| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > toponsspwpw | Structured version Visualization version GIF version | ||
| Description: The set of topologies on a set is included in the double power set of that set. (Contributed by BJ, 29-Apr-2021.) |
| Ref | Expression |
|---|---|
| toponsspwpw | ⊢ (TopOn‘𝐴) ⊆ 𝒫 𝒫 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rabssab 4051 | . . . . . . 7 ⊢ {𝑦 ∈ Top ∣ 𝐴 = ∪ 𝑦} ⊆ {𝑦 ∣ 𝐴 = ∪ 𝑦} | |
| 2 | eqcom 2737 | . . . . . . . 8 ⊢ (𝐴 = ∪ 𝑦 ↔ ∪ 𝑦 = 𝐴) | |
| 3 | 2 | abbii 2797 | . . . . . . 7 ⊢ {𝑦 ∣ 𝐴 = ∪ 𝑦} = {𝑦 ∣ ∪ 𝑦 = 𝐴} |
| 4 | 1, 3 | sseqtri 3998 | . . . . . 6 ⊢ {𝑦 ∈ Top ∣ 𝐴 = ∪ 𝑦} ⊆ {𝑦 ∣ ∪ 𝑦 = 𝐴} |
| 5 | pwpwssunieq 5071 | . . . . . 6 ⊢ {𝑦 ∣ ∪ 𝑦 = 𝐴} ⊆ 𝒫 𝒫 𝐴 | |
| 6 | 4, 5 | sstri 3959 | . . . . 5 ⊢ {𝑦 ∈ Top ∣ 𝐴 = ∪ 𝑦} ⊆ 𝒫 𝒫 𝐴 |
| 7 | pwexg 5336 | . . . . . 6 ⊢ (𝐴 ∈ V → 𝒫 𝐴 ∈ V) | |
| 8 | 7 | pwexd 5337 | . . . . 5 ⊢ (𝐴 ∈ V → 𝒫 𝒫 𝐴 ∈ V) |
| 9 | ssexg 5281 | . . . . 5 ⊢ (({𝑦 ∈ Top ∣ 𝐴 = ∪ 𝑦} ⊆ 𝒫 𝒫 𝐴 ∧ 𝒫 𝒫 𝐴 ∈ V) → {𝑦 ∈ Top ∣ 𝐴 = ∪ 𝑦} ∈ V) | |
| 10 | 6, 8, 9 | sylancr 587 | . . . 4 ⊢ (𝐴 ∈ V → {𝑦 ∈ Top ∣ 𝐴 = ∪ 𝑦} ∈ V) |
| 11 | eqeq1 2734 | . . . . . 6 ⊢ (𝑥 = 𝐴 → (𝑥 = ∪ 𝑦 ↔ 𝐴 = ∪ 𝑦)) | |
| 12 | 11 | rabbidv 3416 | . . . . 5 ⊢ (𝑥 = 𝐴 → {𝑦 ∈ Top ∣ 𝑥 = ∪ 𝑦} = {𝑦 ∈ Top ∣ 𝐴 = ∪ 𝑦}) |
| 13 | df-topon 22805 | . . . . 5 ⊢ TopOn = (𝑥 ∈ V ↦ {𝑦 ∈ Top ∣ 𝑥 = ∪ 𝑦}) | |
| 14 | 12, 13 | fvmptg 6969 | . . . 4 ⊢ ((𝐴 ∈ V ∧ {𝑦 ∈ Top ∣ 𝐴 = ∪ 𝑦} ∈ V) → (TopOn‘𝐴) = {𝑦 ∈ Top ∣ 𝐴 = ∪ 𝑦}) |
| 15 | 10, 14 | mpdan 687 | . . 3 ⊢ (𝐴 ∈ V → (TopOn‘𝐴) = {𝑦 ∈ Top ∣ 𝐴 = ∪ 𝑦}) |
| 16 | 15, 6 | eqsstrdi 3994 | . 2 ⊢ (𝐴 ∈ V → (TopOn‘𝐴) ⊆ 𝒫 𝒫 𝐴) |
| 17 | fvprc 6853 | . . 3 ⊢ (¬ 𝐴 ∈ V → (TopOn‘𝐴) = ∅) | |
| 18 | 0ss 4366 | . . 3 ⊢ ∅ ⊆ 𝒫 𝒫 𝐴 | |
| 19 | 17, 18 | eqsstrdi 3994 | . 2 ⊢ (¬ 𝐴 ∈ V → (TopOn‘𝐴) ⊆ 𝒫 𝒫 𝐴) |
| 20 | 16, 19 | pm2.61i 182 | 1 ⊢ (TopOn‘𝐴) ⊆ 𝒫 𝒫 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1540 ∈ wcel 2109 {cab 2708 {crab 3408 Vcvv 3450 ⊆ wss 3917 ∅c0 4299 𝒫 cpw 4566 ∪ cuni 4874 ‘cfv 6514 Topctop 22787 TopOnctopon 22804 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-iota 6467 df-fun 6516 df-fv 6522 df-topon 22805 |
| This theorem is referenced by: toponmre 22987 |
| Copyright terms: Public domain | W3C validator |