![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > toponsspwpw | Structured version Visualization version GIF version |
Description: The set of topologies on a set is included in the double power set of that set. (Contributed by BJ, 29-Apr-2021.) |
Ref | Expression |
---|---|
toponsspwpw | ⊢ (TopOn‘𝐴) ⊆ 𝒫 𝒫 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rabssab 4079 | . . . . . . 7 ⊢ {𝑦 ∈ Top ∣ 𝐴 = ∪ 𝑦} ⊆ {𝑦 ∣ 𝐴 = ∪ 𝑦} | |
2 | eqcom 2733 | . . . . . . . 8 ⊢ (𝐴 = ∪ 𝑦 ↔ ∪ 𝑦 = 𝐴) | |
3 | 2 | abbii 2796 | . . . . . . 7 ⊢ {𝑦 ∣ 𝐴 = ∪ 𝑦} = {𝑦 ∣ ∪ 𝑦 = 𝐴} |
4 | 1, 3 | sseqtri 4015 | . . . . . 6 ⊢ {𝑦 ∈ Top ∣ 𝐴 = ∪ 𝑦} ⊆ {𝑦 ∣ ∪ 𝑦 = 𝐴} |
5 | pwpwssunieq 5104 | . . . . . 6 ⊢ {𝑦 ∣ ∪ 𝑦 = 𝐴} ⊆ 𝒫 𝒫 𝐴 | |
6 | 4, 5 | sstri 3988 | . . . . 5 ⊢ {𝑦 ∈ Top ∣ 𝐴 = ∪ 𝑦} ⊆ 𝒫 𝒫 𝐴 |
7 | pwexg 5374 | . . . . . 6 ⊢ (𝐴 ∈ V → 𝒫 𝐴 ∈ V) | |
8 | 7 | pwexd 5375 | . . . . 5 ⊢ (𝐴 ∈ V → 𝒫 𝒫 𝐴 ∈ V) |
9 | ssexg 5320 | . . . . 5 ⊢ (({𝑦 ∈ Top ∣ 𝐴 = ∪ 𝑦} ⊆ 𝒫 𝒫 𝐴 ∧ 𝒫 𝒫 𝐴 ∈ V) → {𝑦 ∈ Top ∣ 𝐴 = ∪ 𝑦} ∈ V) | |
10 | 6, 8, 9 | sylancr 585 | . . . 4 ⊢ (𝐴 ∈ V → {𝑦 ∈ Top ∣ 𝐴 = ∪ 𝑦} ∈ V) |
11 | eqeq1 2730 | . . . . . 6 ⊢ (𝑥 = 𝐴 → (𝑥 = ∪ 𝑦 ↔ 𝐴 = ∪ 𝑦)) | |
12 | 11 | rabbidv 3427 | . . . . 5 ⊢ (𝑥 = 𝐴 → {𝑦 ∈ Top ∣ 𝑥 = ∪ 𝑦} = {𝑦 ∈ Top ∣ 𝐴 = ∪ 𝑦}) |
13 | df-topon 22901 | . . . . 5 ⊢ TopOn = (𝑥 ∈ V ↦ {𝑦 ∈ Top ∣ 𝑥 = ∪ 𝑦}) | |
14 | 12, 13 | fvmptg 6999 | . . . 4 ⊢ ((𝐴 ∈ V ∧ {𝑦 ∈ Top ∣ 𝐴 = ∪ 𝑦} ∈ V) → (TopOn‘𝐴) = {𝑦 ∈ Top ∣ 𝐴 = ∪ 𝑦}) |
15 | 10, 14 | mpdan 685 | . . 3 ⊢ (𝐴 ∈ V → (TopOn‘𝐴) = {𝑦 ∈ Top ∣ 𝐴 = ∪ 𝑦}) |
16 | 15, 6 | eqsstrdi 4033 | . 2 ⊢ (𝐴 ∈ V → (TopOn‘𝐴) ⊆ 𝒫 𝒫 𝐴) |
17 | fvprc 6885 | . . 3 ⊢ (¬ 𝐴 ∈ V → (TopOn‘𝐴) = ∅) | |
18 | 0ss 4394 | . . 3 ⊢ ∅ ⊆ 𝒫 𝒫 𝐴 | |
19 | 17, 18 | eqsstrdi 4033 | . 2 ⊢ (¬ 𝐴 ∈ V → (TopOn‘𝐴) ⊆ 𝒫 𝒫 𝐴) |
20 | 16, 19 | pm2.61i 182 | 1 ⊢ (TopOn‘𝐴) ⊆ 𝒫 𝒫 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1534 ∈ wcel 2099 {cab 2703 {crab 3419 Vcvv 3462 ⊆ wss 3946 ∅c0 4322 𝒫 cpw 4597 ∪ cuni 4905 ‘cfv 6546 Topctop 22883 TopOnctopon 22900 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-sep 5296 ax-nul 5303 ax-pow 5361 ax-pr 5425 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3464 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-nul 4323 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4906 df-br 5146 df-opab 5208 df-mpt 5229 df-id 5572 df-xp 5680 df-rel 5681 df-cnv 5682 df-co 5683 df-dm 5684 df-iota 6498 df-fun 6548 df-fv 6554 df-topon 22901 |
This theorem is referenced by: toponmre 23085 |
Copyright terms: Public domain | W3C validator |