| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > toponsspwpw | Structured version Visualization version GIF version | ||
| Description: The set of topologies on a set is included in the double power set of that set. (Contributed by BJ, 29-Apr-2021.) |
| Ref | Expression |
|---|---|
| toponsspwpw | ⊢ (TopOn‘𝐴) ⊆ 𝒫 𝒫 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rabssab 4032 | . . . . . . 7 ⊢ {𝑦 ∈ Top ∣ 𝐴 = ∪ 𝑦} ⊆ {𝑦 ∣ 𝐴 = ∪ 𝑦} | |
| 2 | eqcom 2738 | . . . . . . . 8 ⊢ (𝐴 = ∪ 𝑦 ↔ ∪ 𝑦 = 𝐴) | |
| 3 | 2 | abbii 2798 | . . . . . . 7 ⊢ {𝑦 ∣ 𝐴 = ∪ 𝑦} = {𝑦 ∣ ∪ 𝑦 = 𝐴} |
| 4 | 1, 3 | sseqtri 3978 | . . . . . 6 ⊢ {𝑦 ∈ Top ∣ 𝐴 = ∪ 𝑦} ⊆ {𝑦 ∣ ∪ 𝑦 = 𝐴} |
| 5 | pwpwssunieq 5050 | . . . . . 6 ⊢ {𝑦 ∣ ∪ 𝑦 = 𝐴} ⊆ 𝒫 𝒫 𝐴 | |
| 6 | 4, 5 | sstri 3939 | . . . . 5 ⊢ {𝑦 ∈ Top ∣ 𝐴 = ∪ 𝑦} ⊆ 𝒫 𝒫 𝐴 |
| 7 | pwexg 5314 | . . . . . 6 ⊢ (𝐴 ∈ V → 𝒫 𝐴 ∈ V) | |
| 8 | 7 | pwexd 5315 | . . . . 5 ⊢ (𝐴 ∈ V → 𝒫 𝒫 𝐴 ∈ V) |
| 9 | ssexg 5259 | . . . . 5 ⊢ (({𝑦 ∈ Top ∣ 𝐴 = ∪ 𝑦} ⊆ 𝒫 𝒫 𝐴 ∧ 𝒫 𝒫 𝐴 ∈ V) → {𝑦 ∈ Top ∣ 𝐴 = ∪ 𝑦} ∈ V) | |
| 10 | 6, 8, 9 | sylancr 587 | . . . 4 ⊢ (𝐴 ∈ V → {𝑦 ∈ Top ∣ 𝐴 = ∪ 𝑦} ∈ V) |
| 11 | eqeq1 2735 | . . . . . 6 ⊢ (𝑥 = 𝐴 → (𝑥 = ∪ 𝑦 ↔ 𝐴 = ∪ 𝑦)) | |
| 12 | 11 | rabbidv 3402 | . . . . 5 ⊢ (𝑥 = 𝐴 → {𝑦 ∈ Top ∣ 𝑥 = ∪ 𝑦} = {𝑦 ∈ Top ∣ 𝐴 = ∪ 𝑦}) |
| 13 | df-topon 22826 | . . . . 5 ⊢ TopOn = (𝑥 ∈ V ↦ {𝑦 ∈ Top ∣ 𝑥 = ∪ 𝑦}) | |
| 14 | 12, 13 | fvmptg 6927 | . . . 4 ⊢ ((𝐴 ∈ V ∧ {𝑦 ∈ Top ∣ 𝐴 = ∪ 𝑦} ∈ V) → (TopOn‘𝐴) = {𝑦 ∈ Top ∣ 𝐴 = ∪ 𝑦}) |
| 15 | 10, 14 | mpdan 687 | . . 3 ⊢ (𝐴 ∈ V → (TopOn‘𝐴) = {𝑦 ∈ Top ∣ 𝐴 = ∪ 𝑦}) |
| 16 | 15, 6 | eqsstrdi 3974 | . 2 ⊢ (𝐴 ∈ V → (TopOn‘𝐴) ⊆ 𝒫 𝒫 𝐴) |
| 17 | fvprc 6814 | . . 3 ⊢ (¬ 𝐴 ∈ V → (TopOn‘𝐴) = ∅) | |
| 18 | 0ss 4347 | . . 3 ⊢ ∅ ⊆ 𝒫 𝒫 𝐴 | |
| 19 | 17, 18 | eqsstrdi 3974 | . 2 ⊢ (¬ 𝐴 ∈ V → (TopOn‘𝐴) ⊆ 𝒫 𝒫 𝐴) |
| 20 | 16, 19 | pm2.61i 182 | 1 ⊢ (TopOn‘𝐴) ⊆ 𝒫 𝒫 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1541 ∈ wcel 2111 {cab 2709 {crab 3395 Vcvv 3436 ⊆ wss 3897 ∅c0 4280 𝒫 cpw 4547 ∪ cuni 4856 ‘cfv 6481 Topctop 22808 TopOnctopon 22825 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-iota 6437 df-fun 6483 df-fv 6489 df-topon 22826 |
| This theorem is referenced by: toponmre 23008 |
| Copyright terms: Public domain | W3C validator |