![]() |
Metamath
Proof Explorer Theorem List (p. 174 of 435) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-28329) |
![]() (28330-29854) |
![]() (29855-43446) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | posprs 17301 | A poset is a proset. (Contributed by Stefan O'Rear, 1-Feb-2015.) |
⊢ (𝐾 ∈ Poset → 𝐾 ∈ Proset ) | ||
Theorem | posi 17302 | Lemma for poset properties. (Contributed by NM, 11-Sep-2011.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) ⇒ ⊢ ((𝐾 ∈ Poset ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋 ≤ 𝑋 ∧ ((𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑋) → 𝑋 = 𝑌) ∧ ((𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑍) → 𝑋 ≤ 𝑍))) | ||
Theorem | posref 17303 | A poset ordering is reflexive. (Contributed by NM, 11-Sep-2011.) (Proof shortened by OpenAI, 25-Mar-2020.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) ⇒ ⊢ ((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵) → 𝑋 ≤ 𝑋) | ||
Theorem | posasymb 17304 | A poset ordering is asymmetric. (Contributed by NM, 21-Oct-2011.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) ⇒ ⊢ ((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑋) ↔ 𝑋 = 𝑌)) | ||
Theorem | postr 17305 | A poset ordering is transitive. (Contributed by NM, 11-Sep-2011.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) ⇒ ⊢ ((𝐾 ∈ Poset ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑍) → 𝑋 ≤ 𝑍)) | ||
Theorem | 0pos 17306 | Technical lemma to simplify the statement of ipopos 17512. The empty set is (rather pathologically) a poset under our definitions, since it has an empty base set (str0 16273) and any relation partially orders an empty set. (Contributed by Stefan O'Rear, 30-Jan-2015.) |
⊢ ∅ ∈ Poset | ||
Theorem | isposd 17307* | Properties that determine a poset (implicit structure version). (Contributed by Mario Carneiro, 29-Apr-2014.) |
⊢ (𝜑 → 𝐾 ∈ V) & ⊢ (𝜑 → 𝐵 = (Base‘𝐾)) & ⊢ (𝜑 → ≤ = (le‘𝐾)) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑥 ≤ 𝑥) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → ((𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑥) → 𝑥 = 𝑦)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑧) → 𝑥 ≤ 𝑧)) ⇒ ⊢ (𝜑 → 𝐾 ∈ Poset) | ||
Theorem | isposi 17308* | Properties that determine a poset (implicit structure version). (Contributed by NM, 11-Sep-2011.) |
⊢ 𝐾 ∈ V & ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ (𝑥 ∈ 𝐵 → 𝑥 ≤ 𝑥) & ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → ((𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑥) → 𝑥 = 𝑦)) & ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) → ((𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑧) → 𝑥 ≤ 𝑧)) ⇒ ⊢ 𝐾 ∈ Poset | ||
Theorem | isposix 17309* | Properties that determine a poset (explicit structure version). Note that the numeric indices of the structure components are not mentioned explicitly in either the theorem or its proof. (Contributed by NM, 9-Nov-2012.) |
⊢ 𝐵 ∈ V & ⊢ ≤ ∈ V & ⊢ 𝐾 = {〈(Base‘ndx), 𝐵〉, 〈(le‘ndx), ≤ 〉} & ⊢ (𝑥 ∈ 𝐵 → 𝑥 ≤ 𝑥) & ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → ((𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑥) → 𝑥 = 𝑦)) & ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) → ((𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑧) → 𝑥 ≤ 𝑧)) ⇒ ⊢ 𝐾 ∈ Poset | ||
Definition | df-plt 17310 | Define less-than ordering for posets and related structures. Unlike df-base 16227 and df-ple 16324, this is a derived component extractor and not an extensible structure component extractor that defines the poset. (Contributed by NM, 12-Oct-2011.) (Revised by Mario Carneiro, 8-Feb-2015.) |
⊢ lt = (𝑝 ∈ V ↦ ((le‘𝑝) ∖ I )) | ||
Theorem | pltfval 17311 | Value of the less-than relation. (Contributed by Mario Carneiro, 8-Feb-2015.) |
⊢ ≤ = (le‘𝐾) & ⊢ < = (lt‘𝐾) ⇒ ⊢ (𝐾 ∈ 𝐴 → < = ( ≤ ∖ I )) | ||
Theorem | pltval 17312 | Less-than relation. (df-pss 3813 analog.) (Contributed by NM, 12-Oct-2011.) |
⊢ ≤ = (le‘𝐾) & ⊢ < = (lt‘𝐾) ⇒ ⊢ ((𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐶) → (𝑋 < 𝑌 ↔ (𝑋 ≤ 𝑌 ∧ 𝑋 ≠ 𝑌))) | ||
Theorem | pltle 17313 | "Less than" implies "less than or equal to". (pssss 3927 analog.) (Contributed by NM, 4-Dec-2011.) |
⊢ ≤ = (le‘𝐾) & ⊢ < = (lt‘𝐾) ⇒ ⊢ ((𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐶) → (𝑋 < 𝑌 → 𝑋 ≤ 𝑌)) | ||
Theorem | pltne 17314 | The "less than" relation is not reflexive. (df-pss 3813 analog.) (Contributed by NM, 2-Dec-2011.) |
⊢ < = (lt‘𝐾) ⇒ ⊢ ((𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐶) → (𝑋 < 𝑌 → 𝑋 ≠ 𝑌)) | ||
Theorem | pltirr 17315 | The "less than" relation is not reflexive. (pssirr 3932 analog.) (Contributed by NM, 7-Feb-2012.) |
⊢ < = (lt‘𝐾) ⇒ ⊢ ((𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) → ¬ 𝑋 < 𝑋) | ||
Theorem | pleval2i 17316 | One direction of pleval2 17317. (Contributed by Mario Carneiro, 8-Feb-2015.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ < = (lt‘𝐾) ⇒ ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ≤ 𝑌 → (𝑋 < 𝑌 ∨ 𝑋 = 𝑌))) | ||
Theorem | pleval2 17317 | "Less than or equal to" in terms of "less than". (sspss 3931 analog.) (Contributed by NM, 17-Oct-2011.) (Revised by Mario Carneiro, 8-Feb-2015.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ < = (lt‘𝐾) ⇒ ⊢ ((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ≤ 𝑌 ↔ (𝑋 < 𝑌 ∨ 𝑋 = 𝑌))) | ||
Theorem | pltnle 17318 | "Less than" implies not converse "less than or equal to". (Contributed by NM, 18-Oct-2011.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ < = (lt‘𝐾) ⇒ ⊢ (((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑋 < 𝑌) → ¬ 𝑌 ≤ 𝑋) | ||
Theorem | pltval3 17319 | Alternate expression for the "less than" relation. (dfpss3 3918 analog.) (Contributed by NM, 4-Nov-2011.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ < = (lt‘𝐾) ⇒ ⊢ ((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 < 𝑌 ↔ (𝑋 ≤ 𝑌 ∧ ¬ 𝑌 ≤ 𝑋))) | ||
Theorem | pltnlt 17320 | The less-than relation implies the negation of its inverse. (Contributed by NM, 18-Oct-2011.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ < = (lt‘𝐾) ⇒ ⊢ (((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑋 < 𝑌) → ¬ 𝑌 < 𝑋) | ||
Theorem | pltn2lp 17321 | The less-than relation has no 2-cycle loops. (pssn2lp 3933 analog.) (Contributed by NM, 2-Dec-2011.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ < = (lt‘𝐾) ⇒ ⊢ ((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ¬ (𝑋 < 𝑌 ∧ 𝑌 < 𝑋)) | ||
Theorem | plttr 17322 | The less-than relation is transitive. (psstr 3936 analog.) (Contributed by NM, 2-Dec-2011.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ < = (lt‘𝐾) ⇒ ⊢ ((𝐾 ∈ Poset ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 < 𝑌 ∧ 𝑌 < 𝑍) → 𝑋 < 𝑍)) | ||
Theorem | pltletr 17323 | Transitive law for chained "less than" and "less than or equal to". (psssstr 3938 analog.) (Contributed by NM, 2-Dec-2011.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ < = (lt‘𝐾) ⇒ ⊢ ((𝐾 ∈ Poset ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 < 𝑌 ∧ 𝑌 ≤ 𝑍) → 𝑋 < 𝑍)) | ||
Theorem | plelttr 17324 | Transitive law for chained "less than or equal to" and "less than". (sspsstr 3937 analog.) (Contributed by NM, 2-May-2012.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ < = (lt‘𝐾) ⇒ ⊢ ((𝐾 ∈ Poset ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 ≤ 𝑌 ∧ 𝑌 < 𝑍) → 𝑋 < 𝑍)) | ||
Theorem | pospo 17325 | Write a poset structure in terms of the proper-class poset predicate (strict less than version). (Contributed by Mario Carneiro, 8-Feb-2015.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ < = (lt‘𝐾) ⇒ ⊢ (𝐾 ∈ 𝑉 → (𝐾 ∈ Poset ↔ ( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ ≤ ))) | ||
Definition | df-lub 17326* | Define the least upper bound (LUB) of a set of (poset) elements. The domain is restricted to exclude sets 𝑠 for which the LUB doesn't exist uniquely. (Contributed by NM, 12-Sep-2011.) (Revised by NM, 6-Sep-2018.) |
⊢ lub = (𝑝 ∈ V ↦ ((𝑠 ∈ 𝒫 (Base‘𝑝) ↦ (℩𝑥 ∈ (Base‘𝑝)(∀𝑦 ∈ 𝑠 𝑦(le‘𝑝)𝑥 ∧ ∀𝑧 ∈ (Base‘𝑝)(∀𝑦 ∈ 𝑠 𝑦(le‘𝑝)𝑧 → 𝑥(le‘𝑝)𝑧)))) ↾ {𝑠 ∣ ∃!𝑥 ∈ (Base‘𝑝)(∀𝑦 ∈ 𝑠 𝑦(le‘𝑝)𝑥 ∧ ∀𝑧 ∈ (Base‘𝑝)(∀𝑦 ∈ 𝑠 𝑦(le‘𝑝)𝑧 → 𝑥(le‘𝑝)𝑧))})) | ||
Definition | df-glb 17327* | Define the greatest lower bound (GLB) of a set of (poset) elements. The domain is restricted to exclude sets 𝑠 for which the GLB doesn't exist uniquely. (Contributed by NM, 12-Sep-2011.) (Revised by NM, 6-Sep-2018.) |
⊢ glb = (𝑝 ∈ V ↦ ((𝑠 ∈ 𝒫 (Base‘𝑝) ↦ (℩𝑥 ∈ (Base‘𝑝)(∀𝑦 ∈ 𝑠 𝑥(le‘𝑝)𝑦 ∧ ∀𝑧 ∈ (Base‘𝑝)(∀𝑦 ∈ 𝑠 𝑧(le‘𝑝)𝑦 → 𝑧(le‘𝑝)𝑥)))) ↾ {𝑠 ∣ ∃!𝑥 ∈ (Base‘𝑝)(∀𝑦 ∈ 𝑠 𝑥(le‘𝑝)𝑦 ∧ ∀𝑧 ∈ (Base‘𝑝)(∀𝑦 ∈ 𝑠 𝑧(le‘𝑝)𝑦 → 𝑧(le‘𝑝)𝑥))})) | ||
Definition | df-join 17328* | Define poset join. (Contributed by NM, 12-Sep-2011.) (Revised by Mario Carneiro, 3-Nov-2015.) |
⊢ join = (𝑝 ∈ V ↦ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ {𝑥, 𝑦} (lub‘𝑝)𝑧}) | ||
Definition | df-meet 17329* | Define poset join. (Contributed by NM, 12-Sep-2011.) (Revised by NM, 8-Sep-2018.) |
⊢ meet = (𝑝 ∈ V ↦ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ {𝑥, 𝑦} (glb‘𝑝)𝑧}) | ||
Theorem | lubfval 17330* | Value of the least upper bound function of a poset. (Contributed by NM, 12-Sep-2011.) (Revised by NM, 6-Sep-2018.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝑈 = (lub‘𝐾) & ⊢ (𝜓 ↔ (∀𝑦 ∈ 𝑠 𝑦 ≤ 𝑥 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑠 𝑦 ≤ 𝑧 → 𝑥 ≤ 𝑧))) & ⊢ (𝜑 → 𝐾 ∈ 𝑉) ⇒ ⊢ (𝜑 → 𝑈 = ((𝑠 ∈ 𝒫 𝐵 ↦ (℩𝑥 ∈ 𝐵 𝜓)) ↾ {𝑠 ∣ ∃!𝑥 ∈ 𝐵 𝜓})) | ||
Theorem | lubdm 17331* | Domain of the least upper bound function of a poset. (Contributed by NM, 6-Sep-2018.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝑈 = (lub‘𝐾) & ⊢ (𝜓 ↔ (∀𝑦 ∈ 𝑠 𝑦 ≤ 𝑥 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑠 𝑦 ≤ 𝑧 → 𝑥 ≤ 𝑧))) & ⊢ (𝜑 → 𝐾 ∈ 𝑉) ⇒ ⊢ (𝜑 → dom 𝑈 = {𝑠 ∈ 𝒫 𝐵 ∣ ∃!𝑥 ∈ 𝐵 𝜓}) | ||
Theorem | lubfun 17332 | The LUB is a function. (Contributed by NM, 9-Sep-2018.) |
⊢ 𝑈 = (lub‘𝐾) ⇒ ⊢ Fun 𝑈 | ||
Theorem | lubeldm 17333* | Member of the domain of the least upper bound function of a poset. (Contributed by NM, 7-Sep-2018.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝑈 = (lub‘𝐾) & ⊢ (𝜓 ↔ (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑥 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑧 → 𝑥 ≤ 𝑧))) & ⊢ (𝜑 → 𝐾 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝑆 ∈ dom 𝑈 ↔ (𝑆 ⊆ 𝐵 ∧ ∃!𝑥 ∈ 𝐵 𝜓))) | ||
Theorem | lubelss 17334 | A member of the domain of the least upper bound function is a subset of the base set. (Contributed by NM, 7-Sep-2018.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝑈 = (lub‘𝐾) & ⊢ (𝜑 → 𝐾 ∈ 𝑉) & ⊢ (𝜑 → 𝑆 ∈ dom 𝑈) ⇒ ⊢ (𝜑 → 𝑆 ⊆ 𝐵) | ||
Theorem | lubeu 17335* | Unique existence proper of a member of the domain of the least upper bound function of a poset. (Contributed by NM, 7-Sep-2018.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝑈 = (lub‘𝐾) & ⊢ (𝜓 ↔ (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑥 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑧 → 𝑥 ≤ 𝑧))) & ⊢ (𝜑 → 𝐾 ∈ 𝑉) & ⊢ (𝜑 → 𝑆 ∈ dom 𝑈) ⇒ ⊢ (𝜑 → ∃!𝑥 ∈ 𝐵 𝜓) | ||
Theorem | lubval 17336* | Value of the least upper bound function of a poset. Out-of-domain arguments (those not satisfying 𝑆 ∈ dom 𝑈) are allowed for convenience, evaluating to the empty set. (Contributed by NM, 12-Sep-2011.) (Revised by NM, 9-Sep-2018.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝑈 = (lub‘𝐾) & ⊢ (𝜓 ↔ (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑥 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑧 → 𝑥 ≤ 𝑧))) & ⊢ (𝜑 → 𝐾 ∈ 𝑉) & ⊢ (𝜑 → 𝑆 ⊆ 𝐵) ⇒ ⊢ (𝜑 → (𝑈‘𝑆) = (℩𝑥 ∈ 𝐵 𝜓)) | ||
Theorem | lubcl 17337 | The least upper bound function value belongs to the base set. (Contributed by NM, 7-Sep-2018.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝑈 = (lub‘𝐾) & ⊢ (𝜑 → 𝐾 ∈ 𝑉) & ⊢ (𝜑 → 𝑆 ∈ dom 𝑈) ⇒ ⊢ (𝜑 → (𝑈‘𝑆) ∈ 𝐵) | ||
Theorem | lubprop 17338* | Properties of greatest lower bound of a poset. (Contributed by NM, 22-Oct-2011.) (Revised by NM, 7-Sep-2018.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝑈 = (lub‘𝐾) & ⊢ (𝜑 → 𝐾 ∈ 𝑉) & ⊢ (𝜑 → 𝑆 ∈ dom 𝑈) ⇒ ⊢ (𝜑 → (∀𝑦 ∈ 𝑆 𝑦 ≤ (𝑈‘𝑆) ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑧 → (𝑈‘𝑆) ≤ 𝑧))) | ||
Theorem | luble 17339 | The greatest lower bound is the least element. (Contributed by NM, 22-Oct-2011.) (Revised by NM, 7-Sep-2018.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝑈 = (lub‘𝐾) & ⊢ (𝜑 → 𝐾 ∈ 𝑉) & ⊢ (𝜑 → 𝑆 ∈ dom 𝑈) & ⊢ (𝜑 → 𝑋 ∈ 𝑆) ⇒ ⊢ (𝜑 → 𝑋 ≤ (𝑈‘𝑆)) | ||
Theorem | lublecllem 17340* | Lemma for lublecl 17341 and lubid 17342. (Contributed by NM, 8-Sep-2018.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝑈 = (lub‘𝐾) & ⊢ (𝜑 → 𝐾 ∈ Poset) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) ⇒ ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ((∀𝑧 ∈ {𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑋}𝑧 ≤ 𝑥 ∧ ∀𝑤 ∈ 𝐵 (∀𝑧 ∈ {𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑋}𝑧 ≤ 𝑤 → 𝑥 ≤ 𝑤)) ↔ 𝑥 = 𝑋)) | ||
Theorem | lublecl 17341* | The set of all elements less than a given element has an LUB. (Contributed by NM, 8-Sep-2018.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝑈 = (lub‘𝐾) & ⊢ (𝜑 → 𝐾 ∈ Poset) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → {𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑋} ∈ dom 𝑈) | ||
Theorem | lubid 17342* | The LUB of elements less than or equal to a fixed value equals that value. (Contributed by NM, 19-Oct-2011.) (Revised by NM, 7-Sep-2018.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝑈 = (lub‘𝐾) & ⊢ (𝜑 → 𝐾 ∈ Poset) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝑈‘{𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑋}) = 𝑋) | ||
Theorem | glbfval 17343* | Value of the greatest lower function of a poset. (Contributed by NM, 12-Sep-2011.) (Revised by NM, 6-Sep-2018.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝐺 = (glb‘𝐾) & ⊢ (𝜓 ↔ (∀𝑦 ∈ 𝑠 𝑥 ≤ 𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑠 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥))) & ⊢ (𝜑 → 𝐾 ∈ 𝑉) ⇒ ⊢ (𝜑 → 𝐺 = ((𝑠 ∈ 𝒫 𝐵 ↦ (℩𝑥 ∈ 𝐵 𝜓)) ↾ {𝑠 ∣ ∃!𝑥 ∈ 𝐵 𝜓})) | ||
Theorem | glbdm 17344* | Domain of the greatest lower bound function of a poset. (Contributed by NM, 6-Sep-2018.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝐺 = (glb‘𝐾) & ⊢ (𝜓 ↔ (∀𝑦 ∈ 𝑠 𝑥 ≤ 𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑠 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥))) & ⊢ (𝜑 → 𝐾 ∈ 𝑉) ⇒ ⊢ (𝜑 → dom 𝐺 = {𝑠 ∈ 𝒫 𝐵 ∣ ∃!𝑥 ∈ 𝐵 𝜓}) | ||
Theorem | glbfun 17345 | The GLB is a function. (Contributed by NM, 9-Sep-2018.) |
⊢ 𝐺 = (glb‘𝐾) ⇒ ⊢ Fun 𝐺 | ||
Theorem | glbeldm 17346* | Member of the domain of the greatest lower bound function of a poset. (Contributed by NM, 7-Sep-2018.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝐺 = (glb‘𝐾) & ⊢ (𝜓 ↔ (∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥))) & ⊢ (𝜑 → 𝐾 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝑆 ∈ dom 𝐺 ↔ (𝑆 ⊆ 𝐵 ∧ ∃!𝑥 ∈ 𝐵 𝜓))) | ||
Theorem | glbelss 17347 | A member of the domain of the greatest lower bound function is a subset of the base set. (Contributed by NM, 7-Sep-2018.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝐺 = (glb‘𝐾) & ⊢ (𝜑 → 𝐾 ∈ 𝑉) & ⊢ (𝜑 → 𝑆 ∈ dom 𝐺) ⇒ ⊢ (𝜑 → 𝑆 ⊆ 𝐵) | ||
Theorem | glbeu 17348* | Unique existence proper of a member of the domain of the greatest lower bound function of a poset. (Contributed by NM, 7-Sep-2018.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝐺 = (glb‘𝐾) & ⊢ (𝜓 ↔ (∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥))) & ⊢ (𝜑 → 𝐾 ∈ 𝑉) & ⊢ (𝜑 → 𝑆 ∈ dom 𝐺) ⇒ ⊢ (𝜑 → ∃!𝑥 ∈ 𝐵 𝜓) | ||
Theorem | glbval 17349* | Value of the greatest lower bound function of a poset. Out-of-domain arguments (those not satisfying 𝑆 ∈ dom 𝑈) are allowed for convenience, evaluating to the empty set on both sides of the equality. (Contributed by NM, 12-Sep-2011.) (Revised by NM, 9-Sep-2018.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝐺 = (glb‘𝐾) & ⊢ (𝜓 ↔ (∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥))) & ⊢ (𝜑 → 𝐾 ∈ 𝑉) & ⊢ (𝜑 → 𝑆 ⊆ 𝐵) ⇒ ⊢ (𝜑 → (𝐺‘𝑆) = (℩𝑥 ∈ 𝐵 𝜓)) | ||
Theorem | glbcl 17350 | The least upper bound function value belongs to the base set. (Contributed by NM, 7-Sep-2018.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝐺 = (glb‘𝐾) & ⊢ (𝜑 → 𝐾 ∈ 𝑉) & ⊢ (𝜑 → 𝑆 ∈ dom 𝐺) ⇒ ⊢ (𝜑 → (𝐺‘𝑆) ∈ 𝐵) | ||
Theorem | glbprop 17351* | Properties of greatest lower bound of a poset. (Contributed by NM, 7-Sep-2018.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝑈 = (glb‘𝐾) & ⊢ (𝜑 → 𝐾 ∈ 𝑉) & ⊢ (𝜑 → 𝑆 ∈ dom 𝑈) ⇒ ⊢ (𝜑 → (∀𝑦 ∈ 𝑆 (𝑈‘𝑆) ≤ 𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ (𝑈‘𝑆)))) | ||
Theorem | glble 17352 | The greatest lower bound is the least element. (Contributed by NM, 22-Oct-2011.) (Revised by NM, 7-Sep-2018.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝑈 = (glb‘𝐾) & ⊢ (𝜑 → 𝐾 ∈ 𝑉) & ⊢ (𝜑 → 𝑆 ∈ dom 𝑈) & ⊢ (𝜑 → 𝑋 ∈ 𝑆) ⇒ ⊢ (𝜑 → (𝑈‘𝑆) ≤ 𝑋) | ||
Theorem | joinfval 17353* | Value of join function for a poset. (Contributed by NM, 12-Sep-2011.) (Revised by NM, 9-Sep-2018.) TODO: prove joinfval2 17354 first to reduce net proof size (existence part)? |
⊢ 𝑈 = (lub‘𝐾) & ⊢ ∨ = (join‘𝐾) ⇒ ⊢ (𝐾 ∈ 𝑉 → ∨ = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ {𝑥, 𝑦}𝑈𝑧}) | ||
Theorem | joinfval2 17354* | Value of join function for a poset-type structure. (Contributed by NM, 12-Sep-2011.) (Revised by NM, 9-Sep-2018.) |
⊢ 𝑈 = (lub‘𝐾) & ⊢ ∨ = (join‘𝐾) ⇒ ⊢ (𝐾 ∈ 𝑉 → ∨ = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ({𝑥, 𝑦} ∈ dom 𝑈 ∧ 𝑧 = (𝑈‘{𝑥, 𝑦}))}) | ||
Theorem | joindm 17355* | Domain of join function for a poset-type structure. (Contributed by NM, 16-Sep-2018.) |
⊢ 𝑈 = (lub‘𝐾) & ⊢ ∨ = (join‘𝐾) ⇒ ⊢ (𝐾 ∈ 𝑉 → dom ∨ = {〈𝑥, 𝑦〉 ∣ {𝑥, 𝑦} ∈ dom 𝑈}) | ||
Theorem | joindef 17356 | Two ways to say that a join is defined. (Contributed by NM, 9-Sep-2018.) |
⊢ 𝑈 = (lub‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ (𝜑 → 𝐾 ∈ 𝑉) & ⊢ (𝜑 → 𝑋 ∈ 𝑊) & ⊢ (𝜑 → 𝑌 ∈ 𝑍) ⇒ ⊢ (𝜑 → (〈𝑋, 𝑌〉 ∈ dom ∨ ↔ {𝑋, 𝑌} ∈ dom 𝑈)) | ||
Theorem | joinval 17357 | Join value. Since both sides evaluate to ∅ when they don't exist, for convenience we drop the {𝑋, 𝑌} ∈ dom 𝑈 requirement. (Contributed by NM, 9-Sep-2018.) |
⊢ 𝑈 = (lub‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ (𝜑 → 𝐾 ∈ 𝑉) & ⊢ (𝜑 → 𝑋 ∈ 𝑊) & ⊢ (𝜑 → 𝑌 ∈ 𝑍) ⇒ ⊢ (𝜑 → (𝑋 ∨ 𝑌) = (𝑈‘{𝑋, 𝑌})) | ||
Theorem | joincl 17358 | Closure of join of elements in the domain. (Contributed by NM, 12-Sep-2018.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ (𝜑 → 𝐾 ∈ 𝑉) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 〈𝑋, 𝑌〉 ∈ dom ∨ ) ⇒ ⊢ (𝜑 → (𝑋 ∨ 𝑌) ∈ 𝐵) | ||
Theorem | joindmss 17359 | Subset property of domain of join. (Contributed by NM, 12-Sep-2018.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ (𝜑 → 𝐾 ∈ 𝑉) ⇒ ⊢ (𝜑 → dom ∨ ⊆ (𝐵 × 𝐵)) | ||
Theorem | joinval2lem 17360* | Lemma for joinval2 17361 and joineu 17362. (Contributed by NM, 12-Sep-2018.) TODO: combine this through joineu 17362 into joinlem 17363? |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ (𝜑 → 𝐾 ∈ 𝑉) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((∀𝑦 ∈ {𝑋, 𝑌}𝑦 ≤ 𝑥 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ {𝑋, 𝑌}𝑦 ≤ 𝑧 → 𝑥 ≤ 𝑧)) ↔ ((𝑋 ≤ 𝑥 ∧ 𝑌 ≤ 𝑥) ∧ ∀𝑧 ∈ 𝐵 ((𝑋 ≤ 𝑧 ∧ 𝑌 ≤ 𝑧) → 𝑥 ≤ 𝑧)))) | ||
Theorem | joinval2 17361* | Value of join for a poset with LUB expanded. (Contributed by NM, 16-Sep-2011.) (Revised by NM, 11-Sep-2018.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ (𝜑 → 𝐾 ∈ 𝑉) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝑋 ∨ 𝑌) = (℩𝑥 ∈ 𝐵 ((𝑋 ≤ 𝑥 ∧ 𝑌 ≤ 𝑥) ∧ ∀𝑧 ∈ 𝐵 ((𝑋 ≤ 𝑧 ∧ 𝑌 ≤ 𝑧) → 𝑥 ≤ 𝑧)))) | ||
Theorem | joineu 17362* | Uniqueness of join of elements in the domain. (Contributed by NM, 12-Sep-2018.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ (𝜑 → 𝐾 ∈ 𝑉) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 〈𝑋, 𝑌〉 ∈ dom ∨ ) ⇒ ⊢ (𝜑 → ∃!𝑥 ∈ 𝐵 ((𝑋 ≤ 𝑥 ∧ 𝑌 ≤ 𝑥) ∧ ∀𝑧 ∈ 𝐵 ((𝑋 ≤ 𝑧 ∧ 𝑌 ≤ 𝑧) → 𝑥 ≤ 𝑧))) | ||
Theorem | joinlem 17363* | Lemma for join properties. (Contributed by NM, 16-Sep-2011.) (Revised by NM, 12-Sep-2018.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ (𝜑 → 𝐾 ∈ 𝑉) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 〈𝑋, 𝑌〉 ∈ dom ∨ ) ⇒ ⊢ (𝜑 → ((𝑋 ≤ (𝑋 ∨ 𝑌) ∧ 𝑌 ≤ (𝑋 ∨ 𝑌)) ∧ ∀𝑧 ∈ 𝐵 ((𝑋 ≤ 𝑧 ∧ 𝑌 ≤ 𝑧) → (𝑋 ∨ 𝑌) ≤ 𝑧))) | ||
Theorem | lejoin1 17364 | A join's first argument is less than or equal to the join. (Contributed by NM, 16-Sep-2011.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ (𝜑 → 𝐾 ∈ 𝑉) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 〈𝑋, 𝑌〉 ∈ dom ∨ ) ⇒ ⊢ (𝜑 → 𝑋 ≤ (𝑋 ∨ 𝑌)) | ||
Theorem | lejoin2 17365 | A join's second argument is less than or equal to the join. (Contributed by NM, 16-Sep-2011.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ (𝜑 → 𝐾 ∈ 𝑉) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 〈𝑋, 𝑌〉 ∈ dom ∨ ) ⇒ ⊢ (𝜑 → 𝑌 ≤ (𝑋 ∨ 𝑌)) | ||
Theorem | joinle 17366 | A join is less than or equal to a third value iff each argument is less than or equal to the third value. (Contributed by NM, 16-Sep-2011.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ (𝜑 → 𝐾 ∈ Poset) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) & ⊢ (𝜑 → 〈𝑋, 𝑌〉 ∈ dom ∨ ) ⇒ ⊢ (𝜑 → ((𝑋 ≤ 𝑍 ∧ 𝑌 ≤ 𝑍) ↔ (𝑋 ∨ 𝑌) ≤ 𝑍)) | ||
Theorem | meetfval 17367* | Value of meet function for a poset. (Contributed by NM, 12-Sep-2011.) (Revised by NM, 9-Sep-2018.) TODO: prove meetfval2 17368 first to reduce net proof size (existence part)? |
⊢ 𝐺 = (glb‘𝐾) & ⊢ ∧ = (meet‘𝐾) ⇒ ⊢ (𝐾 ∈ 𝑉 → ∧ = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ {𝑥, 𝑦}𝐺𝑧}) | ||
Theorem | meetfval2 17368* | Value of meet function for a poset. (Contributed by NM, 12-Sep-2011.) (Revised by NM, 9-Sep-2018.) |
⊢ 𝐺 = (glb‘𝐾) & ⊢ ∧ = (meet‘𝐾) ⇒ ⊢ (𝐾 ∈ 𝑉 → ∧ = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ({𝑥, 𝑦} ∈ dom 𝐺 ∧ 𝑧 = (𝐺‘{𝑥, 𝑦}))}) | ||
Theorem | meetdm 17369* | Domain of meet function for a poset-type structure. (Contributed by NM, 16-Sep-2018.) |
⊢ 𝐺 = (glb‘𝐾) & ⊢ ∧ = (meet‘𝐾) ⇒ ⊢ (𝐾 ∈ 𝑉 → dom ∧ = {〈𝑥, 𝑦〉 ∣ {𝑥, 𝑦} ∈ dom 𝐺}) | ||
Theorem | meetdef 17370 | Two ways to say that a meet is defined. (Contributed by NM, 9-Sep-2018.) |
⊢ 𝐺 = (glb‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ (𝜑 → 𝐾 ∈ 𝑉) & ⊢ (𝜑 → 𝑋 ∈ 𝑊) & ⊢ (𝜑 → 𝑌 ∈ 𝑍) ⇒ ⊢ (𝜑 → (〈𝑋, 𝑌〉 ∈ dom ∧ ↔ {𝑋, 𝑌} ∈ dom 𝐺)) | ||
Theorem | meetval 17371 | Meet value. Since both sides evaluate to ∅ when they don't exist, for convenience we drop the {𝑋, 𝑌} ∈ dom 𝐺 requirement. (Contributed by NM, 9-Sep-2018.) |
⊢ 𝐺 = (glb‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ (𝜑 → 𝐾 ∈ 𝑉) & ⊢ (𝜑 → 𝑋 ∈ 𝑊) & ⊢ (𝜑 → 𝑌 ∈ 𝑍) ⇒ ⊢ (𝜑 → (𝑋 ∧ 𝑌) = (𝐺‘{𝑋, 𝑌})) | ||
Theorem | meetcl 17372 | Closure of meet of elements in the domain. (Contributed by NM, 12-Sep-2018.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ (𝜑 → 𝐾 ∈ 𝑉) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 〈𝑋, 𝑌〉 ∈ dom ∧ ) ⇒ ⊢ (𝜑 → (𝑋 ∧ 𝑌) ∈ 𝐵) | ||
Theorem | meetdmss 17373 | Subset property of domain of meet. (Contributed by NM, 12-Sep-2018.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ (𝜑 → 𝐾 ∈ 𝑉) ⇒ ⊢ (𝜑 → dom ∧ ⊆ (𝐵 × 𝐵)) | ||
Theorem | meetval2lem 17374* | Lemma for meetval2 17375 and meeteu 17376. (Contributed by NM, 12-Sep-2018.) TODO: combine this through meeteu 17376 into meetlem 17377? |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ (𝜑 → 𝐾 ∈ 𝑉) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((∀𝑦 ∈ {𝑋, 𝑌}𝑥 ≤ 𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ {𝑋, 𝑌}𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥)) ↔ ((𝑥 ≤ 𝑋 ∧ 𝑥 ≤ 𝑌) ∧ ∀𝑧 ∈ 𝐵 ((𝑧 ≤ 𝑋 ∧ 𝑧 ≤ 𝑌) → 𝑧 ≤ 𝑥)))) | ||
Theorem | meetval2 17375* | Value of meet for a poset with LUB expanded. (Contributed by NM, 16-Sep-2011.) (Revised by NM, 11-Sep-2018.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ (𝜑 → 𝐾 ∈ 𝑉) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝑋 ∧ 𝑌) = (℩𝑥 ∈ 𝐵 ((𝑥 ≤ 𝑋 ∧ 𝑥 ≤ 𝑌) ∧ ∀𝑧 ∈ 𝐵 ((𝑧 ≤ 𝑋 ∧ 𝑧 ≤ 𝑌) → 𝑧 ≤ 𝑥)))) | ||
Theorem | meeteu 17376* | Uniqueness of meet of elements in the domain. (Contributed by NM, 12-Sep-2018.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ (𝜑 → 𝐾 ∈ 𝑉) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 〈𝑋, 𝑌〉 ∈ dom ∧ ) ⇒ ⊢ (𝜑 → ∃!𝑥 ∈ 𝐵 ((𝑥 ≤ 𝑋 ∧ 𝑥 ≤ 𝑌) ∧ ∀𝑧 ∈ 𝐵 ((𝑧 ≤ 𝑋 ∧ 𝑧 ≤ 𝑌) → 𝑧 ≤ 𝑥))) | ||
Theorem | meetlem 17377* | Lemma for meet properties. (Contributed by NM, 16-Sep-2011.) (Revised by NM, 12-Sep-2018.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ (𝜑 → 𝐾 ∈ 𝑉) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 〈𝑋, 𝑌〉 ∈ dom ∧ ) ⇒ ⊢ (𝜑 → (((𝑋 ∧ 𝑌) ≤ 𝑋 ∧ (𝑋 ∧ 𝑌) ≤ 𝑌) ∧ ∀𝑧 ∈ 𝐵 ((𝑧 ≤ 𝑋 ∧ 𝑧 ≤ 𝑌) → 𝑧 ≤ (𝑋 ∧ 𝑌)))) | ||
Theorem | lemeet1 17378 | A meet's first argument is less than or equal to the meet. (Contributed by NM, 16-Sep-2011.) (Revised by NM, 12-Sep-2018.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ (𝜑 → 𝐾 ∈ 𝑉) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 〈𝑋, 𝑌〉 ∈ dom ∧ ) ⇒ ⊢ (𝜑 → (𝑋 ∧ 𝑌) ≤ 𝑋) | ||
Theorem | lemeet2 17379 | A meet's second argument is less than or equal to the meet. (Contributed by NM, 16-Sep-2011.) (Revised by NM, 12-Sep-2018.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ (𝜑 → 𝐾 ∈ 𝑉) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 〈𝑋, 𝑌〉 ∈ dom ∧ ) ⇒ ⊢ (𝜑 → (𝑋 ∧ 𝑌) ≤ 𝑌) | ||
Theorem | meetle 17380 | A meet is less than or equal to a third value iff each argument is less than or equal to the third value. (Contributed by NM, 16-Sep-2011.) (Revised by NM, 12-Sep-2018.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ (𝜑 → 𝐾 ∈ Poset) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) & ⊢ (𝜑 → 〈𝑋, 𝑌〉 ∈ dom ∧ ) ⇒ ⊢ (𝜑 → ((𝑍 ≤ 𝑋 ∧ 𝑍 ≤ 𝑌) ↔ 𝑍 ≤ (𝑋 ∧ 𝑌))) | ||
Theorem | joincomALT 17381 | The join of a poset commutes. (This may not be a theorem under other definitions of meet.) (Contributed by NM, 16-Sep-2011.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ∨ = (join‘𝐾) ⇒ ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∨ 𝑌) = (𝑌 ∨ 𝑋)) | ||
Theorem | joincom 17382 | The join of a poset commutes. (The antecedent 〈𝑋, 𝑌〉 ∈ dom ∨ ∧ 〈𝑌, 𝑋〉 ∈ dom ∨ i.e. "the joins exist" could be omitted as an artifact of our particular join definition, but other definitions may require it.) (Contributed by NM, 16-Sep-2011.) (Revised by NM, 12-Sep-2018.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ∨ = (join‘𝐾) ⇒ ⊢ (((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (〈𝑋, 𝑌〉 ∈ dom ∨ ∧ 〈𝑌, 𝑋〉 ∈ dom ∨ )) → (𝑋 ∨ 𝑌) = (𝑌 ∨ 𝑋)) | ||
Theorem | meetcomALT 17383 | The meet of a poset commutes. (This may not be a theorem under other definitions of meet.) (Contributed by NM, 17-Sep-2011.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ∧ = (meet‘𝐾) ⇒ ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∧ 𝑌) = (𝑌 ∧ 𝑋)) | ||
Theorem | meetcom 17384 | The meet of a poset commutes. (The antecedent 〈𝑋, 𝑌〉 ∈ dom ∧ ∧ 〈𝑌, 𝑋〉 ∈ dom ∧ i.e. "the meets exist" could be omitted as an artifact of our particular join definition, but other definitions may require it.) (Contributed by NM, 17-Sep-2011.) (Revised by NM, 12-Sep-2018.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ∧ = (meet‘𝐾) ⇒ ⊢ (((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (〈𝑋, 𝑌〉 ∈ dom ∧ ∧ 〈𝑌, 𝑋〉 ∈ dom ∧ )) → (𝑋 ∧ 𝑌) = (𝑌 ∧ 𝑋)) | ||
Syntax | ctos 17385 | Extend class notation with the class of all tosets. |
class Toset | ||
Definition | df-toset 17386* | Define the class of totally ordered sets (tosets). (Contributed by FL, 17-Nov-2014.) |
⊢ Toset = {𝑓 ∈ Poset ∣ [(Base‘𝑓) / 𝑏][(le‘𝑓) / 𝑟]∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 (𝑥𝑟𝑦 ∨ 𝑦𝑟𝑥)} | ||
Theorem | istos 17387* | The predicate "is a toset." (Contributed by FL, 17-Nov-2014.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) ⇒ ⊢ (𝐾 ∈ Toset ↔ (𝐾 ∈ Poset ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ≤ 𝑦 ∨ 𝑦 ≤ 𝑥))) | ||
Theorem | tosso 17388 | Write the totally ordered set structure predicate in terms of the proper class strict order predicate. (Contributed by Mario Carneiro, 8-Feb-2015.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ < = (lt‘𝐾) ⇒ ⊢ (𝐾 ∈ 𝑉 → (𝐾 ∈ Toset ↔ ( < Or 𝐵 ∧ ( I ↾ 𝐵) ⊆ ≤ ))) | ||
Syntax | cp0 17389 | Extend class notation with poset zero. |
class 0. | ||
Syntax | cp1 17390 | Extend class notation with poset unit. |
class 1. | ||
Definition | df-p0 17391 | Define poset zero. (Contributed by NM, 12-Oct-2011.) |
⊢ 0. = (𝑝 ∈ V ↦ ((glb‘𝑝)‘(Base‘𝑝))) | ||
Definition | df-p1 17392 | Define poset unit. (Contributed by NM, 22-Oct-2011.) |
⊢ 1. = (𝑝 ∈ V ↦ ((lub‘𝑝)‘(Base‘𝑝))) | ||
Theorem | p0val 17393 | Value of poset zero. (Contributed by NM, 12-Oct-2011.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝐺 = (glb‘𝐾) & ⊢ 0 = (0.‘𝐾) ⇒ ⊢ (𝐾 ∈ 𝑉 → 0 = (𝐺‘𝐵)) | ||
Theorem | p1val 17394 | Value of poset zero. (Contributed by NM, 22-Oct-2011.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝑈 = (lub‘𝐾) & ⊢ 1 = (1.‘𝐾) ⇒ ⊢ (𝐾 ∈ 𝑉 → 1 = (𝑈‘𝐵)) | ||
Theorem | p0le 17395 | Any element is less than or equal to a poset's upper bound (if defined). (Contributed by NM, 22-Oct-2011.) (Revised by NM, 13-Sep-2018.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝐺 = (glb‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 0 = (0.‘𝐾) & ⊢ (𝜑 → 𝐾 ∈ 𝑉) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝐵 ∈ dom 𝐺) ⇒ ⊢ (𝜑 → 0 ≤ 𝑋) | ||
Theorem | ple1 17396 | Any element is less than or equal to a poset's upper bound (if defined). (Contributed by NM, 22-Oct-2011.) (Revised by NM, 13-Sep-2018.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝑈 = (lub‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 1 = (1.‘𝐾) & ⊢ (𝜑 → 𝐾 ∈ 𝑉) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝐵 ∈ dom 𝑈) ⇒ ⊢ (𝜑 → 𝑋 ≤ 1 ) | ||
Syntax | clat 17397 | Extend class notation with the class of all lattices. |
class Lat | ||
Definition | df-lat 17398 | Define the class of all lattices. A lattice is a poset in which the join and meet of any two elements always exists. (Contributed by NM, 18-Oct-2012.) (Revised by NM, 12-Sep-2018.) |
⊢ Lat = {𝑝 ∈ Poset ∣ (dom (join‘𝑝) = ((Base‘𝑝) × (Base‘𝑝)) ∧ dom (meet‘𝑝) = ((Base‘𝑝) × (Base‘𝑝)))} | ||
Theorem | islat 17399 | The predicate "is a lattice." (Contributed by NM, 18-Oct-2012.) (Revised by NM, 12-Sep-2018.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) ⇒ ⊢ (𝐾 ∈ Lat ↔ (𝐾 ∈ Poset ∧ (dom ∨ = (𝐵 × 𝐵) ∧ dom ∧ = (𝐵 × 𝐵)))) | ||
Theorem | latcl2 17400 | The join and meet of any two elements exist. (Contributed by NM, 14-Sep-2018.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ (𝜑 → 𝐾 ∈ Lat) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → (〈𝑋, 𝑌〉 ∈ dom ∨ ∧ 〈𝑋, 𝑌〉 ∈ dom ∧ )) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |