MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  toponsspwpw Structured version   Visualization version   GIF version

Theorem toponsspwpw 22816
Description: The set of topologies on a set is included in the double power set of that set. (Contributed by BJ, 29-Apr-2021.)
Assertion
Ref Expression
toponsspwpw (TopOn‘𝐴) ⊆ 𝒫 𝒫 𝐴

Proof of Theorem toponsspwpw
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rabssab 4051 . . . . . . 7 {𝑦 ∈ Top ∣ 𝐴 = 𝑦} ⊆ {𝑦𝐴 = 𝑦}
2 eqcom 2737 . . . . . . . 8 (𝐴 = 𝑦 𝑦 = 𝐴)
32abbii 2797 . . . . . . 7 {𝑦𝐴 = 𝑦} = {𝑦 𝑦 = 𝐴}
41, 3sseqtri 3998 . . . . . 6 {𝑦 ∈ Top ∣ 𝐴 = 𝑦} ⊆ {𝑦 𝑦 = 𝐴}
5 pwpwssunieq 5071 . . . . . 6 {𝑦 𝑦 = 𝐴} ⊆ 𝒫 𝒫 𝐴
64, 5sstri 3959 . . . . 5 {𝑦 ∈ Top ∣ 𝐴 = 𝑦} ⊆ 𝒫 𝒫 𝐴
7 pwexg 5336 . . . . . 6 (𝐴 ∈ V → 𝒫 𝐴 ∈ V)
87pwexd 5337 . . . . 5 (𝐴 ∈ V → 𝒫 𝒫 𝐴 ∈ V)
9 ssexg 5281 . . . . 5 (({𝑦 ∈ Top ∣ 𝐴 = 𝑦} ⊆ 𝒫 𝒫 𝐴 ∧ 𝒫 𝒫 𝐴 ∈ V) → {𝑦 ∈ Top ∣ 𝐴 = 𝑦} ∈ V)
106, 8, 9sylancr 587 . . . 4 (𝐴 ∈ V → {𝑦 ∈ Top ∣ 𝐴 = 𝑦} ∈ V)
11 eqeq1 2734 . . . . . 6 (𝑥 = 𝐴 → (𝑥 = 𝑦𝐴 = 𝑦))
1211rabbidv 3416 . . . . 5 (𝑥 = 𝐴 → {𝑦 ∈ Top ∣ 𝑥 = 𝑦} = {𝑦 ∈ Top ∣ 𝐴 = 𝑦})
13 df-topon 22805 . . . . 5 TopOn = (𝑥 ∈ V ↦ {𝑦 ∈ Top ∣ 𝑥 = 𝑦})
1412, 13fvmptg 6969 . . . 4 ((𝐴 ∈ V ∧ {𝑦 ∈ Top ∣ 𝐴 = 𝑦} ∈ V) → (TopOn‘𝐴) = {𝑦 ∈ Top ∣ 𝐴 = 𝑦})
1510, 14mpdan 687 . . 3 (𝐴 ∈ V → (TopOn‘𝐴) = {𝑦 ∈ Top ∣ 𝐴 = 𝑦})
1615, 6eqsstrdi 3994 . 2 (𝐴 ∈ V → (TopOn‘𝐴) ⊆ 𝒫 𝒫 𝐴)
17 fvprc 6853 . . 3 𝐴 ∈ V → (TopOn‘𝐴) = ∅)
18 0ss 4366 . . 3 ∅ ⊆ 𝒫 𝒫 𝐴
1917, 18eqsstrdi 3994 . 2 𝐴 ∈ V → (TopOn‘𝐴) ⊆ 𝒫 𝒫 𝐴)
2016, 19pm2.61i 182 1 (TopOn‘𝐴) ⊆ 𝒫 𝒫 𝐴
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1540  wcel 2109  {cab 2708  {crab 3408  Vcvv 3450  wss 3917  c0 4299  𝒫 cpw 4566   cuni 4874  cfv 6514  Topctop 22787  TopOnctopon 22804
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-iota 6467  df-fun 6516  df-fv 6522  df-topon 22805
This theorem is referenced by:  toponmre  22987
  Copyright terms: Public domain W3C validator