MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funtopon Structured version   Visualization version   GIF version

Theorem funtopon 22807
Description: The class TopOn is a function. (Contributed by BJ, 29-Apr-2021.)
Assertion
Ref Expression
funtopon Fun TopOn

Proof of Theorem funtopon
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-topon 22798 . 2 TopOn = (𝑦 ∈ V ↦ {𝑥 ∈ Top ∣ 𝑦 = 𝑥})
21funmpt2 6555 1 Fun TopOn
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  {crab 3405  Vcvv 3447   cuni 4871  Fun wfun 6505  Topctop 22780  TopOnctopon 22797
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-fun 6513  df-topon 22798
This theorem is referenced by:  fntopon  22811  toprntopon  22812
  Copyright terms: Public domain W3C validator