![]() |
Metamath
Proof Explorer Theorem List (p. 174 of 489) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-30950) |
![]() (30951-32473) |
![]() (32474-48899) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | resslemOLD 17301 | Obsolete version of resseqnbas 17300 as of 21-Oct-2024. (Contributed by Mario Carneiro, 26-Nov-2014.) (Revised by Mario Carneiro, 2-Dec-2014.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ 𝑅 = (𝑊 ↾s 𝐴) & ⊢ 𝐶 = (𝐸‘𝑊) & ⊢ 𝐸 = Slot 𝑁 & ⊢ 𝑁 ∈ ℕ & ⊢ 1 < 𝑁 ⇒ ⊢ (𝐴 ∈ 𝑉 → 𝐶 = (𝐸‘𝑅)) | ||
Theorem | ress0 17302 | All restrictions of the null set are trivial. (Contributed by Stefan O'Rear, 29-Nov-2014.) (Revised by Mario Carneiro, 30-Apr-2015.) |
⊢ (∅ ↾s 𝐴) = ∅ | ||
Theorem | ressid 17303 | Behavior of trivial restriction. (Contributed by Stefan O'Rear, 29-Nov-2014.) |
⊢ 𝐵 = (Base‘𝑊) ⇒ ⊢ (𝑊 ∈ 𝑋 → (𝑊 ↾s 𝐵) = 𝑊) | ||
Theorem | ressinbas 17304 | Restriction only cares about the part of the second set which intersects the base of the first. (Contributed by Stefan O'Rear, 29-Nov-2014.) |
⊢ 𝐵 = (Base‘𝑊) ⇒ ⊢ (𝐴 ∈ 𝑋 → (𝑊 ↾s 𝐴) = (𝑊 ↾s (𝐴 ∩ 𝐵))) | ||
Theorem | ressval3d 17305 | Value of structure restriction, deduction version. (Contributed by AV, 14-Mar-2020.) (Revised by AV, 3-Jul-2022.) (Proof shortened by AV, 17-Oct-2024.) |
⊢ 𝑅 = (𝑆 ↾s 𝐴) & ⊢ 𝐵 = (Base‘𝑆) & ⊢ 𝐸 = (Base‘ndx) & ⊢ (𝜑 → 𝑆 ∈ 𝑉) & ⊢ (𝜑 → Fun 𝑆) & ⊢ (𝜑 → 𝐸 ∈ dom 𝑆) & ⊢ (𝜑 → 𝐴 ⊆ 𝐵) ⇒ ⊢ (𝜑 → 𝑅 = (𝑆 sSet 〈𝐸, 𝐴〉)) | ||
Theorem | ressval3dOLD 17306 | Obsolete version of ressval3d 17305 as of 17-Oct-2024. Value of structure restriction, deduction version. (Contributed by AV, 14-Mar-2020.) (Revised by AV, 3-Jul-2022.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ 𝑅 = (𝑆 ↾s 𝐴) & ⊢ 𝐵 = (Base‘𝑆) & ⊢ 𝐸 = (Base‘ndx) & ⊢ (𝜑 → 𝑆 ∈ 𝑉) & ⊢ (𝜑 → Fun 𝑆) & ⊢ (𝜑 → 𝐸 ∈ dom 𝑆) & ⊢ (𝜑 → 𝐴 ⊆ 𝐵) ⇒ ⊢ (𝜑 → 𝑅 = (𝑆 sSet 〈𝐸, 𝐴〉)) | ||
Theorem | ressress 17307 | Restriction composition law. (Contributed by Stefan O'Rear, 29-Nov-2014.) (Proof shortened by Mario Carneiro, 2-Dec-2014.) |
⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌) → ((𝑊 ↾s 𝐴) ↾s 𝐵) = (𝑊 ↾s (𝐴 ∩ 𝐵))) | ||
Theorem | ressabs 17308 | Restriction absorption law. (Contributed by Mario Carneiro, 12-Jun-2015.) |
⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ⊆ 𝐴) → ((𝑊 ↾s 𝐴) ↾s 𝐵) = (𝑊 ↾s 𝐵)) | ||
Theorem | wunress 17309 | Closure of structure restriction in a weak universe. (Contributed by Mario Carneiro, 12-Jan-2017.) (Proof shortened by AV, 28-Oct-2024.) |
⊢ (𝜑 → 𝑈 ∈ WUni) & ⊢ (𝜑 → ω ∈ 𝑈) & ⊢ (𝜑 → 𝑊 ∈ 𝑈) ⇒ ⊢ (𝜑 → (𝑊 ↾s 𝐴) ∈ 𝑈) | ||
Theorem | wunressOLD 17310 | Obsolete proof of wunress 17309 as of 28-Oct-2024. Closure of structure restriction in a weak universe. (Contributed by Mario Carneiro, 12-Jan-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝜑 → 𝑈 ∈ WUni) & ⊢ (𝜑 → ω ∈ 𝑈) & ⊢ (𝜑 → 𝑊 ∈ 𝑈) ⇒ ⊢ (𝜑 → (𝑊 ↾s 𝐴) ∈ 𝑈) | ||
Syntax | cplusg 17311 | Extend class notation with group (addition) operation. |
class +g | ||
Syntax | cmulr 17312 | Extend class notation with ring multiplication. |
class .r | ||
Syntax | cstv 17313 | Extend class notation with involution. |
class *𝑟 | ||
Syntax | csca 17314 | Extend class notation with scalar field. |
class Scalar | ||
Syntax | cvsca 17315 | Extend class notation with scalar product. |
class ·𝑠 | ||
Syntax | cip 17316 | Extend class notation with Hermitian form (inner product). |
class ·𝑖 | ||
Syntax | cts 17317 | Extend class notation with the topology component of a topological space. |
class TopSet | ||
Syntax | cple 17318 | Extend class notation with "less than or equal to" for posets. |
class le | ||
Syntax | coc 17319 | Extend class notation with the class of orthocomplementation extractors. |
class oc | ||
Syntax | cds 17320 | Extend class notation with the metric space distance function. |
class dist | ||
Syntax | cunif 17321 | Extend class notation with the uniform structure. |
class UnifSet | ||
Syntax | chom 17322 | Extend class notation with the hom-set structure. |
class Hom | ||
Syntax | cco 17323 | Extend class notation with the composition operation. |
class comp | ||
Definition | df-plusg 17324 | Define group operation. In the context of less restrictive structures, this operation is also called magma, semigroup or monoid operation. (Contributed by NM, 4-Sep-2011.) (Revised by Mario Carneiro, 14-Aug-2015.) Use its index-independent form plusgid 17338 instead. (New usage is discouraged.) |
⊢ +g = Slot 2 | ||
Definition | df-mulr 17325 | Define ring multiplication. (Contributed by NM, 4-Sep-2011.) (Revised by Mario Carneiro, 14-Aug-2015.) Use its index-independent form mulrid 11288 instead. (New usage is discouraged.) |
⊢ .r = Slot 3 | ||
Definition | df-starv 17326 | Define the involution function of a *-ring. (Contributed by NM, 4-Sep-2011.) (Revised by Mario Carneiro, 14-Aug-2015.) Use its index-independent form starvid 17362 instead. (New usage is discouraged.) |
⊢ *𝑟 = Slot 4 | ||
Definition | df-sca 17327 | Define scalar field component of a vector space 𝑣. (Contributed by NM, 4-Sep-2011.) (Revised by Mario Carneiro, 14-Aug-2015.) Use its index-independent form scaid 17374 instead. (New usage is discouraged.) |
⊢ Scalar = Slot 5 | ||
Definition | df-vsca 17328 | Define scalar product. (Contributed by NM, 4-Sep-2011.) (Revised by Mario Carneiro, 14-Aug-2015.) Use its index-independent form vscaid 17379 instead. (New usage is discouraged.) |
⊢ ·𝑠 = Slot 6 | ||
Definition | df-ip 17329 | Define Hermitian form (inner product). (Contributed by NM, 4-Sep-2011.) (Revised by Mario Carneiro, 14-Aug-2015.) Use its index-independent form ipid 17390 instead. (New usage is discouraged.) |
⊢ ·𝑖 = Slot 8 | ||
Definition | df-tset 17330 | Define the topology component of a topological space (structure). (Contributed by NM, 4-Sep-2011.) (Revised by Mario Carneiro, 14-Aug-2015.) Use its index-independent form tsetid 17412 instead. (New usage is discouraged.) |
⊢ TopSet = Slot 9 | ||
Definition | df-ple 17331 | Define "less than or equal to" ordering extractor for posets and related structures. (Contributed by NM, 4-Sep-2011.) (Revised by Mario Carneiro, 14-Aug-2015.) (Revised by AV, 9-Sep-2021.) Use its index-independent form pleid 17426 instead. (New usage is discouraged.) |
⊢ le = Slot ;10 | ||
Definition | df-ocomp 17332 | Define the orthocomplementation extractor for posets and related structures. (Contributed by NM, 4-Sep-2011.) (Revised by Mario Carneiro, 14-Aug-2015.) Use its index-independent form ocid 17441 instead. (New usage is discouraged.) |
⊢ oc = Slot ;11 | ||
Definition | df-ds 17333 | Define the distance function component of a metric space (structure). (Contributed by NM, 4-Sep-2011.) (Revised by Mario Carneiro, 14-Aug-2015.) Use its index-independent form dsid 17445 instead. (New usage is discouraged.) |
⊢ dist = Slot ;12 | ||
Definition | df-unif 17334 | Define the uniform structure component of a uniform space. (Contributed by Mario Carneiro, 14-Aug-2015.) Use its index-independent form unifid 17455 instead. (New usage is discouraged.) |
⊢ UnifSet = Slot ;13 | ||
Definition | df-hom 17335 | Define the hom-set component of a category. (Contributed by Mario Carneiro, 2-Jan-2017.) Use its index-independent form homid 17471 instead. (New usage is discouraged.) |
⊢ Hom = Slot ;14 | ||
Definition | df-cco 17336 | Define the composition operation of a category. (Contributed by Mario Carneiro, 2-Jan-2017.) Use its index-independent form ccoid 17473 instead. (New usage is discouraged.) |
⊢ comp = Slot ;15 | ||
Theorem | plusgndx 17337 | Index value of the df-plusg 17324 slot. (Contributed by Mario Carneiro, 14-Aug-2015.) (New usage is discouraged.) |
⊢ (+g‘ndx) = 2 | ||
Theorem | plusgid 17338 | Utility theorem: index-independent form of df-plusg 17324. (Contributed by NM, 20-Oct-2012.) |
⊢ +g = Slot (+g‘ndx) | ||
Theorem | plusgndxnn 17339 | The index of the slot for the group operation in an extensible structure is a positive integer. (Contributed by AV, 17-Oct-2024.) |
⊢ (+g‘ndx) ∈ ℕ | ||
Theorem | basendxltplusgndx 17340 | The index of the slot for the base set is less then the index of the slot for the group operation in an extensible structure. (Contributed by AV, 17-Oct-2024.) |
⊢ (Base‘ndx) < (+g‘ndx) | ||
Theorem | basendxnplusgndx 17341 | The slot for the base set is not the slot for the group operation in an extensible structure. (Contributed by AV, 14-Nov-2021.) (Proof shortened by AV, 17-Oct-2024.) |
⊢ (Base‘ndx) ≠ (+g‘ndx) | ||
Theorem | basendxnplusgndxOLD 17342 | Obsolete version of basendxnplusgndx 17341 as of 17-Oct-2024. The slot for the base set is not the slot for the group operation in an extensible structure. (Contributed by AV, 14-Nov-2021.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (Base‘ndx) ≠ (+g‘ndx) | ||
Theorem | grpstr 17343 | A constructed group is a structure on 1...2. Depending on hard-coded index values. Use grpstrndx 17344 instead. (Contributed by Mario Carneiro, 28-Sep-2013.) (Revised by Mario Carneiro, 30-Apr-2015.) (New usage is discouraged.) |
⊢ 𝐺 = {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉} ⇒ ⊢ 𝐺 Struct 〈1, 2〉 | ||
Theorem | grpstrndx 17344 | A constructed group is a structure. Version not depending on the implementation of the indices. (Contributed by AV, 27-Oct-2024.) |
⊢ 𝐺 = {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉} ⇒ ⊢ 𝐺 Struct 〈(Base‘ndx), (+g‘ndx)〉 | ||
Theorem | grpbase 17345 | The base set of a constructed group. (Contributed by Mario Carneiro, 2-Aug-2013.) (Revised by Mario Carneiro, 30-Apr-2015.) (Revised by AV, 27-Oct-2024.) |
⊢ 𝐺 = {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉} ⇒ ⊢ (𝐵 ∈ 𝑉 → 𝐵 = (Base‘𝐺)) | ||
Theorem | grpbaseOLD 17346 | Obsolete version of grpbase 17345 as of 27-Oct-2024. The base set of a constructed group. (Contributed by Mario Carneiro, 2-Aug-2013.) (Revised by Mario Carneiro, 30-Apr-2015.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ 𝐺 = {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉} ⇒ ⊢ (𝐵 ∈ 𝑉 → 𝐵 = (Base‘𝐺)) | ||
Theorem | grpplusg 17347 | The operation of a constructed group. (Contributed by Mario Carneiro, 2-Aug-2013.) (Revised by Mario Carneiro, 30-Apr-2015.) (Revised by AV, 27-Oct-2024.) |
⊢ 𝐺 = {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉} ⇒ ⊢ ( + ∈ 𝑉 → + = (+g‘𝐺)) | ||
Theorem | grpplusgOLD 17348 | Obsolete version of grpplusg 17347 as of 27-Oct-2024. The operation of a constructed group. (Contributed by Mario Carneiro, 2-Aug-2013.) (Revised by Mario Carneiro, 30-Apr-2015.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ 𝐺 = {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉} ⇒ ⊢ ( + ∈ 𝑉 → + = (+g‘𝐺)) | ||
Theorem | ressplusg 17349 | +g is unaffected by restriction. (Contributed by Stefan O'Rear, 27-Nov-2014.) |
⊢ 𝐻 = (𝐺 ↾s 𝐴) & ⊢ + = (+g‘𝐺) ⇒ ⊢ (𝐴 ∈ 𝑉 → + = (+g‘𝐻)) | ||
Theorem | grpbasex 17350 | The base of an explicitly given group. Note: This theorem has hard-coded structure indices for demonstration purposes. It is not intended for general use; use grpbase 17345 instead. (New usage is discouraged.) (Contributed by NM, 17-Oct-2012.) |
⊢ 𝐵 ∈ V & ⊢ + ∈ V & ⊢ 𝐺 = {〈1, 𝐵〉, 〈2, + 〉} ⇒ ⊢ 𝐵 = (Base‘𝐺) | ||
Theorem | grpplusgx 17351 | The operation of an explicitly given group. Note: This theorem has hard-coded structure indices for demonstration purposes. It is not intended for general use; use grpplusg 17347 instead. (New usage is discouraged.) (Contributed by NM, 17-Oct-2012.) |
⊢ 𝐵 ∈ V & ⊢ + ∈ V & ⊢ 𝐺 = {〈1, 𝐵〉, 〈2, + 〉} ⇒ ⊢ + = (+g‘𝐺) | ||
Theorem | mulrndx 17352 | Index value of the df-mulr 17325 slot. (Contributed by Mario Carneiro, 14-Aug-2015.) (New usage is discouraged.) |
⊢ (.r‘ndx) = 3 | ||
Theorem | mulridx 17353 | Utility theorem: index-independent form of df-mulr 17325. (Contributed by Mario Carneiro, 8-Jun-2013.) |
⊢ .r = Slot (.r‘ndx) | ||
Theorem | basendxnmulrndx 17354 | The slot for the base set is not the slot for the ring (multiplication) operation in an extensible structure. (Contributed by AV, 16-Feb-2020.) (Proof shortened by AV, 28-Oct-2024.) |
⊢ (Base‘ndx) ≠ (.r‘ndx) | ||
Theorem | basendxnmulrndxOLD 17355 | Obsolete proof of basendxnmulrndx 17354 as of 28-Oct-2024. The slot for the base set is not the slot for the ring (multiplication) operation in an extensible structure. (Contributed by AV, 16-Feb-2020.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (Base‘ndx) ≠ (.r‘ndx) | ||
Theorem | plusgndxnmulrndx 17356 | The slot for the group (addition) operation is not the slot for the ring (multiplication) operation in an extensible structure. (Contributed by AV, 16-Feb-2020.) |
⊢ (+g‘ndx) ≠ (.r‘ndx) | ||
Theorem | rngstr 17357 | A constructed ring is a structure. (Contributed by Mario Carneiro, 28-Sep-2013.) (Revised by Mario Carneiro, 29-Aug-2015.) |
⊢ 𝑅 = {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), · 〉} ⇒ ⊢ 𝑅 Struct 〈1, 3〉 | ||
Theorem | rngbase 17358 | The base set of a constructed ring. (Contributed by Mario Carneiro, 2-Oct-2013.) (Revised by Mario Carneiro, 30-Apr-2015.) |
⊢ 𝑅 = {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), · 〉} ⇒ ⊢ (𝐵 ∈ 𝑉 → 𝐵 = (Base‘𝑅)) | ||
Theorem | rngplusg 17359 | The additive operation of a constructed ring. (Contributed by Mario Carneiro, 2-Oct-2013.) (Revised by Mario Carneiro, 30-Apr-2015.) |
⊢ 𝑅 = {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), · 〉} ⇒ ⊢ ( + ∈ 𝑉 → + = (+g‘𝑅)) | ||
Theorem | rngmulr 17360 | The multiplicative operation of a constructed ring. (Contributed by Mario Carneiro, 2-Oct-2013.) (Revised by Mario Carneiro, 30-Apr-2015.) |
⊢ 𝑅 = {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), · 〉} ⇒ ⊢ ( · ∈ 𝑉 → · = (.r‘𝑅)) | ||
Theorem | starvndx 17361 | Index value of the df-starv 17326 slot. (Contributed by Mario Carneiro, 14-Aug-2015.) (New usage is discouraged.) |
⊢ (*𝑟‘ndx) = 4 | ||
Theorem | starvid 17362 | Utility theorem: index-independent form of df-starv 17326. (Contributed by Mario Carneiro, 6-Oct-2013.) |
⊢ *𝑟 = Slot (*𝑟‘ndx) | ||
Theorem | starvndxnbasendx 17363 | The slot for the involution function is not the slot for the base set in an extensible structure. Formerly part of proof for ressstarv 17367. (Contributed by AV, 18-Oct-2024.) |
⊢ (*𝑟‘ndx) ≠ (Base‘ndx) | ||
Theorem | starvndxnplusgndx 17364 | The slot for the involution function is not the slot for the base set in an extensible structure. Formerly part of proof for ressstarv 17367. (Contributed by AV, 18-Oct-2024.) |
⊢ (*𝑟‘ndx) ≠ (+g‘ndx) | ||
Theorem | starvndxnmulrndx 17365 | The slot for the involution function is not the slot for the base set in an extensible structure. Formerly part of proof for ressstarv 17367. (Contributed by AV, 18-Oct-2024.) |
⊢ (*𝑟‘ndx) ≠ (.r‘ndx) | ||
Theorem | ressmulr 17366 | .r is unaffected by restriction. (Contributed by Stefan O'Rear, 27-Nov-2014.) |
⊢ 𝑆 = (𝑅 ↾s 𝐴) & ⊢ · = (.r‘𝑅) ⇒ ⊢ (𝐴 ∈ 𝑉 → · = (.r‘𝑆)) | ||
Theorem | ressstarv 17367 | *𝑟 is unaffected by restriction. (Contributed by Mario Carneiro, 9-Oct-2015.) |
⊢ 𝑆 = (𝑅 ↾s 𝐴) & ⊢ ∗ = (*𝑟‘𝑅) ⇒ ⊢ (𝐴 ∈ 𝑉 → ∗ = (*𝑟‘𝑆)) | ||
Theorem | srngstr 17368 | A constructed star ring is a structure. (Contributed by Mario Carneiro, 18-Nov-2013.) (Revised by Mario Carneiro, 14-Aug-2015.) |
⊢ 𝑅 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), · 〉} ∪ {〈(*𝑟‘ndx), ∗ 〉}) ⇒ ⊢ 𝑅 Struct 〈1, 4〉 | ||
Theorem | srngbase 17369 | The base set of a constructed star ring. (Contributed by Mario Carneiro, 18-Nov-2013.) (Revised by Mario Carneiro, 6-May-2015.) |
⊢ 𝑅 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), · 〉} ∪ {〈(*𝑟‘ndx), ∗ 〉}) ⇒ ⊢ (𝐵 ∈ 𝑋 → 𝐵 = (Base‘𝑅)) | ||
Theorem | srngplusg 17370 | The addition operation of a constructed star ring. (Contributed by Mario Carneiro, 20-Jun-2015.) |
⊢ 𝑅 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), · 〉} ∪ {〈(*𝑟‘ndx), ∗ 〉}) ⇒ ⊢ ( + ∈ 𝑋 → + = (+g‘𝑅)) | ||
Theorem | srngmulr 17371 | The multiplication operation of a constructed star ring. (Contributed by Mario Carneiro, 20-Jun-2015.) |
⊢ 𝑅 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), · 〉} ∪ {〈(*𝑟‘ndx), ∗ 〉}) ⇒ ⊢ ( · ∈ 𝑋 → · = (.r‘𝑅)) | ||
Theorem | srnginvl 17372 | The involution function of a constructed star ring. (Contributed by Mario Carneiro, 20-Jun-2015.) |
⊢ 𝑅 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), · 〉} ∪ {〈(*𝑟‘ndx), ∗ 〉}) ⇒ ⊢ ( ∗ ∈ 𝑋 → ∗ = (*𝑟‘𝑅)) | ||
Theorem | scandx 17373 | Index value of the df-sca 17327 slot. (Contributed by Mario Carneiro, 14-Aug-2015.) (New usage is discouraged.) |
⊢ (Scalar‘ndx) = 5 | ||
Theorem | scaid 17374 | Utility theorem: index-independent form of scalar df-sca 17327. (Contributed by Mario Carneiro, 19-Jun-2014.) |
⊢ Scalar = Slot (Scalar‘ndx) | ||
Theorem | scandxnbasendx 17375 | The slot for the scalar is not the slot for the base set in an extensible structure. (Contributed by AV, 21-Oct-2024.) |
⊢ (Scalar‘ndx) ≠ (Base‘ndx) | ||
Theorem | scandxnplusgndx 17376 | The slot for the scalar field is not the slot for the group operation in an extensible structure. Formerly part of proof for mgpsca 20169. (Contributed by AV, 18-Oct-2024.) |
⊢ (Scalar‘ndx) ≠ (+g‘ndx) | ||
Theorem | scandxnmulrndx 17377 | The slot for the scalar field is not the slot for the ring (multiplication) operation in an extensible structure. Formerly part of proof for mgpsca 20169. (Contributed by AV, 29-Oct-2024.) |
⊢ (Scalar‘ndx) ≠ (.r‘ndx) | ||
Theorem | vscandx 17378 | Index value of the df-vsca 17328 slot. (Contributed by Mario Carneiro, 14-Aug-2015.) (New usage is discouraged.) |
⊢ ( ·𝑠 ‘ndx) = 6 | ||
Theorem | vscaid 17379 | Utility theorem: index-independent form of scalar product df-vsca 17328. (Contributed by Mario Carneiro, 2-Oct-2013.) (Revised by Mario Carneiro, 19-Jun-2014.) |
⊢ ·𝑠 = Slot ( ·𝑠 ‘ndx) | ||
Theorem | vscandxnbasendx 17380 | The slot for the scalar product is not the slot for the base set in an extensible structure. Formerly part of proof for rmodislmod 20950. (Contributed by AV, 18-Oct-2024.) |
⊢ ( ·𝑠 ‘ndx) ≠ (Base‘ndx) | ||
Theorem | vscandxnplusgndx 17381 | The slot for the scalar product is not the slot for the group operation in an extensible structure. Formerly part of proof for rmodislmod 20950. (Contributed by AV, 18-Oct-2024.) |
⊢ ( ·𝑠 ‘ndx) ≠ (+g‘ndx) | ||
Theorem | vscandxnmulrndx 17382 | The slot for the scalar product is not the slot for the ring (multiplication) operation in an extensible structure. Formerly part of proof for rmodislmod 20950. (Contributed by AV, 29-Oct-2024.) |
⊢ ( ·𝑠 ‘ndx) ≠ (.r‘ndx) | ||
Theorem | vscandxnscandx 17383 | The slot for the scalar product is not the slot for the scalar field in an extensible structure. Formerly part of proof for rmodislmod 20950. (Contributed by AV, 18-Oct-2024.) |
⊢ ( ·𝑠 ‘ndx) ≠ (Scalar‘ndx) | ||
Theorem | lmodstr 17384 | A constructed left module or left vector space is a structure. (Contributed by Mario Carneiro, 1-Oct-2013.) (Revised by Mario Carneiro, 29-Aug-2015.) |
⊢ 𝑊 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(Scalar‘ndx), 𝐹〉} ∪ {〈( ·𝑠 ‘ndx), · 〉}) ⇒ ⊢ 𝑊 Struct 〈1, 6〉 | ||
Theorem | lmodbase 17385 | The base set of a constructed left vector space. (Contributed by Mario Carneiro, 2-Oct-2013.) (Revised by Mario Carneiro, 29-Aug-2015.) |
⊢ 𝑊 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(Scalar‘ndx), 𝐹〉} ∪ {〈( ·𝑠 ‘ndx), · 〉}) ⇒ ⊢ (𝐵 ∈ 𝑋 → 𝐵 = (Base‘𝑊)) | ||
Theorem | lmodplusg 17386 | The additive operation of a constructed left vector space. (Contributed by Mario Carneiro, 2-Oct-2013.) (Revised by Mario Carneiro, 29-Aug-2015.) |
⊢ 𝑊 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(Scalar‘ndx), 𝐹〉} ∪ {〈( ·𝑠 ‘ndx), · 〉}) ⇒ ⊢ ( + ∈ 𝑋 → + = (+g‘𝑊)) | ||
Theorem | lmodsca 17387 | The set of scalars of a constructed left vector space. (Contributed by Mario Carneiro, 2-Oct-2013.) (Revised by Mario Carneiro, 29-Aug-2015.) |
⊢ 𝑊 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(Scalar‘ndx), 𝐹〉} ∪ {〈( ·𝑠 ‘ndx), · 〉}) ⇒ ⊢ (𝐹 ∈ 𝑋 → 𝐹 = (Scalar‘𝑊)) | ||
Theorem | lmodvsca 17388 | The scalar product operation of a constructed left vector space. (Contributed by Mario Carneiro, 2-Oct-2013.) (Revised by Mario Carneiro, 29-Aug-2015.) |
⊢ 𝑊 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(Scalar‘ndx), 𝐹〉} ∪ {〈( ·𝑠 ‘ndx), · 〉}) ⇒ ⊢ ( · ∈ 𝑋 → · = ( ·𝑠 ‘𝑊)) | ||
Theorem | ipndx 17389 | Index value of the df-ip 17329 slot. (Contributed by Mario Carneiro, 14-Aug-2015.) (New usage is discouraged.) |
⊢ (·𝑖‘ndx) = 8 | ||
Theorem | ipid 17390 | Utility theorem: index-independent form of df-ip 17329. (Contributed by Mario Carneiro, 6-Oct-2013.) |
⊢ ·𝑖 = Slot (·𝑖‘ndx) | ||
Theorem | ipndxnbasendx 17391 | The slot for the inner product is not the slot for the base set in an extensible structure. (Contributed by AV, 21-Oct-2024.) |
