![]() |
Metamath
Proof Explorer Theorem List (p. 174 of 480) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-30435) |
![]() (30436-31958) |
![]() (31959-47941) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | phlip 17301 | The inner product (Hermitian form) operation of a constructed pre-Hilbert space. (Contributed by Mario Carneiro, 6-Oct-2013.) (Revised by Mario Carneiro, 29-Aug-2015.) |
⊢ 𝐻 = ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(Scalar‘ndx), 𝑇⟩} ∪ {⟨( ·𝑠 ‘ndx), · ⟩, ⟨(·𝑖‘ndx), , ⟩}) ⇒ ⊢ ( , ∈ 𝑋 → , = (·𝑖‘𝐻)) | ||
Theorem | tsetndx 17302 | Index value of the df-tset 17221 slot. (Contributed by Mario Carneiro, 14-Aug-2015.) (New usage is discouraged.) |
⊢ (TopSet‘ndx) = 9 | ||
Theorem | tsetid 17303 | Utility theorem: index-independent form of df-tset 17221. (Contributed by NM, 20-Oct-2012.) |
⊢ TopSet = Slot (TopSet‘ndx) | ||
Theorem | tsetndxnn 17304 | The index of the slot for the group operation in an extensible structure is a positive integer. (Contributed by AV, 31-Oct-2024.) |
⊢ (TopSet‘ndx) ∈ ℕ | ||
Theorem | basendxlttsetndx 17305 | The index of the slot for the base set is less then the index of the slot for the topology in an extensible structure. (Contributed by AV, 31-Oct-2024.) |
⊢ (Base‘ndx) < (TopSet‘ndx) | ||
Theorem | tsetndxnbasendx 17306 | The slot for the topology is not the slot for the base set in an extensible structure. (Contributed by AV, 21-Oct-2024.) (Proof shortened by AV, 31-Oct-2024.) |
⊢ (TopSet‘ndx) ≠ (Base‘ndx) | ||
Theorem | tsetndxnplusgndx 17307 | The slot for the topology is not the slot for the group operation in an extensible structure. Formerly part of proof for oppgtset 19260. (Contributed by AV, 18-Oct-2024.) |
⊢ (TopSet‘ndx) ≠ (+g‘ndx) | ||
Theorem | tsetndxnmulrndx 17308 | The slot for the topology is not the slot for the ring multiplication operation in an extensible structure. (Contributed by AV, 31-Oct-2024.) |
⊢ (TopSet‘ndx) ≠ (.r‘ndx) | ||
Theorem | tsetndxnstarvndx 17309 | The slot for the topology is not the slot for the involution in an extensible structure. Formerly part of proof for cnfldfunALT 21158. (Contributed by AV, 11-Nov-2024.) |
⊢ (TopSet‘ndx) ≠ (*𝑟‘ndx) | ||
Theorem | slotstnscsi 17310 | The slots Scalar, ·𝑠 and ·𝑖 are different from the slot TopSet. Formerly part of sralem 20936 and proofs using it. (Contributed by AV, 29-Oct-2024.) |
⊢ ((TopSet‘ndx) ≠ (Scalar‘ndx) ∧ (TopSet‘ndx) ≠ ( ·𝑠 ‘ndx) ∧ (TopSet‘ndx) ≠ (·𝑖‘ndx)) | ||
Theorem | topgrpstr 17311 | A constructed topological group is a structure. (Contributed by Mario Carneiro, 29-Aug-2015.) |
⊢ 𝑊 = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(TopSet‘ndx), 𝐽⟩} ⇒ ⊢ 𝑊 Struct ⟨1, 9⟩ | ||
Theorem | topgrpbas 17312 | The base set of a constructed topological group. (Contributed by Mario Carneiro, 29-Aug-2015.) |
⊢ 𝑊 = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(TopSet‘ndx), 𝐽⟩} ⇒ ⊢ (𝐵 ∈ 𝑋 → 𝐵 = (Base‘𝑊)) | ||
Theorem | topgrpplusg 17313 | The additive operation of a constructed topological group. (Contributed by Mario Carneiro, 29-Aug-2015.) |
⊢ 𝑊 = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(TopSet‘ndx), 𝐽⟩} ⇒ ⊢ ( + ∈ 𝑋 → + = (+g‘𝑊)) | ||
Theorem | topgrptset 17314 | The topology of a constructed topological group. (Contributed by Mario Carneiro, 29-Aug-2015.) |
⊢ 𝑊 = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(TopSet‘ndx), 𝐽⟩} ⇒ ⊢ (𝐽 ∈ 𝑋 → 𝐽 = (TopSet‘𝑊)) | ||
Theorem | resstset 17315 | TopSet is unaffected by restriction. (Contributed by Mario Carneiro, 13-Aug-2015.) |
⊢ 𝐻 = (𝐺 ↾s 𝐴) & ⊢ 𝐽 = (TopSet‘𝐺) ⇒ ⊢ (𝐴 ∈ 𝑉 → 𝐽 = (TopSet‘𝐻)) | ||
Theorem | plendx 17316 | Index value of the df-ple 17222 slot. (Contributed by Mario Carneiro, 14-Aug-2015.) (Revised by AV, 9-Sep-2021.) (New usage is discouraged.) |
⊢ (le‘ndx) = ;10 | ||
Theorem | pleid 17317 | Utility theorem: self-referencing, index-independent form of df-ple 17222. (Contributed by NM, 9-Nov-2012.) (Revised by AV, 9-Sep-2021.) |
⊢ le = Slot (le‘ndx) | ||
Theorem | plendxnn 17318 | The index value of the order slot is a positive integer. This property should be ensured for every concrete coding because otherwise it could not be used in an extensible structure (slots must be positive integers). (Contributed by AV, 30-Oct-2024.) |
⊢ (le‘ndx) ∈ ℕ | ||
Theorem | basendxltplendx 17319 | The index value of the Base slot is less than the index value of the le slot. (Contributed by AV, 30-Oct-2024.) |
⊢ (Base‘ndx) < (le‘ndx) | ||
Theorem | plendxnbasendx 17320 | The slot for the order is not the slot for the base set in an extensible structure. (Contributed by AV, 21-Oct-2024.) (Proof shortened by AV, 30-Oct-2024.) |
⊢ (le‘ndx) ≠ (Base‘ndx) | ||
Theorem | plendxnplusgndx 17321 | The slot for the "less than or equal to" ordering is not the slot for the group operation in an extensible structure. Formerly part of proof for oppgle 32394. (Contributed by AV, 18-Oct-2024.) |
⊢ (le‘ndx) ≠ (+g‘ndx) | ||
Theorem | plendxnmulrndx 17322 | The slot for the "less than or equal to" ordering is not the slot for the ring multiplication operation in an extensible structure. Formerly part of proof for opsrmulr 21830. (Contributed by AV, 1-Nov-2024.) |
⊢ (le‘ndx) ≠ (.r‘ndx) | ||
Theorem | plendxnscandx 17323 | The slot for the "less than or equal to" ordering is not the slot for the scalar in an extensible structure. Formerly part of proof for opsrsca 21834. (Contributed by AV, 1-Nov-2024.) |
⊢ (le‘ndx) ≠ (Scalar‘ndx) | ||
Theorem | plendxnvscandx 17324 | The slot for the "less than or equal to" ordering is not the slot for the scalar product in an extensible structure. Formerly part of proof for opsrvsca 21832. (Contributed by AV, 1-Nov-2024.) |
⊢ (le‘ndx) ≠ ( ·𝑠 ‘ndx) | ||
Theorem | slotsdifplendx 17325 | The index of the slot for the distance is not the index of other slots. Formerly part of proof for cnfldfunALT 21158. (Contributed by AV, 11-Nov-2024.) |
⊢ ((*𝑟‘ndx) ≠ (le‘ndx) ∧ (TopSet‘ndx) ≠ (le‘ndx)) | ||
Theorem | otpsstr 17326 | Functionality of a topological ordered space. (Contributed by Mario Carneiro, 12-Nov-2015.) (Revised by AV, 9-Sep-2021.) |
⊢ 𝐾 = {⟨(Base‘ndx), 𝐵⟩, ⟨(TopSet‘ndx), 𝐽⟩, ⟨(le‘ndx), ≤ ⟩} ⇒ ⊢ 𝐾 Struct ⟨1, ;10⟩ | ||
Theorem | otpsbas 17327 | The base set of a topological ordered space. (Contributed by Mario Carneiro, 12-Nov-2015.) (Revised by AV, 9-Sep-2021.) |
⊢ 𝐾 = {⟨(Base‘ndx), 𝐵⟩, ⟨(TopSet‘ndx), 𝐽⟩, ⟨(le‘ndx), ≤ ⟩} ⇒ ⊢ (𝐵 ∈ 𝑉 → 𝐵 = (Base‘𝐾)) | ||
Theorem | otpstset 17328 | The open sets of a topological ordered space. (Contributed by Mario Carneiro, 12-Nov-2015.) (Revised by AV, 9-Sep-2021.) |
⊢ 𝐾 = {⟨(Base‘ndx), 𝐵⟩, ⟨(TopSet‘ndx), 𝐽⟩, ⟨(le‘ndx), ≤ ⟩} ⇒ ⊢ (𝐽 ∈ 𝑉 → 𝐽 = (TopSet‘𝐾)) | ||
Theorem | otpsle 17329 | The order of a topological ordered space. (Contributed by Mario Carneiro, 12-Nov-2015.) (Revised by AV, 9-Sep-2021.) |
⊢ 𝐾 = {⟨(Base‘ndx), 𝐵⟩, ⟨(TopSet‘ndx), 𝐽⟩, ⟨(le‘ndx), ≤ ⟩} ⇒ ⊢ ( ≤ ∈ 𝑉 → ≤ = (le‘𝐾)) | ||
Theorem | ressle 17330 | le is unaffected by restriction. (Contributed by Mario Carneiro, 3-Nov-2015.) |
⊢ 𝑊 = (𝐾 ↾s 𝐴) & ⊢ ≤ = (le‘𝐾) ⇒ ⊢ (𝐴 ∈ 𝑉 → ≤ = (le‘𝑊)) | ||
Theorem | ocndx 17331 | Index value of the df-ocomp 17223 slot. (Contributed by Mario Carneiro, 25-Oct-2015.) (New usage is discouraged.) |
⊢ (oc‘ndx) = ;11 | ||
Theorem | ocid 17332 | Utility theorem: index-independent form of df-ocomp 17223. (Contributed by Mario Carneiro, 25-Oct-2015.) |
⊢ oc = Slot (oc‘ndx) | ||
Theorem | basendxnocndx 17333 | The slot for the orthocomplementation is not the slot for the base set in an extensible structure. Formerly part of proof for thlbas 21469. (Contributed by AV, 11-Nov-2024.) |
⊢ (Base‘ndx) ≠ (oc‘ndx) | ||
Theorem | plendxnocndx 17334 | The slot for the orthocomplementation is not the slot for the order in an extensible structure. Formerly part of proof for thlle 21471. (Contributed by AV, 11-Nov-2024.) |
⊢ (le‘ndx) ≠ (oc‘ndx) | ||
Theorem | dsndx 17335 | Index value of the df-ds 17224 slot. (Contributed by Mario Carneiro, 14-Aug-2015.) (New usage is discouraged.) |
⊢ (dist‘ndx) = ;12 | ||
Theorem | dsid 17336 | Utility theorem: index-independent form of df-ds 17224. (Contributed by Mario Carneiro, 23-Dec-2013.) |
⊢ dist = Slot (dist‘ndx) | ||
Theorem | dsndxnn 17337 | The index of the slot for the distance in an extensible structure is a positive integer. Formerly part of proof for tmslem 24211. (Contributed by AV, 28-Oct-2024.) |
⊢ (dist‘ndx) ∈ ℕ | ||
Theorem | basendxltdsndx 17338 | The index of the slot for the base set is less then the index of the slot for the distance in an extensible structure. Formerly part of proof for tmslem 24211. (Contributed by AV, 28-Oct-2024.) |
⊢ (Base‘ndx) < (dist‘ndx) | ||
Theorem | dsndxnbasendx 17339 | The slot for the distance is not the slot for the base set in an extensible structure. (Contributed by AV, 21-Oct-2024.) (Proof shortened by AV, 28-Oct-2024.) |
⊢ (dist‘ndx) ≠ (Base‘ndx) | ||
Theorem | dsndxnplusgndx 17340 | The slot for the distance function is not the slot for the group operation in an extensible structure. Formerly part of proof for mgpds 20042. (Contributed by AV, 18-Oct-2024.) |
⊢ (dist‘ndx) ≠ (+g‘ndx) | ||
Theorem | dsndxnmulrndx 17341 | The slot for the distance function is not the slot for the ring multiplication operation in an extensible structure. (Contributed by AV, 31-Oct-2024.) |
⊢ (dist‘ndx) ≠ (.r‘ndx) | ||
Theorem | slotsdnscsi 17342 | The slots Scalar, ·𝑠 and ·𝑖 are different from the slot dist. Formerly part of sralem 20936 and proofs using it. (Contributed by AV, 29-Oct-2024.) |
⊢ ((dist‘ndx) ≠ (Scalar‘ndx) ∧ (dist‘ndx) ≠ ( ·𝑠 ‘ndx) ∧ (dist‘ndx) ≠ (·𝑖‘ndx)) | ||
Theorem | dsndxntsetndx 17343 | The slot for the distance function is not the slot for the topology in an extensible structure. Formerly part of proof for tngds 24385. (Contributed by AV, 29-Oct-2024.) |
⊢ (dist‘ndx) ≠ (TopSet‘ndx) | ||
Theorem | slotsdifdsndx 17344 | The index of the slot for the distance is not the index of other slots. Formerly part of proof for cnfldfunALT 21158. (Contributed by AV, 11-Nov-2024.) |
⊢ ((*𝑟‘ndx) ≠ (dist‘ndx) ∧ (le‘ndx) ≠ (dist‘ndx)) | ||
Theorem | unifndx 17345 | Index value of the df-unif 17225 slot. (Contributed by Thierry Arnoux, 17-Dec-2017.) (New usage is discouraged.) |
⊢ (UnifSet‘ndx) = ;13 | ||
Theorem | unifid 17346 | Utility theorem: index-independent form of df-unif 17225. (Contributed by Thierry Arnoux, 17-Dec-2017.) |
⊢ UnifSet = Slot (UnifSet‘ndx) | ||
Theorem | unifndxnn 17347 | The index of the slot for the uniform set in an extensible structure is a positive integer. Formerly part of proof for tuslem 23992. (Contributed by AV, 28-Oct-2024.) |
⊢ (UnifSet‘ndx) ∈ ℕ | ||
Theorem | basendxltunifndx 17348 | The index of the slot for the base set is less then the index of the slot for the uniform set in an extensible structure. Formerly part of proof for tuslem 23992. (Contributed by AV, 28-Oct-2024.) |
⊢ (Base‘ndx) < (UnifSet‘ndx) | ||
Theorem | unifndxnbasendx 17349 | The slot for the uniform set is not the slot for the base set in an extensible structure. (Contributed by AV, 21-Oct-2024.) |
⊢ (UnifSet‘ndx) ≠ (Base‘ndx) | ||
Theorem | unifndxntsetndx 17350 | The slot for the uniform set is not the slot for the topology in an extensible structure. Formerly part of proof for tuslem 23992. (Contributed by AV, 28-Oct-2024.) |
⊢ (UnifSet‘ndx) ≠ (TopSet‘ndx) | ||
Theorem | slotsdifunifndx 17351 | The index of the slot for the uniform set is not the index of other slots. Formerly part of proof for cnfldfunALT 21158. (Contributed by AV, 10-Nov-2024.) |
⊢ (((+g‘ndx) ≠ (UnifSet‘ndx) ∧ (.r‘ndx) ≠ (UnifSet‘ndx) ∧ (*𝑟‘ndx) ≠ (UnifSet‘ndx)) ∧ ((le‘ndx) ≠ (UnifSet‘ndx) ∧ (dist‘ndx) ≠ (UnifSet‘ndx))) | ||
Theorem | ressunif 17352 | UnifSet is unaffected by restriction. (Contributed by Thierry Arnoux, 7-Dec-2017.) |
⊢ 𝐻 = (𝐺 ↾s 𝐴) & ⊢ 𝑈 = (UnifSet‘𝐺) ⇒ ⊢ (𝐴 ∈ 𝑉 → 𝑈 = (UnifSet‘𝐻)) | ||
Theorem | odrngstr 17353 | Functionality of an ordered metric ring. (Contributed by Mario Carneiro, 20-Aug-2015.) (Proof shortened by AV, 15-Sep-2021.) |
⊢ 𝑊 = ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∪ {⟨(TopSet‘ndx), 𝐽⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), 𝐷⟩}) ⇒ ⊢ 𝑊 Struct ⟨1, ;12⟩ | ||
Theorem | odrngbas 17354 | The base set of an ordered metric ring. (Contributed by Mario Carneiro, 20-Aug-2015.) |
⊢ 𝑊 = ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∪ {⟨(TopSet‘ndx), 𝐽⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), 𝐷⟩}) ⇒ ⊢ (𝐵 ∈ 𝑉 → 𝐵 = (Base‘𝑊)) | ||
Theorem | odrngplusg 17355 | The addition operation of an ordered metric ring. (Contributed by Mario Carneiro, 20-Aug-2015.) |
⊢ 𝑊 = ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∪ {⟨(TopSet‘ndx), 𝐽⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), 𝐷⟩}) ⇒ ⊢ ( + ∈ 𝑉 → + = (+g‘𝑊)) | ||
Theorem | odrngmulr 17356 | The multiplication operation of an ordered metric ring. (Contributed by Mario Carneiro, 20-Aug-2015.) |
⊢ 𝑊 = ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∪ {⟨(TopSet‘ndx), 𝐽⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), 𝐷⟩}) ⇒ ⊢ ( · ∈ 𝑉 → · = (.r‘𝑊)) | ||
Theorem | odrngtset 17357 | The open sets of an ordered metric ring. (Contributed by Mario Carneiro, 20-Aug-2015.) |
⊢ 𝑊 = ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∪ {⟨(TopSet‘ndx), 𝐽⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), 𝐷⟩}) ⇒ ⊢ (𝐽 ∈ 𝑉 → 𝐽 = (TopSet‘𝑊)) | ||
Theorem | odrngle 17358 | The order of an ordered metric ring. (Contributed by Mario Carneiro, 20-Aug-2015.) |
⊢ 𝑊 = ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∪ {⟨(TopSet‘ndx), 𝐽⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), 𝐷⟩}) ⇒ ⊢ ( ≤ ∈ 𝑉 → ≤ = (le‘𝑊)) | ||
Theorem | odrngds 17359 | The metric of an ordered metric ring. (Contributed by Mario Carneiro, 20-Aug-2015.) |
⊢ 𝑊 = ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∪ {⟨(TopSet‘ndx), 𝐽⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), 𝐷⟩}) ⇒ ⊢ (𝐷 ∈ 𝑉 → 𝐷 = (dist‘𝑊)) | ||
Theorem | ressds 17360 | dist is unaffected by restriction. (Contributed by Mario Carneiro, 26-Aug-2015.) |
⊢ 𝐻 = (𝐺 ↾s 𝐴) & ⊢ 𝐷 = (dist‘𝐺) ⇒ ⊢ (𝐴 ∈ 𝑉 → 𝐷 = (dist‘𝐻)) | ||
Theorem | homndx 17361 | Index value of the df-hom 17226 slot. (Contributed by Mario Carneiro, 7-Jan-2017.) (New usage is discouraged.) |
⊢ (Hom ‘ndx) = ;14 | ||
Theorem | homid 17362 | Utility theorem: index-independent form of df-hom 17226. (Contributed by Mario Carneiro, 7-Jan-2017.) |
⊢ Hom = Slot (Hom ‘ndx) | ||
Theorem | ccondx 17363 | Index value of the df-cco 17227 slot. (Contributed by Mario Carneiro, 7-Jan-2017.) (New usage is discouraged.) |
⊢ (comp‘ndx) = ;15 | ||
Theorem | ccoid 17364 | Utility theorem: index-independent form of df-cco 17227. (Contributed by Mario Carneiro, 7-Jan-2017.) |
⊢ comp = Slot (comp‘ndx) | ||
Theorem | slotsbhcdif 17365 | The slots Base, Hom and comp are different. (Contributed by AV, 5-Mar-2020.) (Proof shortened by AV, 28-Oct-2024.) |
⊢ ((Base‘ndx) ≠ (Hom ‘ndx) ∧ (Base‘ndx) ≠ (comp‘ndx) ∧ (Hom ‘ndx) ≠ (comp‘ndx)) | ||
Theorem | slotsbhcdifOLD 17366 | Obsolete proof of slotsbhcdif 17365 as of 28-Oct-2024. The slots Base, Hom and comp are different. (Contributed by AV, 5-Mar-2020.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ((Base‘ndx) ≠ (Hom ‘ndx) ∧ (Base‘ndx) ≠ (comp‘ndx) ∧ (Hom ‘ndx) ≠ (comp‘ndx)) | ||
Theorem | slotsdifplendx2 17367 | The index of the slot for the "less than or equal to" ordering is not the index of other slots. Formerly part of proof for prstcleval 47777. (Contributed by AV, 12-Nov-2024.) |
⊢ ((le‘ndx) ≠ (comp‘ndx) ∧ (le‘ndx) ≠ (Hom ‘ndx)) | ||
Theorem | slotsdifocndx 17368 | The index of the slot for the orthocomplementation is not the index of other slots. Formerly part of proof for prstcocval 47780. (Contributed by AV, 12-Nov-2024.) |
⊢ ((oc‘ndx) ≠ (comp‘ndx) ∧ (oc‘ndx) ≠ (Hom ‘ndx)) | ||
Theorem | resshom 17369 | Hom is unaffected by restriction. (Contributed by Mario Carneiro, 5-Jan-2017.) |
⊢ 𝐷 = (𝐶 ↾s 𝐴) & ⊢ 𝐻 = (Hom ‘𝐶) ⇒ ⊢ (𝐴 ∈ 𝑉 → 𝐻 = (Hom ‘𝐷)) | ||
Theorem | ressco 17370 | comp is unaffected by restriction. (Contributed by Mario Carneiro, 5-Jan-2017.) |
⊢ 𝐷 = (𝐶 ↾s 𝐴) & ⊢ · = (comp‘𝐶) ⇒ ⊢ (𝐴 ∈ 𝑉 → · = (comp‘𝐷)) | ||
Syntax | crest 17371 | Extend class notation with the function returning a subspace topology. |
class ↾t | ||
Syntax | ctopn 17372 | Extend class notation with the topology extractor function. |
class TopOpen | ||
Definition | df-rest 17373* | Function returning the subspace topology induced by the topology 𝑦 and the set 𝑥. (Contributed by FL, 20-Sep-2010.) (Revised by Mario Carneiro, 1-May-2015.) |
⊢ ↾t = (𝑗 ∈ V, 𝑥 ∈ V ↦ ran (𝑦 ∈ 𝑗 ↦ (𝑦 ∩ 𝑥))) | ||
Definition | df-topn 17374 | Define the topology extractor function. This differs from df-tset 17221 when a structure has been restricted using df-ress 17179; in this case the TopSet component will still have a topology over the larger set, and this function fixes this by restricting the topology as well. (Contributed by Mario Carneiro, 13-Aug-2015.) |
⊢ TopOpen = (𝑤 ∈ V ↦ ((TopSet‘𝑤) ↾t (Base‘𝑤))) | ||
Theorem | restfn 17375 | The subspace topology operator is a function on pairs. (Contributed by Mario Carneiro, 1-May-2015.) |
⊢ ↾t Fn (V × V) | ||
Theorem | topnfn 17376 | The topology extractor function is a function on the universe. (Contributed by Mario Carneiro, 13-Aug-2015.) |
⊢ TopOpen Fn V | ||
Theorem | restval 17377* | The subspace topology induced by the topology 𝐽 on the set 𝐴. (Contributed by FL, 20-Sep-2010.) (Revised by Mario Carneiro, 1-May-2015.) |
⊢ ((𝐽 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) → (𝐽 ↾t 𝐴) = ran (𝑥 ∈ 𝐽 ↦ (𝑥 ∩ 𝐴))) | ||
Theorem | elrest 17378* | The predicate "is an open set of a subspace topology". (Contributed by FL, 5-Jan-2009.) (Revised by Mario Carneiro, 15-Dec-2013.) |
⊢ ((𝐽 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ∈ (𝐽 ↾t 𝐵) ↔ ∃𝑥 ∈ 𝐽 𝐴 = (𝑥 ∩ 𝐵))) | ||
Theorem | elrestr 17379 | Sufficient condition for being an open set in a subspace. (Contributed by Jeff Hankins, 11-Jul-2009.) (Revised by Mario Carneiro, 15-Dec-2013.) |
⊢ ((𝐽 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊 ∧ 𝐴 ∈ 𝐽) → (𝐴 ∩ 𝑆) ∈ (𝐽 ↾t 𝑆)) | ||
Theorem | 0rest 17380 | Value of the structure restriction when the topology input is empty. (Contributed by Mario Carneiro, 13-Aug-2015.) |
⊢ (∅ ↾t 𝐴) = ∅ | ||
Theorem | restid2 17381 | The subspace topology over a subset of the base set is the original topology. (Contributed by Mario Carneiro, 13-Aug-2015.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐽 ⊆ 𝒫 𝐴) → (𝐽 ↾t 𝐴) = 𝐽) | ||
Theorem | restsspw 17382 | The subspace topology is a collection of subsets of the restriction set. (Contributed by Mario Carneiro, 13-Aug-2015.) |
⊢ (𝐽 ↾t 𝐴) ⊆ 𝒫 𝐴 | ||
Theorem | firest 17383 | The finite intersections operator commutes with restriction. (Contributed by Mario Carneiro, 30-Aug-2015.) |
⊢ (fi‘(𝐽 ↾t 𝐴)) = ((fi‘𝐽) ↾t 𝐴) | ||
Theorem | restid 17384 | The subspace topology of the base set is the original topology. (Contributed by Jeff Hankins, 9-Jul-2009.) (Revised by Mario Carneiro, 13-Aug-2015.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (𝐽 ∈ 𝑉 → (𝐽 ↾t 𝑋) = 𝐽) | ||
Theorem | topnval 17385 | Value of the topology extractor function. (Contributed by Mario Carneiro, 13-Aug-2015.) |
⊢ 𝐵 = (Base‘𝑊) & ⊢ 𝐽 = (TopSet‘𝑊) ⇒ ⊢ (𝐽 ↾t 𝐵) = (TopOpen‘𝑊) | ||
Theorem | topnid 17386 | Value of the topology extractor function when the topology is defined over the same set as the base. (Contributed by Mario Carneiro, 13-Aug-2015.) |
⊢ 𝐵 = (Base‘𝑊) & ⊢ 𝐽 = (TopSet‘𝑊) ⇒ ⊢ (𝐽 ⊆ 𝒫 𝐵 → 𝐽 = (TopOpen‘𝑊)) | ||
Theorem | topnpropd 17387 | The topology extractor function depends only on the base and topology components. (Contributed by NM, 18-Jul-2006.) |
⊢ (𝜑 → (Base‘𝐾) = (Base‘𝐿)) & ⊢ (𝜑 → (TopSet‘𝐾) = (TopSet‘𝐿)) ⇒ ⊢ (𝜑 → (TopOpen‘𝐾) = (TopOpen‘𝐿)) | ||
Syntax | ctg 17388 | Extend class notation with a function that converts a basis to its corresponding topology. |
class topGen | ||
Syntax | cpt 17389 | Extend class notation with a function whose value is a product topology. |
class ∏t | ||
Syntax | c0g 17390 | Extend class notation with group identity element. |
class 0g | ||
Syntax | cgsu 17391 | Extend class notation to include finitely supported group sums. |
class Σg | ||
Definition | df-0g 17392* | Define group identity element. Remark: this definition is required here because the symbol 0g is already used in df-gsum 17393. The related theorems are provided later, see grpidval 18587. (Contributed by NM, 20-Aug-2011.) |
⊢ 0g = (𝑔 ∈ V ↦ (℩𝑒(𝑒 ∈ (Base‘𝑔) ∧ ∀𝑥 ∈ (Base‘𝑔)((𝑒(+g‘𝑔)𝑥) = 𝑥 ∧ (𝑥(+g‘𝑔)𝑒) = 𝑥)))) | ||
Definition | df-gsum 17393* |
Define the group sum (also called "iterated sum") for the structure
𝐺 of a finite sequence of elements
whose values are defined by the
expression 𝐵 and whose set of indices is 𝐴. It
may be viewed
as a product (if 𝐺 is a multiplication), a sum (if
𝐺
is an
addition) or any other operation. The variable 𝑘 is normally a free
variable in 𝐵 (i.e., 𝐵 can be thought of as
𝐵(𝑘)). The
definition is meaningful in different contexts, depending on the size of
the index set 𝐴 and each demanding different
properties of 𝐺.
1. If 𝐴 = ∅ and 𝐺 has an identity element, then the sum equals this identity. See gsum0 18610. 2. If 𝐴 = (𝑀...𝑁) and 𝐺 is any magma, then the sum is the sum of the elements, evaluated left-to-right, i.e., (𝐵(1) + 𝐵(2)) + 𝐵(3), etc. See gsumval2 18612 and gsumnunsn 33847. 3. If 𝐴 is a finite set (or is nonzero for finitely many indices) and 𝐺 is a commutative monoid, then the sum adds up these elements in some order, which is then uniquely defined. See gsumval3 19817. 4. If 𝐴 is an infinite set and 𝐺 is a Hausdorff topological group, then there is a meaningful sum, but Σg cannot handle this case. See df-tsms 23852. Remark: this definition is required here because the symbol Σg is already used in df-prds 17398 and df-imas 17459. The related theorems are provided later, see gsumvalx 18602. (Contributed by FL, 5-Sep-2010.) (Revised by FL, 17-Oct-2011.) (Revised by Mario Carneiro, 7-Dec-2014.) |
⊢ Σg = (𝑤 ∈ V, 𝑓 ∈ V ↦ ⦋{𝑥 ∈ (Base‘𝑤) ∣ ∀𝑦 ∈ (Base‘𝑤)((𝑥(+g‘𝑤)𝑦) = 𝑦 ∧ (𝑦(+g‘𝑤)𝑥) = 𝑦)} / 𝑜⦌if(ran 𝑓 ⊆ 𝑜, (0g‘𝑤), if(dom 𝑓 ∈ ran ..., (℩𝑥∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)(dom 𝑓 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g‘𝑤), 𝑓)‘𝑛))), (℩𝑥∃𝑔[(◡𝑓 “ (V ∖ 𝑜)) / 𝑦](𝑔:(1...(♯‘𝑦))–1-1-onto→𝑦 ∧ 𝑥 = (seq1((+g‘𝑤), (𝑓 ∘ 𝑔))‘(♯‘𝑦))))))) | ||
Definition | df-topgen 17394* | Define a function that converts a basis to its corresponding topology. Equivalent to the definition of a topology generated by a basis in [Munkres] p. 78 (see tgval2 22680). The first use of this definition is tgval 22679 but the token is used in df-pt 17395. See tgval3 22687 for an alternate expression for the value. (Contributed by NM, 16-Jul-2006.) |
⊢ topGen = (𝑥 ∈ V ↦ {𝑦 ∣ 𝑦 ⊆ ∪ (𝑥 ∩ 𝒫 𝑦)}) | ||
Definition | df-pt 17395* | Define the product topology on a collection of topologies. For convenience, it is defined on arbitrary collections of sets, expressed as a function from some index set to the subbases of each factor space. (Contributed by Mario Carneiro, 3-Feb-2015.) |
⊢ ∏t = (𝑓 ∈ V ↦ (topGen‘{𝑥 ∣ ∃𝑔((𝑔 Fn dom 𝑓 ∧ ∀𝑦 ∈ dom 𝑓(𝑔‘𝑦) ∈ (𝑓‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (dom 𝑓 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝑓‘𝑦)) ∧ 𝑥 = X𝑦 ∈ dom 𝑓(𝑔‘𝑦))})) | ||
Syntax | cprds 17396 | The function constructing structure products. |
class Xs | ||
Syntax | cpws 17397 | The function constructing structure powers. |
class ↑s | ||
Definition | df-prds 17398* | Define a structure product. This can be a product of groups, rings, modules, or ordered topological fields; any unused components will have garbage in them but this is usually not relevant for the purpose of inheriting the structures present in the factors. (Contributed by Stefan O'Rear, 3-Jan-2015.) (Revised by Thierry Arnoux, 15-Jun-2019.) (Revised by Zhi Wang, 18-Aug-2024.) |
⊢ Xs = (𝑠 ∈ V, 𝑟 ∈ V ↦ ⦋X𝑥 ∈ dom 𝑟(Base‘(𝑟‘𝑥)) / 𝑣⦌⦋(𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ X𝑥 ∈ dom 𝑟((𝑓‘𝑥)(Hom ‘(𝑟‘𝑥))(𝑔‘𝑥))) / ℎ⦌(({⟨(Base‘ndx), 𝑣⟩, ⟨(+g‘ndx), (𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑓‘𝑥)(+g‘(𝑟‘𝑥))(𝑔‘𝑥))))⟩, ⟨(.r‘ndx), (𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑓‘𝑥)(.r‘(𝑟‘𝑥))(𝑔‘𝑥))))⟩} ∪ {⟨(Scalar‘ndx), 𝑠⟩, ⟨( ·𝑠 ‘ndx), (𝑓 ∈ (Base‘𝑠), 𝑔 ∈ 𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ (𝑓( ·𝑠 ‘(𝑟‘𝑥))(𝑔‘𝑥))))⟩, ⟨(·𝑖‘ndx), (𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ (𝑠 Σg (𝑥 ∈ dom 𝑟 ↦ ((𝑓‘𝑥)(·𝑖‘(𝑟‘𝑥))(𝑔‘𝑥)))))⟩}) ∪ ({⟨(TopSet‘ndx), (∏t‘(TopOpen ∘ 𝑟))⟩, ⟨(le‘ndx), {⟨𝑓, 𝑔⟩ ∣ ({𝑓, 𝑔} ⊆ 𝑣 ∧ ∀𝑥 ∈ dom 𝑟(𝑓‘𝑥)(le‘(𝑟‘𝑥))(𝑔‘𝑥))}⟩, ⟨(dist‘ndx), (𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ sup((ran (𝑥 ∈ dom 𝑟 ↦ ((𝑓‘𝑥)(dist‘(𝑟‘𝑥))(𝑔‘𝑥))) ∪ {0}), ℝ*, < ))⟩} ∪ {⟨(Hom ‘ndx), ℎ⟩, ⟨(comp‘ndx), (𝑎 ∈ (𝑣 × 𝑣), 𝑐 ∈ 𝑣 ↦ (𝑑 ∈ ((2nd ‘𝑎)ℎ𝑐), 𝑒 ∈ (ℎ‘𝑎) ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑑‘𝑥)(⟨((1st ‘𝑎)‘𝑥), ((2nd ‘𝑎)‘𝑥)⟩(comp‘(𝑟‘𝑥))(𝑐‘𝑥))(𝑒‘𝑥)))))⟩}))) | ||
Theorem | reldmprds 17399 | The structure product is a well-behaved binary operator. (Contributed by Stefan O'Rear, 7-Jan-2015.) (Revised by Thierry Arnoux, 15-Jun-2019.) (Revised by Zhi Wang, 18-Aug-2024.) |
⊢ Rel dom Xs | ||
Definition | df-pws 17400* | Define a structure power, which is just a structure product where all the factors are the same. (Contributed by Mario Carneiro, 11-Jan-2015.) |
⊢ ↑s = (𝑟 ∈ V, 𝑖 ∈ V ↦ ((Scalar‘𝑟)Xs(𝑖 × {𝑟}))) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |