MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funtopon Structured version   Visualization version   GIF version

Theorem funtopon 22141
Description: The class TopOn is a function. (Contributed by BJ, 29-Apr-2021.)
Assertion
Ref Expression
funtopon Fun TopOn

Proof of Theorem funtopon
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-topon 22132 . 2 TopOn = (𝑦 ∈ V ↦ {𝑥 ∈ Top ∣ 𝑦 = 𝑥})
21funmpt2 6509 1 Fun TopOn
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  {crab 3404  Vcvv 3441   cuni 4850  Fun wfun 6459  Topctop 22114  TopOnctopon 22131
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2708  ax-sep 5238  ax-nul 5245  ax-pr 5367
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ral 3063  df-rex 3072  df-rab 3405  df-v 3443  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4268  df-if 4472  df-sn 4572  df-pr 4574  df-op 4578  df-br 5088  df-opab 5150  df-mpt 5171  df-id 5507  df-xp 5613  df-rel 5614  df-cnv 5615  df-co 5616  df-fun 6467  df-topon 22132
This theorem is referenced by:  fntopon  22145  toprntopon  22146
  Copyright terms: Public domain W3C validator