⊢ (·𝑖‘ndx) ≠ (Base‘ndx) | ||
Theorem | ipndxnplusgndx 17392 | The slot for the inner product is not the slot for the group operation in an extensible structure. (Contributed by AV, 29-Oct-2024.) |
⊢ (·𝑖‘ndx) ≠ (+g‘ndx) | ||
Theorem | ipndxnmulrndx 17393 | The slot for the inner product is not the slot for the ring (multiplication) operation in an extensible structure. Formerly part of proof for mgpsca 20169. (Contributed by AV, 29-Oct-2024.) |
⊢ (·𝑖‘ndx) ≠ (.r‘ndx) | ||
Theorem | slotsdifipndx 17394 | The slot for the scalar is not the index of other slots. Formerly part of proof for srasca 21206 and sravsca 21208. (Contributed by AV, 12-Nov-2024.) |
⊢ (( ·𝑠 ‘ndx) ≠ (·𝑖‘ndx) ∧ (Scalar‘ndx) ≠ (·𝑖‘ndx)) | ||
Theorem | ipsstr 17395 | Lemma to shorten proofs of ipsbase 17396 through ipsvsca 17400. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 29-Aug-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) |
⊢ 𝐴 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} ∪ {〈(Scalar‘ndx), 𝑆〉, 〈( ·𝑠 ‘ndx), · 〉, 〈(·𝑖‘ndx), 𝐼〉}) ⇒ ⊢ 𝐴 Struct 〈1, 8〉 | ||
Theorem | ipsbase 17396 | The base set of a constructed inner product space. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 29-Aug-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) |
⊢ 𝐴 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} ∪ {〈(Scalar‘ndx), 𝑆〉, 〈( ·𝑠 ‘ndx), · 〉, 〈(·𝑖‘ndx), 𝐼〉}) ⇒ ⊢ (𝐵 ∈ 𝑉 → 𝐵 = (Base‘𝐴)) | ||
Theorem | ipsaddg 17397 | The additive operation of a constructed inner product space. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 29-Aug-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) |
⊢ 𝐴 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} ∪ {〈(Scalar‘ndx), 𝑆〉, 〈( ·𝑠 ‘ndx), · 〉, 〈(·𝑖‘ndx), 𝐼〉}) ⇒ ⊢ ( + ∈ 𝑉 → + = (+g‘𝐴)) | ||
Theorem | ipsmulr 17398 | The multiplicative operation of a constructed inner product space. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 29-Aug-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) |
⊢ 𝐴 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} ∪ {〈(Scalar‘ndx), 𝑆〉, 〈( ·𝑠 ‘ndx), · 〉, 〈(·𝑖‘ndx), 𝐼〉}) ⇒ ⊢ ( × ∈ 𝑉 → × = (.r‘𝐴)) | ||
Theorem | ipssca 17399 | The set of scalars of a constructed inner product space. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 29-Aug-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) |
⊢ 𝐴 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} ∪ {〈(Scalar‘ndx), 𝑆〉, 〈( ·𝑠 ‘ndx), · 〉, 〈(·𝑖‘ndx), 𝐼〉}) ⇒ ⊢ (𝑆 ∈ 𝑉 → 𝑆 = (Scalar‘𝐴)) | ||
Theorem | ipsvsca 17400 | The scalar product operation of a constructed inner product space. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 29-Aug-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) |
⊢ 𝐴 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} ∪ {〈(Scalar‘ndx), 𝑆〉, 〈( ·𝑠 ‘ndx), · 〉, 〈(·𝑖‘ndx), 𝐼〉}) ⇒ ⊢ ( · ∈ 𝑉 → · = ( ·𝑠 ‘𝐴)) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |