| Metamath
Proof Explorer Theorem List (p. 174 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30854) |
(30855-32377) |
(32378-49798) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | ipid 17301 | Utility theorem: index-independent form of df-ip 17245. (Contributed by Mario Carneiro, 6-Oct-2013.) |
| ⊢ ·𝑖 = Slot (·𝑖‘ndx) | ||
| Theorem | ipndxnbasendx 17302 | The slot for the inner product is not the slot for the base set in an extensible structure. (Contributed by AV, 21-Oct-2024.) |
| ⊢ (·𝑖‘ndx) ≠ (Base‘ndx) | ||
| Theorem | ipndxnplusgndx 17303 | The slot for the inner product is not the slot for the group operation in an extensible structure. (Contributed by AV, 29-Oct-2024.) |
| ⊢ (·𝑖‘ndx) ≠ (+g‘ndx) | ||
| Theorem | ipndxnmulrndx 17304 | The slot for the inner product is not the slot for the ring (multiplication) operation in an extensible structure. Formerly part of proof for mgpsca 20062. (Contributed by AV, 29-Oct-2024.) |
| ⊢ (·𝑖‘ndx) ≠ (.r‘ndx) | ||
| Theorem | slotsdifipndx 17305 | The slot for the scalar is not the index of other slots. Formerly part of proof for srasca 21094 and sravsca 21095. (Contributed by AV, 12-Nov-2024.) |
| ⊢ (( ·𝑠 ‘ndx) ≠ (·𝑖‘ndx) ∧ (Scalar‘ndx) ≠ (·𝑖‘ndx)) | ||
| Theorem | ipsstr 17306 | Lemma to shorten proofs of ipsbase 17307 through ipsvsca 17311. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 29-Aug-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) |
| ⊢ 𝐴 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} ∪ {〈(Scalar‘ndx), 𝑆〉, 〈( ·𝑠 ‘ndx), · 〉, 〈(·𝑖‘ndx), 𝐼〉}) ⇒ ⊢ 𝐴 Struct 〈1, 8〉 | ||
| Theorem | ipsbase 17307 | The base set of a constructed inner product space. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 29-Aug-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) |
| ⊢ 𝐴 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} ∪ {〈(Scalar‘ndx), 𝑆〉, 〈( ·𝑠 ‘ndx), · 〉, 〈(·𝑖‘ndx), 𝐼〉}) ⇒ ⊢ (𝐵 ∈ 𝑉 → 𝐵 = (Base‘𝐴)) | ||
| Theorem | ipsaddg 17308 | The additive operation of a constructed inner product space. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 29-Aug-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) |
| ⊢ 𝐴 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} ∪ {〈(Scalar‘ndx), 𝑆〉, 〈( ·𝑠 ‘ndx), · 〉, 〈(·𝑖‘ndx), 𝐼〉}) ⇒ ⊢ ( + ∈ 𝑉 → + = (+g‘𝐴)) | ||
| Theorem | ipsmulr 17309 | The multiplicative operation of a constructed inner product space. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 29-Aug-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) |
| ⊢ 𝐴 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} ∪ {〈(Scalar‘ndx), 𝑆〉, 〈( ·𝑠 ‘ndx), · 〉, 〈(·𝑖‘ndx), 𝐼〉}) ⇒ ⊢ ( × ∈ 𝑉 → × = (.r‘𝐴)) | ||
| Theorem | ipssca 17310 | The set of scalars of a constructed inner product space. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 29-Aug-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) |
| ⊢ 𝐴 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} ∪ {〈(Scalar‘ndx), 𝑆〉, 〈( ·𝑠 ‘ndx), · 〉, 〈(·𝑖‘ndx), 𝐼〉}) ⇒ ⊢ (𝑆 ∈ 𝑉 → 𝑆 = (Scalar‘𝐴)) | ||
| Theorem | ipsvsca 17311 | The scalar product operation of a constructed inner product space. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 29-Aug-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) |
| ⊢ 𝐴 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} ∪ {〈(Scalar‘ndx), 𝑆〉, 〈( ·𝑠 ‘ndx), · 〉, 〈(·𝑖‘ndx), 𝐼〉}) ⇒ ⊢ ( · ∈ 𝑉 → · = ( ·𝑠 ‘𝐴)) | ||
| Theorem | ipsip 17312 | The multiplicative operation of a constructed inner product space. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 29-Aug-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) |
| ⊢ 𝐴 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} ∪ {〈(Scalar‘ndx), 𝑆〉, 〈( ·𝑠 ‘ndx), · 〉, 〈(·𝑖‘ndx), 𝐼〉}) ⇒ ⊢ (𝐼 ∈ 𝑉 → 𝐼 = (·𝑖‘𝐴)) | ||
| Theorem | resssca 17313 | Scalar is unaffected by restriction. (Contributed by Mario Carneiro, 7-Dec-2014.) |
| ⊢ 𝐻 = (𝐺 ↾s 𝐴) & ⊢ 𝐹 = (Scalar‘𝐺) ⇒ ⊢ (𝐴 ∈ 𝑉 → 𝐹 = (Scalar‘𝐻)) | ||
| Theorem | ressvsca 17314 | ·𝑠 is unaffected by restriction. (Contributed by Mario Carneiro, 7-Dec-2014.) |
| ⊢ 𝐻 = (𝐺 ↾s 𝐴) & ⊢ · = ( ·𝑠 ‘𝐺) ⇒ ⊢ (𝐴 ∈ 𝑉 → · = ( ·𝑠 ‘𝐻)) | ||
| Theorem | ressip 17315 | The inner product is unaffected by restriction. (Contributed by Thierry Arnoux, 16-Jun-2019.) |
| ⊢ 𝐻 = (𝐺 ↾s 𝐴) & ⊢ , = (·𝑖‘𝐺) ⇒ ⊢ (𝐴 ∈ 𝑉 → , = (·𝑖‘𝐻)) | ||
| Theorem | phlstr 17316 | A constructed pre-Hilbert space is a structure. Starting from lmodstr 17295 (which has 4 members), we chain strleun 17134 once more, adding an ordered pair to the function, to get all 5 members. (Contributed by Mario Carneiro, 1-Oct-2013.) (Revised by Mario Carneiro, 29-Aug-2015.) |
| ⊢ 𝐻 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(Scalar‘ndx), 𝑇〉} ∪ {〈( ·𝑠 ‘ndx), · 〉, 〈(·𝑖‘ndx), , 〉}) ⇒ ⊢ 𝐻 Struct 〈1, 8〉 | ||
| Theorem | phlbase 17317 | The base set of a constructed pre-Hilbert space. (Contributed by Mario Carneiro, 6-Oct-2013.) (Revised by Mario Carneiro, 29-Aug-2015.) |
| ⊢ 𝐻 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(Scalar‘ndx), 𝑇〉} ∪ {〈( ·𝑠 ‘ndx), · 〉, 〈(·𝑖‘ndx), , 〉}) ⇒ ⊢ (𝐵 ∈ 𝑋 → 𝐵 = (Base‘𝐻)) | ||
| Theorem | phlplusg 17318 | The additive operation of a constructed pre-Hilbert space. (Contributed by Mario Carneiro, 6-Oct-2013.) (Revised by Mario Carneiro, 29-Aug-2015.) |
| ⊢ 𝐻 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(Scalar‘ndx), 𝑇〉} ∪ {〈( ·𝑠 ‘ndx), · 〉, 〈(·𝑖‘ndx), , 〉}) ⇒ ⊢ ( + ∈ 𝑋 → + = (+g‘𝐻)) | ||
| Theorem | phlsca 17319 | The ring of scalars of a constructed pre-Hilbert space. (Contributed by Mario Carneiro, 6-Oct-2013.) (Revised by Mario Carneiro, 29-Aug-2015.) |
| ⊢ 𝐻 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(Scalar‘ndx), 𝑇〉} ∪ {〈( ·𝑠 ‘ndx), · 〉, 〈(·𝑖‘ndx), , 〉}) ⇒ ⊢ (𝑇 ∈ 𝑋 → 𝑇 = (Scalar‘𝐻)) | ||
| Theorem | phlvsca 17320 | The scalar product operation of a constructed pre-Hilbert space. (Contributed by Mario Carneiro, 6-Oct-2013.) (Revised by Mario Carneiro, 29-Aug-2015.) |
| ⊢ 𝐻 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(Scalar‘ndx), 𝑇〉} ∪ {〈( ·𝑠 ‘ndx), · 〉, 〈(·𝑖‘ndx), , 〉}) ⇒ ⊢ ( · ∈ 𝑋 → · = ( ·𝑠 ‘𝐻)) | ||
| Theorem | phlip 17321 | The inner product (Hermitian form) operation of a constructed pre-Hilbert space. (Contributed by Mario Carneiro, 6-Oct-2013.) (Revised by Mario Carneiro, 29-Aug-2015.) |
| ⊢ 𝐻 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(Scalar‘ndx), 𝑇〉} ∪ {〈( ·𝑠 ‘ndx), · 〉, 〈(·𝑖‘ndx), , 〉}) ⇒ ⊢ ( , ∈ 𝑋 → , = (·𝑖‘𝐻)) | ||
| Theorem | tsetndx 17322 | Index value of the df-tset 17246 slot. (Contributed by Mario Carneiro, 14-Aug-2015.) (New usage is discouraged.) |
| ⊢ (TopSet‘ndx) = 9 | ||
| Theorem | tsetid 17323 | Utility theorem: index-independent form of df-tset 17246. (Contributed by NM, 20-Oct-2012.) |
| ⊢ TopSet = Slot (TopSet‘ndx) | ||
| Theorem | tsetndxnn 17324 | The index of the slot for the group operation in an extensible structure is a positive integer. (Contributed by AV, 31-Oct-2024.) |
| ⊢ (TopSet‘ndx) ∈ ℕ | ||
| Theorem | basendxlttsetndx 17325 | The index of the slot for the base set is less than the index of the slot for the topology in an extensible structure. (Contributed by AV, 31-Oct-2024.) |
| ⊢ (Base‘ndx) < (TopSet‘ndx) | ||
| Theorem | tsetndxnbasendx 17326 | The slot for the topology is not the slot for the base set in an extensible structure. (Contributed by AV, 21-Oct-2024.) (Proof shortened by AV, 31-Oct-2024.) |
| ⊢ (TopSet‘ndx) ≠ (Base‘ndx) | ||
| Theorem | tsetndxnplusgndx 17327 | The slot for the topology is not the slot for the group operation in an extensible structure. Formerly part of proof for oppgtset 19291. (Contributed by AV, 18-Oct-2024.) |
| ⊢ (TopSet‘ndx) ≠ (+g‘ndx) | ||
| Theorem | tsetndxnmulrndx 17328 | The slot for the topology is not the slot for the ring multiplication operation in an extensible structure. (Contributed by AV, 31-Oct-2024.) |
| ⊢ (TopSet‘ndx) ≠ (.r‘ndx) | ||
| Theorem | tsetndxnstarvndx 17329 | The slot for the topology is not the slot for the involution in an extensible structure. Formerly part of proof for cnfldfunALT 21286. (Contributed by AV, 11-Nov-2024.) |
| ⊢ (TopSet‘ndx) ≠ (*𝑟‘ndx) | ||
| Theorem | slotstnscsi 17330 | The slots Scalar, ·𝑠 and ·𝑖 are different from the slot TopSet. Formerly part of sralem 21090 and proofs using it. (Contributed by AV, 29-Oct-2024.) |
| ⊢ ((TopSet‘ndx) ≠ (Scalar‘ndx) ∧ (TopSet‘ndx) ≠ ( ·𝑠 ‘ndx) ∧ (TopSet‘ndx) ≠ (·𝑖‘ndx)) | ||
| Theorem | topgrpstr 17331 | A constructed topological group is a structure. (Contributed by Mario Carneiro, 29-Aug-2015.) |
| ⊢ 𝑊 = {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(TopSet‘ndx), 𝐽〉} ⇒ ⊢ 𝑊 Struct 〈1, 9〉 | ||
| Theorem | topgrpbas 17332 | The base set of a constructed topological group. (Contributed by Mario Carneiro, 29-Aug-2015.) |
| ⊢ 𝑊 = {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(TopSet‘ndx), 𝐽〉} ⇒ ⊢ (𝐵 ∈ 𝑋 → 𝐵 = (Base‘𝑊)) | ||
| Theorem | topgrpplusg 17333 | The additive operation of a constructed topological group. (Contributed by Mario Carneiro, 29-Aug-2015.) |
| ⊢ 𝑊 = {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(TopSet‘ndx), 𝐽〉} ⇒ ⊢ ( + ∈ 𝑋 → + = (+g‘𝑊)) | ||
| Theorem | topgrptset 17334 | The topology of a constructed topological group. (Contributed by Mario Carneiro, 29-Aug-2015.) |
| ⊢ 𝑊 = {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(TopSet‘ndx), 𝐽〉} ⇒ ⊢ (𝐽 ∈ 𝑋 → 𝐽 = (TopSet‘𝑊)) | ||
| Theorem | resstset 17335 | TopSet is unaffected by restriction. (Contributed by Mario Carneiro, 13-Aug-2015.) |
| ⊢ 𝐻 = (𝐺 ↾s 𝐴) & ⊢ 𝐽 = (TopSet‘𝐺) ⇒ ⊢ (𝐴 ∈ 𝑉 → 𝐽 = (TopSet‘𝐻)) | ||
| Theorem | plendx 17336 | Index value of the df-ple 17247 slot. (Contributed by Mario Carneiro, 14-Aug-2015.) (Revised by AV, 9-Sep-2021.) (New usage is discouraged.) |
| ⊢ (le‘ndx) = ;10 | ||
| Theorem | pleid 17337 | Utility theorem: self-referencing, index-independent form of df-ple 17247. (Contributed by NM, 9-Nov-2012.) (Revised by AV, 9-Sep-2021.) |
| ⊢ le = Slot (le‘ndx) | ||
| Theorem | plendxnn 17338 | The index value of the order slot is a positive integer. This property should be ensured for every concrete coding because otherwise it could not be used in an extensible structure (slots must be positive integers). (Contributed by AV, 30-Oct-2024.) |
| ⊢ (le‘ndx) ∈ ℕ | ||
| Theorem | basendxltplendx 17339 | The index value of the Base slot is less than the index value of the le slot. (Contributed by AV, 30-Oct-2024.) |
| ⊢ (Base‘ndx) < (le‘ndx) | ||
| Theorem | plendxnbasendx 17340 | The slot for the order is not the slot for the base set in an extensible structure. (Contributed by AV, 21-Oct-2024.) (Proof shortened by AV, 30-Oct-2024.) |
| ⊢ (le‘ndx) ≠ (Base‘ndx) | ||
| Theorem | plendxnplusgndx 17341 | The slot for the "less than or equal to" ordering is not the slot for the group operation in an extensible structure. Formerly part of proof for oppgle 32895. (Contributed by AV, 18-Oct-2024.) |
| ⊢ (le‘ndx) ≠ (+g‘ndx) | ||
| Theorem | plendxnmulrndx 17342 | The slot for the "less than or equal to" ordering is not the slot for the ring multiplication operation in an extensible structure. Formerly part of proof for opsrmulr 21966. (Contributed by AV, 1-Nov-2024.) |
| ⊢ (le‘ndx) ≠ (.r‘ndx) | ||
| Theorem | plendxnscandx 17343 | The slot for the "less than or equal to" ordering is not the slot for the scalar in an extensible structure. Formerly part of proof for opsrsca 21968. (Contributed by AV, 1-Nov-2024.) |
| ⊢ (le‘ndx) ≠ (Scalar‘ndx) | ||
| Theorem | plendxnvscandx 17344 | The slot for the "less than or equal to" ordering is not the slot for the scalar product in an extensible structure. Formerly part of proof for opsrvsca 21967. (Contributed by AV, 1-Nov-2024.) |
| ⊢ (le‘ndx) ≠ ( ·𝑠 ‘ndx) | ||
| Theorem | slotsdifplendx 17345 | The index of the slot for the distance is not the index of other slots. Formerly part of proof for cnfldfunALT 21286. (Contributed by AV, 11-Nov-2024.) |
| ⊢ ((*𝑟‘ndx) ≠ (le‘ndx) ∧ (TopSet‘ndx) ≠ (le‘ndx)) | ||
| Theorem | otpsstr 17346 | Functionality of a topological ordered space. (Contributed by Mario Carneiro, 12-Nov-2015.) (Revised by AV, 9-Sep-2021.) |
| ⊢ 𝐾 = {〈(Base‘ndx), 𝐵〉, 〈(TopSet‘ndx), 𝐽〉, 〈(le‘ndx), ≤ 〉} ⇒ ⊢ 𝐾 Struct 〈1, ;10〉 | ||
| Theorem | otpsbas 17347 | The base set of a topological ordered space. (Contributed by Mario Carneiro, 12-Nov-2015.) (Revised by AV, 9-Sep-2021.) |
| ⊢ 𝐾 = {〈(Base‘ndx), 𝐵〉, 〈(TopSet‘ndx), 𝐽〉, 〈(le‘ndx), ≤ 〉} ⇒ ⊢ (𝐵 ∈ 𝑉 → 𝐵 = (Base‘𝐾)) | ||
| Theorem | otpstset 17348 | The open sets of a topological ordered space. (Contributed by Mario Carneiro, 12-Nov-2015.) (Revised by AV, 9-Sep-2021.) |
| ⊢ 𝐾 = {〈(Base‘ndx), 𝐵〉, 〈(TopSet‘ndx), 𝐽〉, 〈(le‘ndx), ≤ 〉} ⇒ ⊢ (𝐽 ∈ 𝑉 → 𝐽 = (TopSet‘𝐾)) | ||
| Theorem | otpsle 17349 | The order of a topological ordered space. (Contributed by Mario Carneiro, 12-Nov-2015.) (Revised by AV, 9-Sep-2021.) |
| ⊢ 𝐾 = {〈(Base‘ndx), 𝐵〉, 〈(TopSet‘ndx), 𝐽〉, 〈(le‘ndx), ≤ 〉} ⇒ ⊢ ( ≤ ∈ 𝑉 → ≤ = (le‘𝐾)) | ||
| Theorem | ressle 17350 | le is unaffected by restriction. (Contributed by Mario Carneiro, 3-Nov-2015.) |
| ⊢ 𝑊 = (𝐾 ↾s 𝐴) & ⊢ ≤ = (le‘𝐾) ⇒ ⊢ (𝐴 ∈ 𝑉 → ≤ = (le‘𝑊)) | ||
| Theorem | ocndx 17351 | Index value of the df-ocomp 17248 slot. (Contributed by Mario Carneiro, 25-Oct-2015.) (New usage is discouraged.) |
| ⊢ (oc‘ndx) = ;11 | ||
| Theorem | ocid 17352 | Utility theorem: index-independent form of df-ocomp 17248. (Contributed by Mario Carneiro, 25-Oct-2015.) |
| ⊢ oc = Slot (oc‘ndx) | ||
| Theorem | basendxnocndx 17353 | The slot for the orthocomplementation is not the slot for the base set in an extensible structure. Formerly part of proof for thlbas 21612. (Contributed by AV, 11-Nov-2024.) |
| ⊢ (Base‘ndx) ≠ (oc‘ndx) | ||
| Theorem | plendxnocndx 17354 | The slot for the orthocomplementation is not the slot for the order in an extensible structure. Formerly part of proof for thlle 21613. (Contributed by AV, 11-Nov-2024.) |
| ⊢ (le‘ndx) ≠ (oc‘ndx) | ||
| Theorem | dsndx 17355 | Index value of the df-ds 17249 slot. (Contributed by Mario Carneiro, 14-Aug-2015.) (New usage is discouraged.) |
| ⊢ (dist‘ndx) = ;12 | ||
| Theorem | dsid 17356 | Utility theorem: index-independent form of df-ds 17249. (Contributed by Mario Carneiro, 23-Dec-2013.) |
| ⊢ dist = Slot (dist‘ndx) | ||
| Theorem | dsndxnn 17357 | The index of the slot for the distance in an extensible structure is a positive integer. Formerly part of proof for tmslem 24377. (Contributed by AV, 28-Oct-2024.) |
| ⊢ (dist‘ndx) ∈ ℕ | ||
| Theorem | basendxltdsndx 17358 | The index of the slot for the base set is less than the index of the slot for the distance in an extensible structure. Formerly part of proof for tmslem 24377. (Contributed by AV, 28-Oct-2024.) |
| ⊢ (Base‘ndx) < (dist‘ndx) | ||
| Theorem | dsndxnbasendx 17359 | The slot for the distance is not the slot for the base set in an extensible structure. (Contributed by AV, 21-Oct-2024.) (Proof shortened by AV, 28-Oct-2024.) |
| ⊢ (dist‘ndx) ≠ (Base‘ndx) | ||
| Theorem | dsndxnplusgndx 17360 | The slot for the distance function is not the slot for the group operation in an extensible structure. Formerly part of proof for mgpds 20065. (Contributed by AV, 18-Oct-2024.) |
| ⊢ (dist‘ndx) ≠ (+g‘ndx) | ||
| Theorem | dsndxnmulrndx 17361 | The slot for the distance function is not the slot for the ring multiplication operation in an extensible structure. (Contributed by AV, 31-Oct-2024.) |
| ⊢ (dist‘ndx) ≠ (.r‘ndx) | ||
| Theorem | slotsdnscsi 17362 | The slots Scalar, ·𝑠 and ·𝑖 are different from the slot dist. Formerly part of sralem 21090 and proofs using it. (Contributed by AV, 29-Oct-2024.) |
| ⊢ ((dist‘ndx) ≠ (Scalar‘ndx) ∧ (dist‘ndx) ≠ ( ·𝑠 ‘ndx) ∧ (dist‘ndx) ≠ (·𝑖‘ndx)) | ||
| Theorem | dsndxntsetndx 17363 | The slot for the distance function is not the slot for the topology in an extensible structure. Formerly part of proof for tngds 24543. (Contributed by AV, 29-Oct-2024.) |
| ⊢ (dist‘ndx) ≠ (TopSet‘ndx) | ||
| Theorem | slotsdifdsndx 17364 | The index of the slot for the distance is not the index of other slots. Formerly part of proof for cnfldfunALT 21286. (Contributed by AV, 11-Nov-2024.) |
| ⊢ ((*𝑟‘ndx) ≠ (dist‘ndx) ∧ (le‘ndx) ≠ (dist‘ndx)) | ||
| Theorem | unifndx 17365 | Index value of the df-unif 17250 slot. (Contributed by Thierry Arnoux, 17-Dec-2017.) (New usage is discouraged.) |
| ⊢ (UnifSet‘ndx) = ;13 | ||
| Theorem | unifid 17366 | Utility theorem: index-independent form of df-unif 17250. (Contributed by Thierry Arnoux, 17-Dec-2017.) |
| ⊢ UnifSet = Slot (UnifSet‘ndx) | ||
| Theorem | unifndxnn 17367 | The index of the slot for the uniform set in an extensible structure is a positive integer. Formerly part of proof for tuslem 24161. (Contributed by AV, 28-Oct-2024.) |
| ⊢ (UnifSet‘ndx) ∈ ℕ | ||
| Theorem | basendxltunifndx 17368 | The index of the slot for the base set is less than the index of the slot for the uniform set in an extensible structure. Formerly part of proof for tuslem 24161. (Contributed by AV, 28-Oct-2024.) |
| ⊢ (Base‘ndx) < (UnifSet‘ndx) | ||
| Theorem | unifndxnbasendx 17369 | The slot for the uniform set is not the slot for the base set in an extensible structure. (Contributed by AV, 21-Oct-2024.) |
| ⊢ (UnifSet‘ndx) ≠ (Base‘ndx) | ||
| Theorem | unifndxntsetndx 17370 | The slot for the uniform set is not the slot for the topology in an extensible structure. Formerly part of proof for tuslem 24161. (Contributed by AV, 28-Oct-2024.) |
| ⊢ (UnifSet‘ndx) ≠ (TopSet‘ndx) | ||
| Theorem | slotsdifunifndx 17371 | The index of the slot for the uniform set is not the index of other slots. Formerly part of proof for cnfldfunALT 21286. (Contributed by AV, 10-Nov-2024.) |
| ⊢ (((+g‘ndx) ≠ (UnifSet‘ndx) ∧ (.r‘ndx) ≠ (UnifSet‘ndx) ∧ (*𝑟‘ndx) ≠ (UnifSet‘ndx)) ∧ ((le‘ndx) ≠ (UnifSet‘ndx) ∧ (dist‘ndx) ≠ (UnifSet‘ndx))) | ||
| Theorem | ressunif 17372 | UnifSet is unaffected by restriction. (Contributed by Thierry Arnoux, 7-Dec-2017.) |
| ⊢ 𝐻 = (𝐺 ↾s 𝐴) & ⊢ 𝑈 = (UnifSet‘𝐺) ⇒ ⊢ (𝐴 ∈ 𝑉 → 𝑈 = (UnifSet‘𝐻)) | ||
| Theorem | odrngstr 17373 | Functionality of an ordered metric ring. (Contributed by Mario Carneiro, 20-Aug-2015.) (Proof shortened by AV, 15-Sep-2021.) |
| ⊢ 𝑊 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), · 〉} ∪ {〈(TopSet‘ndx), 𝐽〉, 〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), 𝐷〉}) ⇒ ⊢ 𝑊 Struct 〈1, ;12〉 | ||
| Theorem | odrngbas 17374 | The base set of an ordered metric ring. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ 𝑊 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), · 〉} ∪ {〈(TopSet‘ndx), 𝐽〉, 〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), 𝐷〉}) ⇒ ⊢ (𝐵 ∈ 𝑉 → 𝐵 = (Base‘𝑊)) | ||
| Theorem | odrngplusg 17375 | The addition operation of an ordered metric ring. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ 𝑊 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), · 〉} ∪ {〈(TopSet‘ndx), 𝐽〉, 〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), 𝐷〉}) ⇒ ⊢ ( + ∈ 𝑉 → + = (+g‘𝑊)) | ||
| Theorem | odrngmulr 17376 | The multiplication operation of an ordered metric ring. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ 𝑊 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), · 〉} ∪ {〈(TopSet‘ndx), 𝐽〉, 〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), 𝐷〉}) ⇒ ⊢ ( · ∈ 𝑉 → · = (.r‘𝑊)) | ||
| Theorem | odrngtset 17377 | The open sets of an ordered metric ring. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ 𝑊 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), · 〉} ∪ {〈(TopSet‘ndx), 𝐽〉, 〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), 𝐷〉}) ⇒ ⊢ (𝐽 ∈ 𝑉 → 𝐽 = (TopSet‘𝑊)) | ||
| Theorem | odrngle 17378 | The order of an ordered metric ring. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ 𝑊 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), · 〉} ∪ {〈(TopSet‘ndx), 𝐽〉, 〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), 𝐷〉}) ⇒ ⊢ ( ≤ ∈ 𝑉 → ≤ = (le‘𝑊)) | ||
| Theorem | odrngds 17379 | The metric of an ordered metric ring. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ 𝑊 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), · 〉} ∪ {〈(TopSet‘ndx), 𝐽〉, 〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), 𝐷〉}) ⇒ ⊢ (𝐷 ∈ 𝑉 → 𝐷 = (dist‘𝑊)) | ||
| Theorem | ressds 17380 | dist is unaffected by restriction. (Contributed by Mario Carneiro, 26-Aug-2015.) |
| ⊢ 𝐻 = (𝐺 ↾s 𝐴) & ⊢ 𝐷 = (dist‘𝐺) ⇒ ⊢ (𝐴 ∈ 𝑉 → 𝐷 = (dist‘𝐻)) | ||
| Theorem | homndx 17381 | Index value of the df-hom 17251 slot. (Contributed by Mario Carneiro, 7-Jan-2017.) (New usage is discouraged.) |
| ⊢ (Hom ‘ndx) = ;14 | ||
| Theorem | homid 17382 | Utility theorem: index-independent form of df-hom 17251. (Contributed by Mario Carneiro, 7-Jan-2017.) |
| ⊢ Hom = Slot (Hom ‘ndx) | ||
| Theorem | ccondx 17383 | Index value of the df-cco 17252 slot. (Contributed by Mario Carneiro, 7-Jan-2017.) (New usage is discouraged.) |
| ⊢ (comp‘ndx) = ;15 | ||
| Theorem | ccoid 17384 | Utility theorem: index-independent form of df-cco 17252. (Contributed by Mario Carneiro, 7-Jan-2017.) |
| ⊢ comp = Slot (comp‘ndx) | ||
| Theorem | slotsbhcdif 17385 | The slots Base, Hom and comp are different. (Contributed by AV, 5-Mar-2020.) (Proof shortened by AV, 28-Oct-2024.) |
| ⊢ ((Base‘ndx) ≠ (Hom ‘ndx) ∧ (Base‘ndx) ≠ (comp‘ndx) ∧ (Hom ‘ndx) ≠ (comp‘ndx)) | ||
| Theorem | slotsdifplendx2 17386 | The index of the slot for the "less than or equal to" ordering is not the index of other slots. Formerly part of proof for prstcleval 49548. (Contributed by AV, 12-Nov-2024.) |
| ⊢ ((le‘ndx) ≠ (comp‘ndx) ∧ (le‘ndx) ≠ (Hom ‘ndx)) | ||
| Theorem | slotsdifocndx 17387 | The index of the slot for the orthocomplementation is not the index of other slots. Formerly part of proof for prstcocval 49550. (Contributed by AV, 12-Nov-2024.) |
| ⊢ ((oc‘ndx) ≠ (comp‘ndx) ∧ (oc‘ndx) ≠ (Hom ‘ndx)) | ||
| Theorem | resshom 17388 | Hom is unaffected by restriction. (Contributed by Mario Carneiro, 5-Jan-2017.) |
| ⊢ 𝐷 = (𝐶 ↾s 𝐴) & ⊢ 𝐻 = (Hom ‘𝐶) ⇒ ⊢ (𝐴 ∈ 𝑉 → 𝐻 = (Hom ‘𝐷)) | ||
| Theorem | ressco 17389 | comp is unaffected by restriction. (Contributed by Mario Carneiro, 5-Jan-2017.) |
| ⊢ 𝐷 = (𝐶 ↾s 𝐴) & ⊢ · = (comp‘𝐶) ⇒ ⊢ (𝐴 ∈ 𝑉 → · = (comp‘𝐷)) | ||
| Syntax | crest 17390 | Extend class notation with the function returning a subspace topology. |
| class ↾t | ||
| Syntax | ctopn 17391 | Extend class notation with the topology extractor function. |
| class TopOpen | ||
| Definition | df-rest 17392* | Function returning the subspace topology induced by the topology 𝑦 and the set 𝑥. (Contributed by FL, 20-Sep-2010.) (Revised by Mario Carneiro, 1-May-2015.) |
| ⊢ ↾t = (𝑗 ∈ V, 𝑥 ∈ V ↦ ran (𝑦 ∈ 𝑗 ↦ (𝑦 ∩ 𝑥))) | ||
| Definition | df-topn 17393 | Define the topology extractor function. This differs from df-tset 17246 when a structure has been restricted using df-ress 17208; in this case the TopSet component will still have a topology over the larger set, and this function fixes this by restricting the topology as well. (Contributed by Mario Carneiro, 13-Aug-2015.) |
| ⊢ TopOpen = (𝑤 ∈ V ↦ ((TopSet‘𝑤) ↾t (Base‘𝑤))) | ||
| Theorem | restfn 17394 | The subspace topology operator is a function on pairs. (Contributed by Mario Carneiro, 1-May-2015.) |
| ⊢ ↾t Fn (V × V) | ||
| Theorem | topnfn 17395 | The topology extractor function is a function on the universe. (Contributed by Mario Carneiro, 13-Aug-2015.) |
| ⊢ TopOpen Fn V | ||
| Theorem | restval 17396* | The subspace topology induced by the topology 𝐽 on the set 𝐴. (Contributed by FL, 20-Sep-2010.) (Revised by Mario Carneiro, 1-May-2015.) |
| ⊢ ((𝐽 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) → (𝐽 ↾t 𝐴) = ran (𝑥 ∈ 𝐽 ↦ (𝑥 ∩ 𝐴))) | ||
| Theorem | elrest 17397* | The predicate "is an open set of a subspace topology". (Contributed by FL, 5-Jan-2009.) (Revised by Mario Carneiro, 15-Dec-2013.) |
| ⊢ ((𝐽 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ∈ (𝐽 ↾t 𝐵) ↔ ∃𝑥 ∈ 𝐽 𝐴 = (𝑥 ∩ 𝐵))) | ||
| Theorem | elrestr 17398 | Sufficient condition for being an open set in a subspace. (Contributed by Jeff Hankins, 11-Jul-2009.) (Revised by Mario Carneiro, 15-Dec-2013.) |
| ⊢ ((𝐽 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊 ∧ 𝐴 ∈ 𝐽) → (𝐴 ∩ 𝑆) ∈ (𝐽 ↾t 𝑆)) | ||
| Theorem | 0rest 17399 | Value of the structure restriction when the topology input is empty. (Contributed by Mario Carneiro, 13-Aug-2015.) |
| ⊢ (∅ ↾t 𝐴) = ∅ | ||
| Theorem | restid2 17400 | The subspace topology over a subset of the base set is the original topology. (Contributed by Mario Carneiro, 13-Aug-2015.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐽 ⊆ 𝒫 𝐴) → (𝐽 ↾t 𝐴) = 𝐽) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |