Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > funtopon | Structured version Visualization version GIF version |
Description: The class TopOn is a function. (Contributed by BJ, 29-Apr-2021.) |
Ref | Expression |
---|---|
funtopon | ⊢ Fun TopOn |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-topon 22132 | . 2 ⊢ TopOn = (𝑦 ∈ V ↦ {𝑥 ∈ Top ∣ 𝑦 = ∪ 𝑥}) | |
2 | 1 | funmpt2 6509 | 1 ⊢ Fun TopOn |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1540 {crab 3404 Vcvv 3441 ∪ cuni 4850 Fun wfun 6459 Topctop 22114 TopOnctopon 22131 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-sep 5238 ax-nul 5245 ax-pr 5367 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ral 3063 df-rex 3072 df-rab 3405 df-v 3443 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4268 df-if 4472 df-sn 4572 df-pr 4574 df-op 4578 df-br 5088 df-opab 5150 df-mpt 5171 df-id 5507 df-xp 5613 df-rel 5614 df-cnv 5615 df-co 5616 df-fun 6467 df-topon 22132 |
This theorem is referenced by: fntopon 22145 toprntopon 22146 |
Copyright terms: Public domain | W3C validator |