MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  toponsspwpw Structured version   Visualization version   GIF version

Theorem toponsspwpw 21979
Description: The set of topologies on a set is included in the double power set of that set. (Contributed by BJ, 29-Apr-2021.)
Assertion
Ref Expression
toponsspwpw (TopOn‘𝐴) ⊆ 𝒫 𝒫 𝐴

Proof of Theorem toponsspwpw
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rabssab 4014 . . . . . . 7 {𝑦 ∈ Top ∣ 𝐴 = 𝑦} ⊆ {𝑦𝐴 = 𝑦}
2 eqcom 2745 . . . . . . . 8 (𝐴 = 𝑦 𝑦 = 𝐴)
32abbii 2809 . . . . . . 7 {𝑦𝐴 = 𝑦} = {𝑦 𝑦 = 𝐴}
41, 3sseqtri 3953 . . . . . 6 {𝑦 ∈ Top ∣ 𝐴 = 𝑦} ⊆ {𝑦 𝑦 = 𝐴}
5 pwpwssunieq 5029 . . . . . 6 {𝑦 𝑦 = 𝐴} ⊆ 𝒫 𝒫 𝐴
64, 5sstri 3926 . . . . 5 {𝑦 ∈ Top ∣ 𝐴 = 𝑦} ⊆ 𝒫 𝒫 𝐴
7 pwexg 5296 . . . . . 6 (𝐴 ∈ V → 𝒫 𝐴 ∈ V)
87pwexd 5297 . . . . 5 (𝐴 ∈ V → 𝒫 𝒫 𝐴 ∈ V)
9 ssexg 5242 . . . . 5 (({𝑦 ∈ Top ∣ 𝐴 = 𝑦} ⊆ 𝒫 𝒫 𝐴 ∧ 𝒫 𝒫 𝐴 ∈ V) → {𝑦 ∈ Top ∣ 𝐴 = 𝑦} ∈ V)
106, 8, 9sylancr 586 . . . 4 (𝐴 ∈ V → {𝑦 ∈ Top ∣ 𝐴 = 𝑦} ∈ V)
11 eqeq1 2742 . . . . . 6 (𝑥 = 𝐴 → (𝑥 = 𝑦𝐴 = 𝑦))
1211rabbidv 3404 . . . . 5 (𝑥 = 𝐴 → {𝑦 ∈ Top ∣ 𝑥 = 𝑦} = {𝑦 ∈ Top ∣ 𝐴 = 𝑦})
13 df-topon 21968 . . . . 5 TopOn = (𝑥 ∈ V ↦ {𝑦 ∈ Top ∣ 𝑥 = 𝑦})
1412, 13fvmptg 6855 . . . 4 ((𝐴 ∈ V ∧ {𝑦 ∈ Top ∣ 𝐴 = 𝑦} ∈ V) → (TopOn‘𝐴) = {𝑦 ∈ Top ∣ 𝐴 = 𝑦})
1510, 14mpdan 683 . . 3 (𝐴 ∈ V → (TopOn‘𝐴) = {𝑦 ∈ Top ∣ 𝐴 = 𝑦})
1615, 6eqsstrdi 3971 . 2 (𝐴 ∈ V → (TopOn‘𝐴) ⊆ 𝒫 𝒫 𝐴)
17 fvprc 6748 . . 3 𝐴 ∈ V → (TopOn‘𝐴) = ∅)
18 0ss 4327 . . 3 ∅ ⊆ 𝒫 𝒫 𝐴
1917, 18eqsstrdi 3971 . 2 𝐴 ∈ V → (TopOn‘𝐴) ⊆ 𝒫 𝒫 𝐴)
2016, 19pm2.61i 182 1 (TopOn‘𝐴) ⊆ 𝒫 𝒫 𝐴
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1539  wcel 2108  {cab 2715  {crab 3067  Vcvv 3422  wss 3883  c0 4253  𝒫 cpw 4530   cuni 4836  cfv 6418  Topctop 21950  TopOnctopon 21967
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-iota 6376  df-fun 6420  df-fv 6426  df-topon 21968
This theorem is referenced by:  toponmre  22152
  Copyright terms: Public domain W3C validator