MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  toponsspwpw Structured version   Visualization version   GIF version

Theorem toponsspwpw 22424
Description: The set of topologies on a set is included in the double power set of that set. (Contributed by BJ, 29-Apr-2021.)
Assertion
Ref Expression
toponsspwpw (TopOnβ€˜π΄) βŠ† 𝒫 𝒫 𝐴

Proof of Theorem toponsspwpw
Dummy variables π‘₯ 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rabssab 4084 . . . . . . 7 {𝑦 ∈ Top ∣ 𝐴 = βˆͺ 𝑦} βŠ† {𝑦 ∣ 𝐴 = βˆͺ 𝑦}
2 eqcom 2740 . . . . . . . 8 (𝐴 = βˆͺ 𝑦 ↔ βˆͺ 𝑦 = 𝐴)
32abbii 2803 . . . . . . 7 {𝑦 ∣ 𝐴 = βˆͺ 𝑦} = {𝑦 ∣ βˆͺ 𝑦 = 𝐴}
41, 3sseqtri 4019 . . . . . 6 {𝑦 ∈ Top ∣ 𝐴 = βˆͺ 𝑦} βŠ† {𝑦 ∣ βˆͺ 𝑦 = 𝐴}
5 pwpwssunieq 5108 . . . . . 6 {𝑦 ∣ βˆͺ 𝑦 = 𝐴} βŠ† 𝒫 𝒫 𝐴
64, 5sstri 3992 . . . . 5 {𝑦 ∈ Top ∣ 𝐴 = βˆͺ 𝑦} βŠ† 𝒫 𝒫 𝐴
7 pwexg 5377 . . . . . 6 (𝐴 ∈ V β†’ 𝒫 𝐴 ∈ V)
87pwexd 5378 . . . . 5 (𝐴 ∈ V β†’ 𝒫 𝒫 𝐴 ∈ V)
9 ssexg 5324 . . . . 5 (({𝑦 ∈ Top ∣ 𝐴 = βˆͺ 𝑦} βŠ† 𝒫 𝒫 𝐴 ∧ 𝒫 𝒫 𝐴 ∈ V) β†’ {𝑦 ∈ Top ∣ 𝐴 = βˆͺ 𝑦} ∈ V)
106, 8, 9sylancr 588 . . . 4 (𝐴 ∈ V β†’ {𝑦 ∈ Top ∣ 𝐴 = βˆͺ 𝑦} ∈ V)
11 eqeq1 2737 . . . . . 6 (π‘₯ = 𝐴 β†’ (π‘₯ = βˆͺ 𝑦 ↔ 𝐴 = βˆͺ 𝑦))
1211rabbidv 3441 . . . . 5 (π‘₯ = 𝐴 β†’ {𝑦 ∈ Top ∣ π‘₯ = βˆͺ 𝑦} = {𝑦 ∈ Top ∣ 𝐴 = βˆͺ 𝑦})
13 df-topon 22413 . . . . 5 TopOn = (π‘₯ ∈ V ↦ {𝑦 ∈ Top ∣ π‘₯ = βˆͺ 𝑦})
1412, 13fvmptg 6997 . . . 4 ((𝐴 ∈ V ∧ {𝑦 ∈ Top ∣ 𝐴 = βˆͺ 𝑦} ∈ V) β†’ (TopOnβ€˜π΄) = {𝑦 ∈ Top ∣ 𝐴 = βˆͺ 𝑦})
1510, 14mpdan 686 . . 3 (𝐴 ∈ V β†’ (TopOnβ€˜π΄) = {𝑦 ∈ Top ∣ 𝐴 = βˆͺ 𝑦})
1615, 6eqsstrdi 4037 . 2 (𝐴 ∈ V β†’ (TopOnβ€˜π΄) βŠ† 𝒫 𝒫 𝐴)
17 fvprc 6884 . . 3 (Β¬ 𝐴 ∈ V β†’ (TopOnβ€˜π΄) = βˆ…)
18 0ss 4397 . . 3 βˆ… βŠ† 𝒫 𝒫 𝐴
1917, 18eqsstrdi 4037 . 2 (Β¬ 𝐴 ∈ V β†’ (TopOnβ€˜π΄) βŠ† 𝒫 𝒫 𝐴)
2016, 19pm2.61i 182 1 (TopOnβ€˜π΄) βŠ† 𝒫 𝒫 𝐴
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   = wceq 1542   ∈ wcel 2107  {cab 2710  {crab 3433  Vcvv 3475   βŠ† wss 3949  βˆ…c0 4323  π’« cpw 4603  βˆͺ cuni 4909  β€˜cfv 6544  Topctop 22395  TopOnctopon 22412
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-iota 6496  df-fun 6546  df-fv 6552  df-topon 22413
This theorem is referenced by:  toponmre  22597
  Copyright terms: Public domain W3C validator