Home | Metamath
Proof Explorer Theorem List (p. 174 of 464) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | Metamath Proof Explorer
(1-29181) |
Hilbert Space Explorer
(29182-30704) |
Users' Mathboxes
(30705-46395) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | catideu 17301* | Each object in a category has a unique identity arrow. (Contributed by Mario Carneiro, 2-Jan-2017.) |
⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ · = (comp‘𝐶) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → ∃!𝑔 ∈ (𝑋𝐻𝑋)∀𝑦 ∈ 𝐵 (∀𝑓 ∈ (𝑦𝐻𝑋)(𝑔(〈𝑦, 𝑋〉 · 𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑦)(𝑓(〈𝑋, 𝑋〉 · 𝑦)𝑔) = 𝑓)) | ||
Theorem | cidfval 17302* | Each object in a category has an associated identity arrow. (Contributed by Mario Carneiro, 3-Jan-2017.) |
⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ · = (comp‘𝐶) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ 1 = (Id‘𝐶) ⇒ ⊢ (𝜑 → 1 = (𝑥 ∈ 𝐵 ↦ (℩𝑔 ∈ (𝑥𝐻𝑥)∀𝑦 ∈ 𝐵 (∀𝑓 ∈ (𝑦𝐻𝑥)(𝑔(〈𝑦, 𝑥〉 · 𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥𝐻𝑦)(𝑓(〈𝑥, 𝑥〉 · 𝑦)𝑔) = 𝑓)))) | ||
Theorem | cidval 17303* | Each object in a category has an associated identity arrow. (Contributed by Mario Carneiro, 2-Jan-2017.) |
⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ · = (comp‘𝐶) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ 1 = (Id‘𝐶) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → ( 1 ‘𝑋) = (℩𝑔 ∈ (𝑋𝐻𝑋)∀𝑦 ∈ 𝐵 (∀𝑓 ∈ (𝑦𝐻𝑋)(𝑔(〈𝑦, 𝑋〉 · 𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑦)(𝑓(〈𝑋, 𝑋〉 · 𝑦)𝑔) = 𝑓))) | ||
Theorem | cidffn 17304 | The identity arrow construction is a function on categories. (Contributed by Mario Carneiro, 17-Jan-2017.) |
⊢ Id Fn Cat | ||
Theorem | cidfn 17305 | The identity arrow operator is a function from objects to arrows. (Contributed by Mario Carneiro, 4-Jan-2017.) |
⊢ 𝐵 = (Base‘𝐶) & ⊢ 1 = (Id‘𝐶) ⇒ ⊢ (𝐶 ∈ Cat → 1 Fn 𝐵) | ||
Theorem | catidd 17306* | Deduce the identity arrow in a category. (Contributed by Mario Carneiro, 3-Jan-2017.) |
⊢ (𝜑 → 𝐵 = (Base‘𝐶)) & ⊢ (𝜑 → 𝐻 = (Hom ‘𝐶)) & ⊢ (𝜑 → · = (comp‘𝐶)) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 1 ∈ (𝑥𝐻𝑥)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑓 ∈ (𝑦𝐻𝑥))) → ( 1 (〈𝑦, 𝑥〉 · 𝑥)𝑓) = 𝑓) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑓 ∈ (𝑥𝐻𝑦))) → (𝑓(〈𝑥, 𝑥〉 · 𝑦) 1 ) = 𝑓) ⇒ ⊢ (𝜑 → (Id‘𝐶) = (𝑥 ∈ 𝐵 ↦ 1 )) | ||
Theorem | iscatd2 17307* | Version of iscatd 17299 with a uniform assumption list, for increased proof sharing capabilities. (Contributed by Mario Carneiro, 4-Jan-2017.) |
⊢ (𝜑 → 𝐵 = (Base‘𝐶)) & ⊢ (𝜑 → 𝐻 = (Hom ‘𝐶)) & ⊢ (𝜑 → · = (comp‘𝐶)) & ⊢ (𝜑 → 𝐶 ∈ 𝑉) & ⊢ (𝜓 ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ (𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧) ∧ 𝑘 ∈ (𝑧𝐻𝑤)))) & ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → 1 ∈ (𝑦𝐻𝑦)) & ⊢ ((𝜑 ∧ 𝜓) → ( 1 (〈𝑥, 𝑦〉 · 𝑦)𝑓) = 𝑓) & ⊢ ((𝜑 ∧ 𝜓) → (𝑔(〈𝑦, 𝑦〉 · 𝑧) 1 ) = 𝑔) & ⊢ ((𝜑 ∧ 𝜓) → (𝑔(〈𝑥, 𝑦〉 · 𝑧)𝑓) ∈ (𝑥𝐻𝑧)) & ⊢ ((𝜑 ∧ 𝜓) → ((𝑘(〈𝑦, 𝑧〉 · 𝑤)𝑔)(〈𝑥, 𝑦〉 · 𝑤)𝑓) = (𝑘(〈𝑥, 𝑧〉 · 𝑤)(𝑔(〈𝑥, 𝑦〉 · 𝑧)𝑓))) ⇒ ⊢ (𝜑 → (𝐶 ∈ Cat ∧ (Id‘𝐶) = (𝑦 ∈ 𝐵 ↦ 1 ))) | ||
Theorem | catidcl 17308 | Each object in a category has an associated identity arrow. (Contributed by Mario Carneiro, 2-Jan-2017.) |
⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ 1 = (Id‘𝐶) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → ( 1 ‘𝑋) ∈ (𝑋𝐻𝑋)) | ||
Theorem | catlid 17309 | Left identity property of an identity arrow. (Contributed by Mario Carneiro, 2-Jan-2017.) |
⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ 1 = (Id‘𝐶) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ · = (comp‘𝐶) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐻𝑌)) ⇒ ⊢ (𝜑 → (( 1 ‘𝑌)(〈𝑋, 𝑌〉 · 𝑌)𝐹) = 𝐹) | ||
Theorem | catrid 17310 | Right identity property of an identity arrow. (Contributed by Mario Carneiro, 2-Jan-2017.) |
⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ 1 = (Id‘𝐶) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ · = (comp‘𝐶) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐻𝑌)) ⇒ ⊢ (𝜑 → (𝐹(〈𝑋, 𝑋〉 · 𝑌)( 1 ‘𝑋)) = 𝐹) | ||
Theorem | catcocl 17311 | Closure of a composition arrow. (Contributed by Mario Carneiro, 2-Jan-2017.) |
⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ · = (comp‘𝐶) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) & ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐻𝑌)) & ⊢ (𝜑 → 𝐺 ∈ (𝑌𝐻𝑍)) ⇒ ⊢ (𝜑 → (𝐺(〈𝑋, 𝑌〉 · 𝑍)𝐹) ∈ (𝑋𝐻𝑍)) | ||
Theorem | catass 17312 | Associativity of composition in a category. (Contributed by Mario Carneiro, 2-Jan-2017.) |
⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ · = (comp‘𝐶) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) & ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐻𝑌)) & ⊢ (𝜑 → 𝐺 ∈ (𝑌𝐻𝑍)) & ⊢ (𝜑 → 𝑊 ∈ 𝐵) & ⊢ (𝜑 → 𝐾 ∈ (𝑍𝐻𝑊)) ⇒ ⊢ (𝜑 → ((𝐾(〈𝑌, 𝑍〉 · 𝑊)𝐺)(〈𝑋, 𝑌〉 · 𝑊)𝐹) = (𝐾(〈𝑋, 𝑍〉 · 𝑊)(𝐺(〈𝑋, 𝑌〉 · 𝑍)𝐹))) | ||
Theorem | catcone0 17313 | Composition of non-empty hom-sets is non-empty. (Contributed by Zhi Wang, 18-Sep-2024.) |
⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ · = (comp‘𝐶) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) & ⊢ (𝜑 → (𝑋𝐻𝑌) ≠ ∅) & ⊢ (𝜑 → (𝑌𝐻𝑍) ≠ ∅) ⇒ ⊢ (𝜑 → (𝑋𝐻𝑍) ≠ ∅) | ||
Theorem | 0catg 17314 | Any structure with an empty set of objects is a category. (Contributed by Mario Carneiro, 3-Jan-2017.) |
⊢ ((𝐶 ∈ 𝑉 ∧ ∅ = (Base‘𝐶)) → 𝐶 ∈ Cat) | ||
Theorem | 0cat 17315 | The empty set is a category, the empty category, see example 3.3(4.c) in [Adamek] p. 24. (Contributed by Mario Carneiro, 3-Jan-2017.) |
⊢ ∅ ∈ Cat | ||
Theorem | homffval 17316* | Value of the functionalized Hom-set operation. (Contributed by Mario Carneiro, 4-Jan-2017.) (Proof shortened by AV, 1-Mar-2024.) |
⊢ 𝐹 = (Homf ‘𝐶) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐻 = (Hom ‘𝐶) ⇒ ⊢ 𝐹 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥𝐻𝑦)) | ||
Theorem | fnhomeqhomf 17317 | If the Hom-set operation is a function it is equal to the corresponding functionalized Hom-set operation. (Contributed by AV, 1-Mar-2020.) |
⊢ 𝐹 = (Homf ‘𝐶) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐻 = (Hom ‘𝐶) ⇒ ⊢ (𝐻 Fn (𝐵 × 𝐵) → 𝐹 = 𝐻) | ||
Theorem | homfval 17318 | Value of the functionalized Hom-set operation. (Contributed by Mario Carneiro, 4-Jan-2017.) |
⊢ 𝐹 = (Homf ‘𝐶) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝑋𝐹𝑌) = (𝑋𝐻𝑌)) | ||
Theorem | homffn 17319 | The functionalized Hom-set operation is a function. (Contributed by Mario Carneiro, 4-Jan-2017.) |
⊢ 𝐹 = (Homf ‘𝐶) & ⊢ 𝐵 = (Base‘𝐶) ⇒ ⊢ 𝐹 Fn (𝐵 × 𝐵) | ||
Theorem | homfeq 17320* | Condition for two categories with the same base to have the same hom-sets. (Contributed by Mario Carneiro, 6-Jan-2017.) |
⊢ 𝐻 = (Hom ‘𝐶) & ⊢ 𝐽 = (Hom ‘𝐷) & ⊢ (𝜑 → 𝐵 = (Base‘𝐶)) & ⊢ (𝜑 → 𝐵 = (Base‘𝐷)) ⇒ ⊢ (𝜑 → ((Homf ‘𝐶) = (Homf ‘𝐷) ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥𝐻𝑦) = (𝑥𝐽𝑦))) | ||
Theorem | homfeqd 17321 | If two structures have the same Hom slot, they have the same Hom-sets. (Contributed by Mario Carneiro, 4-Jan-2017.) |
⊢ (𝜑 → (Base‘𝐶) = (Base‘𝐷)) & ⊢ (𝜑 → (Hom ‘𝐶) = (Hom ‘𝐷)) ⇒ ⊢ (𝜑 → (Homf ‘𝐶) = (Homf ‘𝐷)) | ||
Theorem | homfeqbas 17322 | Deduce equality of base sets from equality of Hom-sets. (Contributed by Mario Carneiro, 4-Jan-2017.) |
⊢ (𝜑 → (Homf ‘𝐶) = (Homf ‘𝐷)) ⇒ ⊢ (𝜑 → (Base‘𝐶) = (Base‘𝐷)) | ||
Theorem | homfeqval 17323 | Value of the functionalized Hom-set operation. (Contributed by Mario Carneiro, 4-Jan-2017.) |
⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ 𝐽 = (Hom ‘𝐷) & ⊢ (𝜑 → (Homf ‘𝐶) = (Homf ‘𝐷)) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝑋𝐻𝑌) = (𝑋𝐽𝑌)) | ||
Theorem | comfffval 17324* | Value of the functionalized composition operation. (Contributed by Mario Carneiro, 4-Jan-2017.) (Proof shortened by AV, 1-Mar-2024.) |
⊢ 𝑂 = (compf‘𝐶) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ · = (comp‘𝐶) ⇒ ⊢ 𝑂 = (𝑥 ∈ (𝐵 × 𝐵), 𝑦 ∈ 𝐵 ↦ (𝑔 ∈ ((2nd ‘𝑥)𝐻𝑦), 𝑓 ∈ (𝐻‘𝑥) ↦ (𝑔(𝑥 · 𝑦)𝑓))) | ||
Theorem | comffval 17325* | Value of the functionalized composition operation. (Contributed by Mario Carneiro, 4-Jan-2017.) |
⊢ 𝑂 = (compf‘𝐶) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ · = (comp‘𝐶) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) ⇒ ⊢ (𝜑 → (〈𝑋, 𝑌〉𝑂𝑍) = (𝑔 ∈ (𝑌𝐻𝑍), 𝑓 ∈ (𝑋𝐻𝑌) ↦ (𝑔(〈𝑋, 𝑌〉 · 𝑍)𝑓))) | ||
Theorem | comfval 17326 | Value of the functionalized composition operation. (Contributed by Mario Carneiro, 4-Jan-2017.) |
⊢ 𝑂 = (compf‘𝐶) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ · = (comp‘𝐶) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) & ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐻𝑌)) & ⊢ (𝜑 → 𝐺 ∈ (𝑌𝐻𝑍)) ⇒ ⊢ (𝜑 → (𝐺(〈𝑋, 𝑌〉𝑂𝑍)𝐹) = (𝐺(〈𝑋, 𝑌〉 · 𝑍)𝐹)) | ||
Theorem | comfffval2 17327* | Value of the functionalized composition operation. (Contributed by Mario Carneiro, 4-Jan-2017.) |
⊢ 𝑂 = (compf‘𝐶) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐻 = (Homf ‘𝐶) & ⊢ · = (comp‘𝐶) ⇒ ⊢ 𝑂 = (𝑥 ∈ (𝐵 × 𝐵), 𝑦 ∈ 𝐵 ↦ (𝑔 ∈ ((2nd ‘𝑥)𝐻𝑦), 𝑓 ∈ (𝐻‘𝑥) ↦ (𝑔(𝑥 · 𝑦)𝑓))) | ||
Theorem | comffval2 17328* | Value of the functionalized composition operation. (Contributed by Mario Carneiro, 4-Jan-2017.) |
⊢ 𝑂 = (compf‘𝐶) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐻 = (Homf ‘𝐶) & ⊢ · = (comp‘𝐶) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) ⇒ ⊢ (𝜑 → (〈𝑋, 𝑌〉𝑂𝑍) = (𝑔 ∈ (𝑌𝐻𝑍), 𝑓 ∈ (𝑋𝐻𝑌) ↦ (𝑔(〈𝑋, 𝑌〉 · 𝑍)𝑓))) | ||
Theorem | comfval2 17329 | Value of the functionalized composition operation. (Contributed by Mario Carneiro, 4-Jan-2017.) |
⊢ 𝑂 = (compf‘𝐶) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐻 = (Homf ‘𝐶) & ⊢ · = (comp‘𝐶) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) & ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐻𝑌)) & ⊢ (𝜑 → 𝐺 ∈ (𝑌𝐻𝑍)) ⇒ ⊢ (𝜑 → (𝐺(〈𝑋, 𝑌〉𝑂𝑍)𝐹) = (𝐺(〈𝑋, 𝑌〉 · 𝑍)𝐹)) | ||
Theorem | comfffn 17330 | The functionalized composition operation is a function. (Contributed by Mario Carneiro, 4-Jan-2017.) |
⊢ 𝑂 = (compf‘𝐶) & ⊢ 𝐵 = (Base‘𝐶) ⇒ ⊢ 𝑂 Fn ((𝐵 × 𝐵) × 𝐵) | ||
Theorem | comffn 17331 | The functionalized composition operation is a function. (Contributed by Mario Carneiro, 4-Jan-2017.) |
⊢ 𝑂 = (compf‘𝐶) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) ⇒ ⊢ (𝜑 → (〈𝑋, 𝑌〉𝑂𝑍) Fn ((𝑌𝐻𝑍) × (𝑋𝐻𝑌))) | ||
Theorem | comfeq 17332* | Condition for two categories with the same hom-sets to have the same composition. (Contributed by Mario Carneiro, 4-Jan-2017.) |
⊢ · = (comp‘𝐶) & ⊢ ∙ = (comp‘𝐷) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ (𝜑 → 𝐵 = (Base‘𝐶)) & ⊢ (𝜑 → 𝐵 = (Base‘𝐷)) & ⊢ (𝜑 → (Homf ‘𝐶) = (Homf ‘𝐷)) ⇒ ⊢ (𝜑 → ((compf‘𝐶) = (compf‘𝐷) ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ∀𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)(𝑔(〈𝑥, 𝑦〉 · 𝑧)𝑓) = (𝑔(〈𝑥, 𝑦〉 ∙ 𝑧)𝑓))) | ||
Theorem | comfeqd 17333 | Condition for two categories with the same hom-sets to have the same composition. (Contributed by Mario Carneiro, 4-Jan-2017.) |
⊢ (𝜑 → (comp‘𝐶) = (comp‘𝐷)) & ⊢ (𝜑 → (Homf ‘𝐶) = (Homf ‘𝐷)) ⇒ ⊢ (𝜑 → (compf‘𝐶) = (compf‘𝐷)) | ||
Theorem | comfeqval 17334 | Equality of two compositions. (Contributed by Mario Carneiro, 4-Jan-2017.) |
⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ · = (comp‘𝐶) & ⊢ ∙ = (comp‘𝐷) & ⊢ (𝜑 → (Homf ‘𝐶) = (Homf ‘𝐷)) & ⊢ (𝜑 → (compf‘𝐶) = (compf‘𝐷)) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) & ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐻𝑌)) & ⊢ (𝜑 → 𝐺 ∈ (𝑌𝐻𝑍)) ⇒ ⊢ (𝜑 → (𝐺(〈𝑋, 𝑌〉 · 𝑍)𝐹) = (𝐺(〈𝑋, 𝑌〉 ∙ 𝑍)𝐹)) | ||
Theorem | catpropd 17335 | Two structures with the same base, hom-sets and composition operation are either both categories or neither. (Contributed by Mario Carneiro, 5-Jan-2017.) |
⊢ (𝜑 → (Homf ‘𝐶) = (Homf ‘𝐷)) & ⊢ (𝜑 → (compf‘𝐶) = (compf‘𝐷)) & ⊢ (𝜑 → 𝐶 ∈ 𝑉) & ⊢ (𝜑 → 𝐷 ∈ 𝑊) ⇒ ⊢ (𝜑 → (𝐶 ∈ Cat ↔ 𝐷 ∈ Cat)) | ||
Theorem | cidpropd 17336 | Two structures with the same base, hom-sets and composition operation have the same identity function. (Contributed by Mario Carneiro, 17-Jan-2017.) |
⊢ (𝜑 → (Homf ‘𝐶) = (Homf ‘𝐷)) & ⊢ (𝜑 → (compf‘𝐶) = (compf‘𝐷)) & ⊢ (𝜑 → 𝐶 ∈ 𝑉) & ⊢ (𝜑 → 𝐷 ∈ 𝑊) ⇒ ⊢ (𝜑 → (Id‘𝐶) = (Id‘𝐷)) | ||
Syntax | coppc 17337 | The opposite category operation. |
class oppCat | ||
Definition | df-oppc 17338* | Define an opposite category, which is the same as the original category but with the direction of arrows the other way around. Definition 3.5 of [Adamek] p. 25. (Contributed by Mario Carneiro, 2-Jan-2017.) |
⊢ oppCat = (𝑓 ∈ V ↦ ((𝑓 sSet 〈(Hom ‘ndx), tpos (Hom ‘𝑓)〉) sSet 〈(comp‘ndx), (𝑢 ∈ ((Base‘𝑓) × (Base‘𝑓)), 𝑧 ∈ (Base‘𝑓) ↦ tpos (〈𝑧, (2nd ‘𝑢)〉(comp‘𝑓)(1st ‘𝑢)))〉)) | ||
Theorem | oppcval 17339* | Value of the opposite category. (Contributed by Mario Carneiro, 2-Jan-2017.) |
⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ · = (comp‘𝐶) & ⊢ 𝑂 = (oppCat‘𝐶) ⇒ ⊢ (𝐶 ∈ 𝑉 → 𝑂 = ((𝐶 sSet 〈(Hom ‘ndx), tpos 𝐻〉) sSet 〈(comp‘ndx), (𝑢 ∈ (𝐵 × 𝐵), 𝑧 ∈ 𝐵 ↦ tpos (〈𝑧, (2nd ‘𝑢)〉 · (1st ‘𝑢)))〉)) | ||
Theorem | oppchomfval 17340 | Hom-sets of the opposite category. (Contributed by Mario Carneiro, 2-Jan-2017.) (Proof shortened by AV, 14-Oct-2024.) |
⊢ 𝐻 = (Hom ‘𝐶) & ⊢ 𝑂 = (oppCat‘𝐶) ⇒ ⊢ tpos 𝐻 = (Hom ‘𝑂) | ||
Theorem | oppchomfvalOLD 17341 | Obsolete proof of oppchomfval 17340 as of 14-Oct-2024. (Contributed by Mario Carneiro, 2-Jan-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ 𝐻 = (Hom ‘𝐶) & ⊢ 𝑂 = (oppCat‘𝐶) ⇒ ⊢ tpos 𝐻 = (Hom ‘𝑂) | ||
Theorem | oppchom 17342 | Hom-sets of the opposite category. (Contributed by Mario Carneiro, 2-Jan-2017.) |
⊢ 𝐻 = (Hom ‘𝐶) & ⊢ 𝑂 = (oppCat‘𝐶) ⇒ ⊢ (𝑋(Hom ‘𝑂)𝑌) = (𝑌𝐻𝑋) | ||
Theorem | oppccofval 17343 | Composition in the opposite category. (Contributed by Mario Carneiro, 2-Jan-2017.) |
⊢ 𝐵 = (Base‘𝐶) & ⊢ · = (comp‘𝐶) & ⊢ 𝑂 = (oppCat‘𝐶) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) ⇒ ⊢ (𝜑 → (〈𝑋, 𝑌〉(comp‘𝑂)𝑍) = tpos (〈𝑍, 𝑌〉 · 𝑋)) | ||
Theorem | oppcco 17344 | Composition in the opposite category. (Contributed by Mario Carneiro, 2-Jan-2017.) |
⊢ 𝐵 = (Base‘𝐶) & ⊢ · = (comp‘𝐶) & ⊢ 𝑂 = (oppCat‘𝐶) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝐺(〈𝑋, 𝑌〉(comp‘𝑂)𝑍)𝐹) = (𝐹(〈𝑍, 𝑌〉 · 𝑋)𝐺)) | ||
Theorem | oppcbas 17345 | Base set of an opposite category. (Contributed by Mario Carneiro, 2-Jan-2017.) (Proof shortened by AV, 18-Oct-2024.) |
⊢ 𝑂 = (oppCat‘𝐶) & ⊢ 𝐵 = (Base‘𝐶) ⇒ ⊢ 𝐵 = (Base‘𝑂) | ||
Theorem | oppcbasOLD 17346 | Obsolete version of oppcbas 17345 as of 18-Oct-2024. Base set of an opposite category. (Contributed by Mario Carneiro, 2-Jan-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ 𝑂 = (oppCat‘𝐶) & ⊢ 𝐵 = (Base‘𝐶) ⇒ ⊢ 𝐵 = (Base‘𝑂) | ||
Theorem | oppccatid 17347 | Lemma for oppccat 17350. (Contributed by Mario Carneiro, 3-Jan-2017.) |
⊢ 𝑂 = (oppCat‘𝐶) ⇒ ⊢ (𝐶 ∈ Cat → (𝑂 ∈ Cat ∧ (Id‘𝑂) = (Id‘𝐶))) | ||
Theorem | oppchomf 17348 | Hom-sets of the opposite category. (Contributed by Mario Carneiro, 17-Jan-2017.) |
⊢ 𝑂 = (oppCat‘𝐶) & ⊢ 𝐻 = (Homf ‘𝐶) ⇒ ⊢ tpos 𝐻 = (Homf ‘𝑂) | ||
Theorem | oppcid 17349 | Identity function of an opposite category. (Contributed by Mario Carneiro, 2-Jan-2017.) |
⊢ 𝑂 = (oppCat‘𝐶) & ⊢ 𝐵 = (Id‘𝐶) ⇒ ⊢ (𝐶 ∈ Cat → (Id‘𝑂) = 𝐵) | ||
Theorem | oppccat 17350 | An opposite category is a category. (Contributed by Mario Carneiro, 2-Jan-2017.) |
⊢ 𝑂 = (oppCat‘𝐶) ⇒ ⊢ (𝐶 ∈ Cat → 𝑂 ∈ Cat) | ||
Theorem | 2oppcbas 17351 | The double opposite category has the same objects as the original category. Intended for use with property lemmas such as monpropd 17366. (Contributed by Mario Carneiro, 3-Jan-2017.) |
⊢ 𝑂 = (oppCat‘𝐶) & ⊢ 𝐵 = (Base‘𝐶) ⇒ ⊢ 𝐵 = (Base‘(oppCat‘𝑂)) | ||
Theorem | 2oppchomf 17352 | The double opposite category has the same morphisms as the original category. Intended for use with property lemmas such as monpropd 17366. (Contributed by Mario Carneiro, 3-Jan-2017.) |
⊢ 𝑂 = (oppCat‘𝐶) ⇒ ⊢ (Homf ‘𝐶) = (Homf ‘(oppCat‘𝑂)) | ||
Theorem | 2oppccomf 17353 | The double opposite category has the same composition as the original category. Intended for use with property lemmas such as monpropd 17366. (Contributed by Mario Carneiro, 3-Jan-2017.) |
⊢ 𝑂 = (oppCat‘𝐶) ⇒ ⊢ (compf‘𝐶) = (compf‘(oppCat‘𝑂)) | ||
Theorem | oppchomfpropd 17354 | If two categories have the same hom-sets, so do their opposites. (Contributed by Mario Carneiro, 26-Jan-2017.) |
⊢ (𝜑 → (Homf ‘𝐶) = (Homf ‘𝐷)) ⇒ ⊢ (𝜑 → (Homf ‘(oppCat‘𝐶)) = (Homf ‘(oppCat‘𝐷))) | ||
Theorem | oppccomfpropd 17355 | If two categories have the same hom-sets and composition, so do their opposites. (Contributed by Mario Carneiro, 26-Jan-2017.) |
⊢ (𝜑 → (Homf ‘𝐶) = (Homf ‘𝐷)) & ⊢ (𝜑 → (compf‘𝐶) = (compf‘𝐷)) ⇒ ⊢ (𝜑 → (compf‘(oppCat‘𝐶)) = (compf‘(oppCat‘𝐷))) | ||
Theorem | oppccatf 17356 | oppCat restricted to Cat is a function from Cat to Cat. (Contributed by Zhi Wang, 29-Aug-2024.) |
⊢ (oppCat ↾ Cat):Cat⟶Cat | ||
Syntax | cmon 17357 | Extend class notation with the class of all monomorphisms. |
class Mono | ||
Syntax | cepi 17358 | Extend class notation with the class of all epimorphisms. |
class Epi | ||
Definition | df-mon 17359* | Function returning the monomorphisms of the category 𝑐. JFM CAT1 def. 10. (Contributed by FL, 5-Dec-2007.) (Revised by Mario Carneiro, 2-Jan-2017.) |
⊢ Mono = (𝑐 ∈ Cat ↦ ⦋(Base‘𝑐) / 𝑏⦌⦋(Hom ‘𝑐) / ℎ⦌(𝑥 ∈ 𝑏, 𝑦 ∈ 𝑏 ↦ {𝑓 ∈ (𝑥ℎ𝑦) ∣ ∀𝑧 ∈ 𝑏 Fun ◡(𝑔 ∈ (𝑧ℎ𝑥) ↦ (𝑓(〈𝑧, 𝑥〉(comp‘𝑐)𝑦)𝑔))})) | ||
Definition | df-epi 17360 | Function returning the epimorphisms of the category 𝑐. JFM CAT1 def. 11. (Contributed by FL, 8-Aug-2008.) (Revised by Mario Carneiro, 2-Jan-2017.) |
⊢ Epi = (𝑐 ∈ Cat ↦ tpos (Mono‘(oppCat‘𝑐))) | ||
Theorem | monfval 17361* | Definition of a monomorphism in a category. (Contributed by Mario Carneiro, 3-Jan-2017.) |
⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ · = (comp‘𝐶) & ⊢ 𝑀 = (Mono‘𝐶) & ⊢ (𝜑 → 𝐶 ∈ Cat) ⇒ ⊢ (𝜑 → 𝑀 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑓 ∈ (𝑥𝐻𝑦) ∣ ∀𝑧 ∈ 𝐵 Fun ◡(𝑔 ∈ (𝑧𝐻𝑥) ↦ (𝑓(〈𝑧, 𝑥〉 · 𝑦)𝑔))})) | ||
Theorem | ismon 17362* | Definition of a monomorphism in a category. (Contributed by Mario Carneiro, 2-Jan-2017.) |
⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ · = (comp‘𝐶) & ⊢ 𝑀 = (Mono‘𝐶) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝐹 ∈ (𝑋𝑀𝑌) ↔ (𝐹 ∈ (𝑋𝐻𝑌) ∧ ∀𝑧 ∈ 𝐵 Fun ◡(𝑔 ∈ (𝑧𝐻𝑋) ↦ (𝐹(〈𝑧, 𝑋〉 · 𝑌)𝑔))))) | ||
Theorem | ismon2 17363* | Write out the monomorphism property directly. (Contributed by Mario Carneiro, 2-Jan-2017.) |
⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ · = (comp‘𝐶) & ⊢ 𝑀 = (Mono‘𝐶) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝐹 ∈ (𝑋𝑀𝑌) ↔ (𝐹 ∈ (𝑋𝐻𝑌) ∧ ∀𝑧 ∈ 𝐵 ∀𝑔 ∈ (𝑧𝐻𝑋)∀ℎ ∈ (𝑧𝐻𝑋)((𝐹(〈𝑧, 𝑋〉 · 𝑌)𝑔) = (𝐹(〈𝑧, 𝑋〉 · 𝑌)ℎ) → 𝑔 = ℎ)))) | ||
Theorem | monhom 17364 | A monomorphism is a morphism. (Contributed by Mario Carneiro, 2-Jan-2017.) |
⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ · = (comp‘𝐶) & ⊢ 𝑀 = (Mono‘𝐶) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝑋𝑀𝑌) ⊆ (𝑋𝐻𝑌)) | ||
Theorem | moni 17365 | Property of a monomorphism. (Contributed by Mario Carneiro, 2-Jan-2017.) |
⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ · = (comp‘𝐶) & ⊢ 𝑀 = (Mono‘𝐶) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) & ⊢ (𝜑 → 𝐹 ∈ (𝑋𝑀𝑌)) & ⊢ (𝜑 → 𝐺 ∈ (𝑍𝐻𝑋)) & ⊢ (𝜑 → 𝐾 ∈ (𝑍𝐻𝑋)) ⇒ ⊢ (𝜑 → ((𝐹(〈𝑍, 𝑋〉 · 𝑌)𝐺) = (𝐹(〈𝑍, 𝑋〉 · 𝑌)𝐾) ↔ 𝐺 = 𝐾)) | ||
Theorem | monpropd 17366 | If two categories have the same set of objects, morphisms, and compositions, then they have the same monomorphisms. (Contributed by Mario Carneiro, 3-Jan-2017.) |
⊢ (𝜑 → (Homf ‘𝐶) = (Homf ‘𝐷)) & ⊢ (𝜑 → (compf‘𝐶) = (compf‘𝐷)) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝐷 ∈ Cat) ⇒ ⊢ (𝜑 → (Mono‘𝐶) = (Mono‘𝐷)) | ||
Theorem | oppcmon 17367 | A monomorphism in the opposite category is an epimorphism. (Contributed by Mario Carneiro, 3-Jan-2017.) |
⊢ 𝑂 = (oppCat‘𝐶) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ 𝑀 = (Mono‘𝑂) & ⊢ 𝐸 = (Epi‘𝐶) ⇒ ⊢ (𝜑 → (𝑋𝑀𝑌) = (𝑌𝐸𝑋)) | ||
Theorem | oppcepi 17368 | An epimorphism in the opposite category is a monomorphism. (Contributed by Mario Carneiro, 3-Jan-2017.) |
⊢ 𝑂 = (oppCat‘𝐶) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ 𝐸 = (Epi‘𝑂) & ⊢ 𝑀 = (Mono‘𝐶) ⇒ ⊢ (𝜑 → (𝑋𝐸𝑌) = (𝑌𝑀𝑋)) | ||
Theorem | isepi 17369* | Definition of an epimorphism in a category. (Contributed by Mario Carneiro, 2-Jan-2017.) |
⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ · = (comp‘𝐶) & ⊢ 𝐸 = (Epi‘𝐶) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝐹 ∈ (𝑋𝐸𝑌) ↔ (𝐹 ∈ (𝑋𝐻𝑌) ∧ ∀𝑧 ∈ 𝐵 Fun ◡(𝑔 ∈ (𝑌𝐻𝑧) ↦ (𝑔(〈𝑋, 𝑌〉 · 𝑧)𝐹))))) | ||
Theorem | isepi2 17370* | Write out the epimorphism property directly. (Contributed by Mario Carneiro, 2-Jan-2017.) |
⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ · = (comp‘𝐶) & ⊢ 𝐸 = (Epi‘𝐶) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝐹 ∈ (𝑋𝐸𝑌) ↔ (𝐹 ∈ (𝑋𝐻𝑌) ∧ ∀𝑧 ∈ 𝐵 ∀𝑔 ∈ (𝑌𝐻𝑧)∀ℎ ∈ (𝑌𝐻𝑧)((𝑔(〈𝑋, 𝑌〉 · 𝑧)𝐹) = (ℎ(〈𝑋, 𝑌〉 · 𝑧)𝐹) → 𝑔 = ℎ)))) | ||
Theorem | epihom 17371 | An epimorphism is a morphism. (Contributed by Mario Carneiro, 2-Jan-2017.) |
⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ · = (comp‘𝐶) & ⊢ 𝐸 = (Epi‘𝐶) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝑋𝐸𝑌) ⊆ (𝑋𝐻𝑌)) | ||
Theorem | epii 17372 | Property of an epimorphism. (Contributed by Mario Carneiro, 3-Jan-2017.) |
⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ · = (comp‘𝐶) & ⊢ 𝐸 = (Epi‘𝐶) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) & ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐸𝑌)) & ⊢ (𝜑 → 𝐺 ∈ (𝑌𝐻𝑍)) & ⊢ (𝜑 → 𝐾 ∈ (𝑌𝐻𝑍)) ⇒ ⊢ (𝜑 → ((𝐺(〈𝑋, 𝑌〉 · 𝑍)𝐹) = (𝐾(〈𝑋, 𝑌〉 · 𝑍)𝐹) ↔ 𝐺 = 𝐾)) | ||
Syntax | csect 17373 | Extend class notation with the sections of a morphism. |
class Sect | ||
Syntax | cinv 17374 | Extend class notation with the inverses of a morphism. |
class Inv | ||
Syntax | ciso 17375 | Extend class notation with the class of all isomorphisms. |
class Iso | ||
Definition | df-sect 17376* | Function returning the section relation in a category. Given arrows 𝑓:𝑋⟶𝑌 and 𝑔:𝑌⟶𝑋, we say 𝑓Sect𝑔, that is, 𝑓 is a section of 𝑔, if 𝑔 ∘ 𝑓 = 1‘𝑋. If there there is an arrow 𝑔 with 𝑓Sect𝑔, the arrow 𝑓 is called a section, see definition 7.19 of [Adamek] p. 106. (Contributed by Mario Carneiro, 2-Jan-2017.) |
⊢ Sect = (𝑐 ∈ Cat ↦ (𝑥 ∈ (Base‘𝑐), 𝑦 ∈ (Base‘𝑐) ↦ {〈𝑓, 𝑔〉 ∣ [(Hom ‘𝑐) / ℎ]((𝑓 ∈ (𝑥ℎ𝑦) ∧ 𝑔 ∈ (𝑦ℎ𝑥)) ∧ (𝑔(〈𝑥, 𝑦〉(comp‘𝑐)𝑥)𝑓) = ((Id‘𝑐)‘𝑥))})) | ||
Definition | df-inv 17377* | The inverse relation in a category. Given arrows 𝑓:𝑋⟶𝑌 and 𝑔:𝑌⟶𝑋, we say 𝑔Inv𝑓, that is, 𝑔 is an inverse of 𝑓, if 𝑔 is a section of 𝑓 and 𝑓 is a section of 𝑔. Definition 3.8 of [Adamek] p. 28. (Contributed by FL, 22-Dec-2008.) (Revised by Mario Carneiro, 2-Jan-2017.) |
⊢ Inv = (𝑐 ∈ Cat ↦ (𝑥 ∈ (Base‘𝑐), 𝑦 ∈ (Base‘𝑐) ↦ ((𝑥(Sect‘𝑐)𝑦) ∩ ◡(𝑦(Sect‘𝑐)𝑥)))) | ||
Definition | df-iso 17378* | Function returning the isomorphisms of the category 𝑐. Definition 3.8 of [Adamek] p. 28, and definition in [Lang] p. 54. (Contributed by FL, 9-Jun-2014.) (Revised by Mario Carneiro, 2-Jan-2017.) |
⊢ Iso = (𝑐 ∈ Cat ↦ ((𝑥 ∈ V ↦ dom 𝑥) ∘ (Inv‘𝑐))) | ||
Theorem | sectffval 17379* | Value of the section operation. (Contributed by Mario Carneiro, 2-Jan-2017.) |
⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ · = (comp‘𝐶) & ⊢ 1 = (Id‘𝐶) & ⊢ 𝑆 = (Sect‘𝐶) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → 𝑆 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {〈𝑓, 𝑔〉 ∣ ((𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑥)) ∧ (𝑔(〈𝑥, 𝑦〉 · 𝑥)𝑓) = ( 1 ‘𝑥))})) | ||
Theorem | sectfval 17380* | Value of the section relation. (Contributed by Mario Carneiro, 2-Jan-2017.) |
⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ · = (comp‘𝐶) & ⊢ 1 = (Id‘𝐶) & ⊢ 𝑆 = (Sect‘𝐶) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝑋𝑆𝑌) = {〈𝑓, 𝑔〉 ∣ ((𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑋)) ∧ (𝑔(〈𝑋, 𝑌〉 · 𝑋)𝑓) = ( 1 ‘𝑋))}) | ||
Theorem | sectss 17381 | The section relation is a relation between morphisms from 𝑋 to 𝑌 and morphisms from 𝑌 to 𝑋. (Contributed by Mario Carneiro, 2-Jan-2017.) |
⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ · = (comp‘𝐶) & ⊢ 1 = (Id‘𝐶) & ⊢ 𝑆 = (Sect‘𝐶) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝑋𝑆𝑌) ⊆ ((𝑋𝐻𝑌) × (𝑌𝐻𝑋))) | ||
Theorem | issect 17382 | The property "𝐹 is a section of 𝐺". (Contributed by Mario Carneiro, 2-Jan-2017.) |
⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ · = (comp‘𝐶) & ⊢ 1 = (Id‘𝐶) & ⊢ 𝑆 = (Sect‘𝐶) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝐹(𝑋𝑆𝑌)𝐺 ↔ (𝐹 ∈ (𝑋𝐻𝑌) ∧ 𝐺 ∈ (𝑌𝐻𝑋) ∧ (𝐺(〈𝑋, 𝑌〉 · 𝑋)𝐹) = ( 1 ‘𝑋)))) | ||
Theorem | issect2 17383 | Property of being a section. (Contributed by Mario Carneiro, 2-Jan-2017.) |
⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ · = (comp‘𝐶) & ⊢ 1 = (Id‘𝐶) & ⊢ 𝑆 = (Sect‘𝐶) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐻𝑌)) & ⊢ (𝜑 → 𝐺 ∈ (𝑌𝐻𝑋)) ⇒ ⊢ (𝜑 → (𝐹(𝑋𝑆𝑌)𝐺 ↔ (𝐺(〈𝑋, 𝑌〉 · 𝑋)𝐹) = ( 1 ‘𝑋))) | ||
Theorem | sectcan 17384 | If 𝐺 is a section of 𝐹 and 𝐹 is a section of 𝐻, then 𝐺 = 𝐻. Proposition 3.10 of [Adamek] p. 28. (Contributed by Mario Carneiro, 2-Jan-2017.) |
⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝑆 = (Sect‘𝐶) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝐺(𝑋𝑆𝑌)𝐹) & ⊢ (𝜑 → 𝐹(𝑌𝑆𝑋)𝐻) ⇒ ⊢ (𝜑 → 𝐺 = 𝐻) | ||
Theorem | sectco 17385 | Composition of two sections. (Contributed by Mario Carneiro, 2-Jan-2017.) |
⊢ 𝐵 = (Base‘𝐶) & ⊢ · = (comp‘𝐶) & ⊢ 𝑆 = (Sect‘𝐶) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) & ⊢ (𝜑 → 𝐹(𝑋𝑆𝑌)𝐺) & ⊢ (𝜑 → 𝐻(𝑌𝑆𝑍)𝐾) ⇒ ⊢ (𝜑 → (𝐻(〈𝑋, 𝑌〉 · 𝑍)𝐹)(𝑋𝑆𝑍)(𝐺(〈𝑍, 𝑌〉 · 𝑋)𝐾)) | ||
Theorem | isofval 17386* | Function value of the function returning the isomorphisms of a category. (Contributed by AV, 5-Apr-2017.) |
⊢ (𝐶 ∈ Cat → (Iso‘𝐶) = ((𝑥 ∈ V ↦ dom 𝑥) ∘ (Inv‘𝐶))) | ||
Theorem | invffval 17387* | Value of the inverse relation. (Contributed by Mario Carneiro, 2-Jan-2017.) |
⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝑁 = (Inv‘𝐶) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ 𝑆 = (Sect‘𝐶) ⇒ ⊢ (𝜑 → 𝑁 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ((𝑥𝑆𝑦) ∩ ◡(𝑦𝑆𝑥)))) | ||
Theorem | invfval 17388 | Value of the inverse relation. (Contributed by Mario Carneiro, 2-Jan-2017.) |
⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝑁 = (Inv‘𝐶) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ 𝑆 = (Sect‘𝐶) ⇒ ⊢ (𝜑 → (𝑋𝑁𝑌) = ((𝑋𝑆𝑌) ∩ ◡(𝑌𝑆𝑋))) | ||
Theorem | isinv 17389 | Value of the inverse relation. (Contributed by Mario Carneiro, 2-Jan-2017.) |
⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝑁 = (Inv‘𝐶) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ 𝑆 = (Sect‘𝐶) ⇒ ⊢ (𝜑 → (𝐹(𝑋𝑁𝑌)𝐺 ↔ (𝐹(𝑋𝑆𝑌)𝐺 ∧ 𝐺(𝑌𝑆𝑋)𝐹))) | ||
Theorem | invss 17390 | The inverse relation is a relation between morphisms 𝐹:𝑋⟶𝑌 and their inverses 𝐺:𝑌⟶𝑋. (Contributed by Mario Carneiro, 2-Jan-2017.) |
⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝑁 = (Inv‘𝐶) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ 𝐻 = (Hom ‘𝐶) ⇒ ⊢ (𝜑 → (𝑋𝑁𝑌) ⊆ ((𝑋𝐻𝑌) × (𝑌𝐻𝑋))) | ||
Theorem | invsym 17391 | The inverse relation is symmetric. (Contributed by Mario Carneiro, 2-Jan-2017.) |
⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝑁 = (Inv‘𝐶) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝐹(𝑋𝑁𝑌)𝐺 ↔ 𝐺(𝑌𝑁𝑋)𝐹)) | ||
Theorem | invsym2 17392 | The inverse relation is symmetric. (Contributed by Mario Carneiro, 2-Jan-2017.) |
⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝑁 = (Inv‘𝐶) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → ◡(𝑋𝑁𝑌) = (𝑌𝑁𝑋)) | ||
Theorem | invfun 17393 | The inverse relation is a function, which is to say that every morphism has at most one inverse. (Contributed by Mario Carneiro, 2-Jan-2017.) |
⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝑁 = (Inv‘𝐶) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → Fun (𝑋𝑁𝑌)) | ||
Theorem | isoval 17394 | The isomorphisms are the domain of the inverse relation. (Contributed by Mario Carneiro, 2-Jan-2017.) (Proof shortened by AV, 21-May-2020.) |
⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝑁 = (Inv‘𝐶) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ 𝐼 = (Iso‘𝐶) ⇒ ⊢ (𝜑 → (𝑋𝐼𝑌) = dom (𝑋𝑁𝑌)) | ||
Theorem | inviso1 17395 | If 𝐺 is an inverse to 𝐹, then 𝐹 is an isomorphism. (Contributed by Mario Carneiro, 3-Jan-2017.) |
⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝑁 = (Inv‘𝐶) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ 𝐼 = (Iso‘𝐶) & ⊢ (𝜑 → 𝐹(𝑋𝑁𝑌)𝐺) ⇒ ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐼𝑌)) | ||
Theorem | inviso2 17396 | If 𝐺 is an inverse to 𝐹, then 𝐺 is an isomorphism. (Contributed by Mario Carneiro, 3-Jan-2017.) |
⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝑁 = (Inv‘𝐶) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ 𝐼 = (Iso‘𝐶) & ⊢ (𝜑 → 𝐹(𝑋𝑁𝑌)𝐺) ⇒ ⊢ (𝜑 → 𝐺 ∈ (𝑌𝐼𝑋)) | ||
Theorem | invf 17397 | The inverse relation is a function from isomorphisms to isomorphisms. (Contributed by Mario Carneiro, 2-Jan-2017.) |
⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝑁 = (Inv‘𝐶) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ 𝐼 = (Iso‘𝐶) ⇒ ⊢ (𝜑 → (𝑋𝑁𝑌):(𝑋𝐼𝑌)⟶(𝑌𝐼𝑋)) | ||
Theorem | invf1o 17398 | The inverse relation is a bijection from isomorphisms to isomorphisms. This means that every isomorphism 𝐹 ∈ (𝑋𝐼𝑌) has a unique inverse, denoted by ((Inv‘𝐶)‘𝐹). Remark 3.12 of [Adamek] p. 28. (Contributed by Mario Carneiro, 2-Jan-2017.) |
⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝑁 = (Inv‘𝐶) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ 𝐼 = (Iso‘𝐶) ⇒ ⊢ (𝜑 → (𝑋𝑁𝑌):(𝑋𝐼𝑌)–1-1-onto→(𝑌𝐼𝑋)) | ||
Theorem | invinv 17399 | The inverse of the inverse of an isomorphism is itself. Proposition 3.14(1) of [Adamek] p. 29. (Contributed by Mario Carneiro, 2-Jan-2017.) |
⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝑁 = (Inv‘𝐶) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ 𝐼 = (Iso‘𝐶) & ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐼𝑌)) ⇒ ⊢ (𝜑 → ((𝑌𝑁𝑋)‘((𝑋𝑁𝑌)‘𝐹)) = 𝐹) | ||
Theorem | invco 17400 | The composition of two isomorphisms is an isomorphism, and the inverse is the composition of the individual inverses. Proposition 3.14(2) of [Adamek] p. 29. (Contributed by Mario Carneiro, 2-Jan-2017.) |
⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝑁 = (Inv‘𝐶) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ 𝐼 = (Iso‘𝐶) & ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐼𝑌)) & ⊢ · = (comp‘𝐶) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) & ⊢ (𝜑 → 𝐺 ∈ (𝑌𝐼𝑍)) ⇒ ⊢ (𝜑 → (𝐺(〈𝑋, 𝑌〉 · 𝑍)𝐹)(𝑋𝑁𝑍)(((𝑋𝑁𝑌)‘𝐹)(〈𝑍, 𝑌〉 · 𝑋)((𝑌𝑁𝑍)‘𝐺))) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |