![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > toponsspwpw | Structured version Visualization version GIF version |
Description: The set of topologies on a set is included in the double power set of that set. (Contributed by BJ, 29-Apr-2021.) |
Ref | Expression |
---|---|
toponsspwpw | ⊢ (TopOn‘𝐴) ⊆ 𝒫 𝒫 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rabssab 4108 | . . . . . . 7 ⊢ {𝑦 ∈ Top ∣ 𝐴 = ∪ 𝑦} ⊆ {𝑦 ∣ 𝐴 = ∪ 𝑦} | |
2 | eqcom 2747 | . . . . . . . 8 ⊢ (𝐴 = ∪ 𝑦 ↔ ∪ 𝑦 = 𝐴) | |
3 | 2 | abbii 2812 | . . . . . . 7 ⊢ {𝑦 ∣ 𝐴 = ∪ 𝑦} = {𝑦 ∣ ∪ 𝑦 = 𝐴} |
4 | 1, 3 | sseqtri 4045 | . . . . . 6 ⊢ {𝑦 ∈ Top ∣ 𝐴 = ∪ 𝑦} ⊆ {𝑦 ∣ ∪ 𝑦 = 𝐴} |
5 | pwpwssunieq 5127 | . . . . . 6 ⊢ {𝑦 ∣ ∪ 𝑦 = 𝐴} ⊆ 𝒫 𝒫 𝐴 | |
6 | 4, 5 | sstri 4018 | . . . . 5 ⊢ {𝑦 ∈ Top ∣ 𝐴 = ∪ 𝑦} ⊆ 𝒫 𝒫 𝐴 |
7 | pwexg 5396 | . . . . . 6 ⊢ (𝐴 ∈ V → 𝒫 𝐴 ∈ V) | |
8 | 7 | pwexd 5397 | . . . . 5 ⊢ (𝐴 ∈ V → 𝒫 𝒫 𝐴 ∈ V) |
9 | ssexg 5341 | . . . . 5 ⊢ (({𝑦 ∈ Top ∣ 𝐴 = ∪ 𝑦} ⊆ 𝒫 𝒫 𝐴 ∧ 𝒫 𝒫 𝐴 ∈ V) → {𝑦 ∈ Top ∣ 𝐴 = ∪ 𝑦} ∈ V) | |
10 | 6, 8, 9 | sylancr 586 | . . . 4 ⊢ (𝐴 ∈ V → {𝑦 ∈ Top ∣ 𝐴 = ∪ 𝑦} ∈ V) |
11 | eqeq1 2744 | . . . . . 6 ⊢ (𝑥 = 𝐴 → (𝑥 = ∪ 𝑦 ↔ 𝐴 = ∪ 𝑦)) | |
12 | 11 | rabbidv 3451 | . . . . 5 ⊢ (𝑥 = 𝐴 → {𝑦 ∈ Top ∣ 𝑥 = ∪ 𝑦} = {𝑦 ∈ Top ∣ 𝐴 = ∪ 𝑦}) |
13 | df-topon 22938 | . . . . 5 ⊢ TopOn = (𝑥 ∈ V ↦ {𝑦 ∈ Top ∣ 𝑥 = ∪ 𝑦}) | |
14 | 12, 13 | fvmptg 7027 | . . . 4 ⊢ ((𝐴 ∈ V ∧ {𝑦 ∈ Top ∣ 𝐴 = ∪ 𝑦} ∈ V) → (TopOn‘𝐴) = {𝑦 ∈ Top ∣ 𝐴 = ∪ 𝑦}) |
15 | 10, 14 | mpdan 686 | . . 3 ⊢ (𝐴 ∈ V → (TopOn‘𝐴) = {𝑦 ∈ Top ∣ 𝐴 = ∪ 𝑦}) |
16 | 15, 6 | eqsstrdi 4063 | . 2 ⊢ (𝐴 ∈ V → (TopOn‘𝐴) ⊆ 𝒫 𝒫 𝐴) |
17 | fvprc 6912 | . . 3 ⊢ (¬ 𝐴 ∈ V → (TopOn‘𝐴) = ∅) | |
18 | 0ss 4423 | . . 3 ⊢ ∅ ⊆ 𝒫 𝒫 𝐴 | |
19 | 17, 18 | eqsstrdi 4063 | . 2 ⊢ (¬ 𝐴 ∈ V → (TopOn‘𝐴) ⊆ 𝒫 𝒫 𝐴) |
20 | 16, 19 | pm2.61i 182 | 1 ⊢ (TopOn‘𝐴) ⊆ 𝒫 𝒫 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1537 ∈ wcel 2108 {cab 2717 {crab 3443 Vcvv 3488 ⊆ wss 3976 ∅c0 4352 𝒫 cpw 4622 ∪ cuni 4931 ‘cfv 6573 Topctop 22920 TopOnctopon 22937 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-iota 6525 df-fun 6575 df-fv 6581 df-topon 22938 |
This theorem is referenced by: toponmre 23122 |
Copyright terms: Public domain | W3C validator |