The index of the slot for the group operation in an extensible structure is a positive integer. (Contributed by AV, 31-Oct-2024.) |
| ⊢ (TopSet‘ndx) ∈ ℕ | ||
| Theorem | basendxlttsetndx 17367 | The index of the slot for the base set is less then the index of the slot for the topology in an extensible structure. (Contributed by AV, 31-Oct-2024.) |
| ⊢ (Base‘ndx) < (TopSet‘ndx) | ||
| Theorem | tsetndxnbasendx 17368 | The slot for the topology is not the slot for the base set in an extensible structure. (Contributed by AV, 21-Oct-2024.) (Proof shortened by AV, 31-Oct-2024.) |
| ⊢ (TopSet‘ndx) ≠ (Base‘ndx) | ||
| Theorem | tsetndxnplusgndx 17369 | The slot for the topology is not the slot for the group operation in an extensible structure. Formerly part of proof for oppgtset 19333. (Contributed by AV, 18-Oct-2024.) |
| ⊢ (TopSet‘ndx) ≠ (+g‘ndx) | ||
| Theorem | tsetndxnmulrndx 17370 | The slot for the topology is not the slot for the ring multiplication operation in an extensible structure. (Contributed by AV, 31-Oct-2024.) |
| ⊢ (TopSet‘ndx) ≠ (.r‘ndx) | ||
| Theorem | tsetndxnstarvndx 17371 | The slot for the topology is not the slot for the involution in an extensible structure. Formerly part of proof for cnfldfunALT 21328. (Contributed by AV, 11-Nov-2024.) |
| ⊢ (TopSet‘ndx) ≠ (*𝑟‘ndx) | ||
| Theorem | slotstnscsi 17372 | The slots Scalar, ·𝑠 and ·𝑖 are different from the slot TopSet. Formerly part of sralem 21132 and proofs using it. (Contributed by AV, 29-Oct-2024.) |
| ⊢ ((TopSet‘ndx) ≠ (Scalar‘ndx) ∧ (TopSet‘ndx) ≠ ( ·𝑠 ‘ndx) ∧ (TopSet‘ndx) ≠ (·𝑖‘ndx)) | ||
| Theorem | topgrpstr 17373 | A constructed topological group is a structure. (Contributed by Mario Carneiro, 29-Aug-2015.) |
| ⊢ 𝑊 = {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(TopSet‘ndx), 𝐽〉} ⇒ ⊢ 𝑊 Struct 〈1, 9〉 | ||
| Theorem | topgrpbas 17374 | The base set of a constructed topological group. (Contributed by Mario Carneiro, 29-Aug-2015.) |
| ⊢ 𝑊 = {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(TopSet‘ndx), 𝐽〉} ⇒ ⊢ (𝐵 ∈ 𝑋 → 𝐵 = (Base‘𝑊)) | ||
| Theorem | topgrpplusg 17375 | The additive operation of a constructed topological group. (Contributed by Mario Carneiro, 29-Aug-2015.) |
| ⊢ 𝑊 = {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(TopSet‘ndx), 𝐽〉} ⇒ ⊢ ( + ∈ 𝑋 → + = (+g‘𝑊)) | ||
| Theorem | topgrptset 17376 | The topology of a constructed topological group. (Contributed by Mario Carneiro, 29-Aug-2015.) |
| ⊢ 𝑊 = {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(TopSet‘ndx), 𝐽〉} ⇒ ⊢ (𝐽 ∈ 𝑋 → 𝐽 = (TopSet‘𝑊)) | ||
| Theorem | resstset 17377 | TopSet is unaffected by restriction. (Contributed by Mario Carneiro, 13-Aug-2015.) |
| ⊢ 𝐻 = (𝐺 ↾s 𝐴) & ⊢ 𝐽 = (TopSet‘𝐺) ⇒ ⊢ (𝐴 ∈ 𝑉 → 𝐽 = (TopSet‘𝐻)) | ||
| Theorem | plendx 17378 | Index value of the df-ple 17289 slot. (Contributed by Mario Carneiro, 14-Aug-2015.) (Revised by AV, 9-Sep-2021.) (New usage is discouraged.) |
| ⊢ (le‘ndx) = ;10 | ||
| Theorem | pleid 17379 | Utility theorem: self-referencing, index-independent form of df-ple 17289. (Contributed by NM, 9-Nov-2012.) (Revised by AV, 9-Sep-2021.) |
| ⊢ le = Slot (le‘ndx) | ||
| Theorem | plendxnn 17380 | The index value of the order slot is a positive integer. This property should be ensured for every concrete coding because otherwise it could not be used in an extensible structure (slots must be positive integers). (Contributed by AV, 30-Oct-2024.) |
| ⊢ (le‘ndx) ∈ ℕ | ||
| Theorem | basendxltplendx 17381 | The index value of the Base slot is less than the index value of the le slot. (Contributed by AV, 30-Oct-2024.) |
| ⊢ (Base‘ndx) < (le‘ndx) | ||
| Theorem | plendxnbasendx 17382 | The slot for the order is not the slot for the base set in an extensible structure. (Contributed by AV, 21-Oct-2024.) (Proof shortened by AV, 30-Oct-2024.) |
| ⊢ (le‘ndx) ≠ (Base‘ndx) | ||
| Theorem | plendxnplusgndx 17383 | The slot for the "less than or equal to" ordering is not the slot for the group operation in an extensible structure. Formerly part of proof for oppgle 32888. (Contributed by AV, 18-Oct-2024.) |
| ⊢ (le‘ndx) ≠ (+g‘ndx) | ||
| Theorem | plendxnmulrndx 17384 | The slot for the "less than or equal to" ordering is not the slot for the ring multiplication operation in an extensible structure. Formerly part of proof for opsrmulr 22008. (Contributed by AV, 1-Nov-2024.) |
| ⊢ (le‘ndx) ≠ (.r‘ndx) | ||
| Theorem | plendxnscandx 17385 | The slot for the "less than or equal to" ordering is not the slot for the scalar in an extensible structure. Formerly part of proof for opsrsca 22010. (Contributed by AV, 1-Nov-2024.) |
| ⊢ (le‘ndx) ≠ (Scalar‘ndx) | ||
| Theorem | plendxnvscandx 17386 | The slot for the "less than or equal to" ordering is not the slot for the scalar product in an extensible structure. Formerly part of proof for opsrvsca 22009. (Contributed by AV, 1-Nov-2024.) |
| ⊢ (le‘ndx) ≠ ( ·𝑠 ‘ndx) | ||
| Theorem | slotsdifplendx 17387 | The index of the slot for the distance is not the index of other slots. Formerly part of proof for cnfldfunALT 21328. (Contributed by AV, 11-Nov-2024.) |
| ⊢ ((*𝑟‘ndx) ≠ (le‘ndx) ∧ (TopSet‘ndx) ≠ (le‘ndx)) | ||
| Theorem | otpsstr 17388 | Functionality of a topological ordered space. (Contributed by Mario Carneiro, 12-Nov-2015.) (Revised by AV, 9-Sep-2021.) |
| ⊢ 𝐾 = {〈(Base‘ndx), 𝐵〉, 〈(TopSet‘ndx), 𝐽〉, 〈(le‘ndx), ≤ 〉} ⇒ ⊢ 𝐾 Struct 〈1, ;10〉 | ||
| Theorem | otpsbas 17389 | The base set of a topological ordered space. (Contributed by Mario Carneiro, 12-Nov-2015.) (Revised by AV, 9-Sep-2021.) |
| ⊢ 𝐾 = {〈(Base‘ndx), 𝐵〉, 〈(TopSet‘ndx), 𝐽〉, 〈(le‘ndx), ≤ 〉} ⇒ ⊢ (𝐵 ∈ 𝑉 → 𝐵 = (Base‘𝐾)) | ||
| Theorem | otpstset 17390 | The open sets of a topological ordered space. (Contributed by Mario Carneiro, 12-Nov-2015.) (Revised by AV, 9-Sep-2021.) |
| ⊢ 𝐾 = {〈(Base‘ndx), 𝐵〉, 〈(TopSet‘ndx), 𝐽〉, 〈(le‘ndx), ≤ 〉} ⇒ ⊢ (𝐽 ∈ 𝑉 → 𝐽 = (TopSet‘𝐾)) | ||
| Theorem | otpsle 17391 | The order of a topological ordered space. (Contributed by Mario Carneiro, 12-Nov-2015.) (Revised by AV, 9-Sep-2021.) |
| ⊢ 𝐾 = {〈(Base‘ndx), 𝐵〉, 〈(TopSet‘ndx), 𝐽〉, 〈(le‘ndx), ≤ 〉} ⇒ ⊢ ( ≤ ∈ 𝑉 → ≤ = (le‘𝐾)) | ||
| Theorem | ressle 17392 | le is unaffected by restriction. (Contributed by Mario Carneiro, 3-Nov-2015.) |
| ⊢ 𝑊 = (𝐾 ↾s 𝐴) & ⊢ ≤ = (le‘𝐾) ⇒ ⊢ (𝐴 ∈ 𝑉 → ≤ = (le‘𝑊)) | ||
| Theorem | ocndx 17393 | Index value of the df-ocomp 17290 slot. (Contributed by Mario Carneiro, 25-Oct-2015.) (New usage is discouraged.) |
| ⊢ (oc‘ndx) = ;11 | ||
| Theorem | ocid 17394 | Utility theorem: index-independent form of df-ocomp 17290. (Contributed by Mario Carneiro, 25-Oct-2015.) |
| ⊢ oc = Slot (oc‘ndx) | ||
| Theorem | basendxnocndx 17395 | The slot for the orthocomplementation is not the slot for the base set in an extensible structure. Formerly part of proof for thlbas 21654. (Contributed by AV, 11-Nov-2024.) |
| ⊢ (Base‘ndx) ≠ (oc‘ndx) | ||
| Theorem | plendxnocndx 17396 | The slot for the orthocomplementation is not the slot for the order in an extensible structure. Formerly part of proof for thlle 21655. (Contributed by AV, 11-Nov-2024.) |
| ⊢ (le‘ndx) ≠ (oc‘ndx) | ||
| Theorem | dsndx 17397 | Index value of the df-ds 17291 slot. (Contributed by Mario Carneiro, 14-Aug-2015.) (New usage is discouraged.) |
| ⊢ (dist‘ndx) = ;12 | ||
| Theorem | dsid 17398 | Utility theorem: index-independent form of df-ds 17291. (Contributed by Mario Carneiro, 23-Dec-2013.) |
| ⊢ dist = Slot (dist‘ndx) | ||
| Theorem | dsndxnn 17399 | The index of the slot for the distance in an extensible structure is a positive integer. Formerly part of proof for tmslem 24419. (Contributed by AV, 28-Oct-2024.) |
| ⊢ (dist‘ndx) ∈ ℕ | ||
| Theorem | basendxltdsndx 17400 | The index of the slot for the base set is less then the index of the slot for the distance in an extensible structure. Formerly part of proof for tmslem 24419. (Contributed by AV, 28-Oct-2024.) |
| ⊢ (Base‘ndx) < (dist‘ndx) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |