MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  toponsspwpw Structured version   Visualization version   GIF version

Theorem toponsspwpw 21214
Description: The set of topologies on a set is included in the double power set of that set. (Contributed by BJ, 29-Apr-2021.)
Assertion
Ref Expression
toponsspwpw (TopOn‘𝐴) ⊆ 𝒫 𝒫 𝐴

Proof of Theorem toponsspwpw
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rabssab 3983 . . . . . . 7 {𝑦 ∈ Top ∣ 𝐴 = 𝑦} ⊆ {𝑦𝐴 = 𝑦}
2 eqcom 2801 . . . . . . . 8 (𝐴 = 𝑦 𝑦 = 𝐴)
32abbii 2860 . . . . . . 7 {𝑦𝐴 = 𝑦} = {𝑦 𝑦 = 𝐴}
41, 3sseqtri 3926 . . . . . 6 {𝑦 ∈ Top ∣ 𝐴 = 𝑦} ⊆ {𝑦 𝑦 = 𝐴}
5 pwpwssunieq 4927 . . . . . 6 {𝑦 𝑦 = 𝐴} ⊆ 𝒫 𝒫 𝐴
64, 5sstri 3900 . . . . 5 {𝑦 ∈ Top ∣ 𝐴 = 𝑦} ⊆ 𝒫 𝒫 𝐴
7 pwexg 5173 . . . . . 6 (𝐴 ∈ V → 𝒫 𝐴 ∈ V)
87pwexd 5174 . . . . 5 (𝐴 ∈ V → 𝒫 𝒫 𝐴 ∈ V)
9 ssexg 5121 . . . . 5 (({𝑦 ∈ Top ∣ 𝐴 = 𝑦} ⊆ 𝒫 𝒫 𝐴 ∧ 𝒫 𝒫 𝐴 ∈ V) → {𝑦 ∈ Top ∣ 𝐴 = 𝑦} ∈ V)
106, 8, 9sylancr 587 . . . 4 (𝐴 ∈ V → {𝑦 ∈ Top ∣ 𝐴 = 𝑦} ∈ V)
11 eqeq1 2798 . . . . . 6 (𝑥 = 𝐴 → (𝑥 = 𝑦𝐴 = 𝑦))
1211rabbidv 3424 . . . . 5 (𝑥 = 𝐴 → {𝑦 ∈ Top ∣ 𝑥 = 𝑦} = {𝑦 ∈ Top ∣ 𝐴 = 𝑦})
13 df-topon 21203 . . . . 5 TopOn = (𝑥 ∈ V ↦ {𝑦 ∈ Top ∣ 𝑥 = 𝑦})
1412, 13fvmptg 6636 . . . 4 ((𝐴 ∈ V ∧ {𝑦 ∈ Top ∣ 𝐴 = 𝑦} ∈ V) → (TopOn‘𝐴) = {𝑦 ∈ Top ∣ 𝐴 = 𝑦})
1510, 14mpdan 683 . . 3 (𝐴 ∈ V → (TopOn‘𝐴) = {𝑦 ∈ Top ∣ 𝐴 = 𝑦})
1615, 6syl6eqss 3944 . 2 (𝐴 ∈ V → (TopOn‘𝐴) ⊆ 𝒫 𝒫 𝐴)
17 fvprc 6534 . . 3 𝐴 ∈ V → (TopOn‘𝐴) = ∅)
18 0ss 4272 . . 3 ∅ ⊆ 𝒫 𝒫 𝐴
1917, 18syl6eqss 3944 . 2 𝐴 ∈ V → (TopOn‘𝐴) ⊆ 𝒫 𝒫 𝐴)
2016, 19pm2.61i 183 1 (TopOn‘𝐴) ⊆ 𝒫 𝒫 𝐴
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1522  wcel 2080  {cab 2774  {crab 3108  Vcvv 3436  wss 3861  c0 4213  𝒫 cpw 4455   cuni 4747  cfv 6228  Topctop 21185  TopOnctopon 21202
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1778  ax-4 1792  ax-5 1889  ax-6 1948  ax-7 1993  ax-8 2082  ax-9 2090  ax-10 2111  ax-11 2125  ax-12 2140  ax-13 2343  ax-ext 2768  ax-sep 5097  ax-nul 5104  ax-pow 5160  ax-pr 5224
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3an 1082  df-tru 1525  df-ex 1763  df-nf 1767  df-sb 2042  df-mo 2575  df-eu 2611  df-clab 2775  df-cleq 2787  df-clel 2862  df-nfc 2934  df-ral 3109  df-rex 3110  df-rab 3113  df-v 3438  df-sbc 3708  df-dif 3864  df-un 3866  df-in 3868  df-ss 3876  df-nul 4214  df-if 4384  df-pw 4457  df-sn 4475  df-pr 4477  df-op 4481  df-uni 4748  df-br 4965  df-opab 5027  df-mpt 5044  df-id 5351  df-xp 5452  df-rel 5453  df-cnv 5454  df-co 5455  df-dm 5456  df-iota 6192  df-fun 6230  df-fv 6236  df-topon 21203
This theorem is referenced by:  toponmre  21385
  Copyright terms: Public domain W3C validator