| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-topon | Structured version Visualization version GIF version | ||
| Description: Define the function that associates with a set the set of topologies on it. (Contributed by Stefan O'Rear, 31-Jan-2015.) |
| Ref | Expression |
|---|---|
| df-topon | ⊢ TopOn = (𝑏 ∈ V ↦ {𝑗 ∈ Top ∣ 𝑏 = ∪ 𝑗}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ctopon 22916 | . 2 class TopOn | |
| 2 | vb | . . 3 setvar 𝑏 | |
| 3 | cvv 3480 | . . 3 class V | |
| 4 | 2 | cv 1539 | . . . . 5 class 𝑏 |
| 5 | vj | . . . . . . 7 setvar 𝑗 | |
| 6 | 5 | cv 1539 | . . . . . 6 class 𝑗 |
| 7 | 6 | cuni 4907 | . . . . 5 class ∪ 𝑗 |
| 8 | 4, 7 | wceq 1540 | . . . 4 wff 𝑏 = ∪ 𝑗 |
| 9 | ctop 22899 | . . . 4 class Top | |
| 10 | 8, 5, 9 | crab 3436 | . . 3 class {𝑗 ∈ Top ∣ 𝑏 = ∪ 𝑗} |
| 11 | 2, 3, 10 | cmpt 5225 | . 2 class (𝑏 ∈ V ↦ {𝑗 ∈ Top ∣ 𝑏 = ∪ 𝑗}) |
| 12 | 1, 11 | wceq 1540 | 1 wff TopOn = (𝑏 ∈ V ↦ {𝑗 ∈ Top ∣ 𝑏 = ∪ 𝑗}) |
| Colors of variables: wff setvar class |
| This definition is referenced by: istopon 22918 funtopon 22926 toponsspwpw 22928 dmtopon 22929 |
| Copyright terms: Public domain | W3C validator |