| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > istopon | Structured version Visualization version GIF version | ||
| Description: Property of being a topology with a given base set. (Contributed by Stefan O'Rear, 31-Jan-2015.) (Revised by Mario Carneiro, 13-Aug-2015.) |
| Ref | Expression |
|---|---|
| istopon | ⊢ (𝐽 ∈ (TopOn‘𝐵) ↔ (𝐽 ∈ Top ∧ 𝐵 = ∪ 𝐽)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfvex 6899 | . 2 ⊢ (𝐽 ∈ (TopOn‘𝐵) → 𝐵 ∈ V) | |
| 2 | uniexg 7719 | . . . 4 ⊢ (𝐽 ∈ Top → ∪ 𝐽 ∈ V) | |
| 3 | eleq1 2817 | . . . 4 ⊢ (𝐵 = ∪ 𝐽 → (𝐵 ∈ V ↔ ∪ 𝐽 ∈ V)) | |
| 4 | 2, 3 | syl5ibrcom 247 | . . 3 ⊢ (𝐽 ∈ Top → (𝐵 = ∪ 𝐽 → 𝐵 ∈ V)) |
| 5 | 4 | imp 406 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝐵 = ∪ 𝐽) → 𝐵 ∈ V) |
| 6 | eqeq1 2734 | . . . . . 6 ⊢ (𝑏 = 𝐵 → (𝑏 = ∪ 𝑗 ↔ 𝐵 = ∪ 𝑗)) | |
| 7 | 6 | rabbidv 3416 | . . . . 5 ⊢ (𝑏 = 𝐵 → {𝑗 ∈ Top ∣ 𝑏 = ∪ 𝑗} = {𝑗 ∈ Top ∣ 𝐵 = ∪ 𝑗}) |
| 8 | df-topon 22805 | . . . . 5 ⊢ TopOn = (𝑏 ∈ V ↦ {𝑗 ∈ Top ∣ 𝑏 = ∪ 𝑗}) | |
| 9 | vpwex 5335 | . . . . . . 7 ⊢ 𝒫 𝑏 ∈ V | |
| 10 | 9 | pwex 5338 | . . . . . 6 ⊢ 𝒫 𝒫 𝑏 ∈ V |
| 11 | rabss 4038 | . . . . . . 7 ⊢ ({𝑗 ∈ Top ∣ 𝑏 = ∪ 𝑗} ⊆ 𝒫 𝒫 𝑏 ↔ ∀𝑗 ∈ Top (𝑏 = ∪ 𝑗 → 𝑗 ∈ 𝒫 𝒫 𝑏)) | |
| 12 | pwuni 4912 | . . . . . . . . . 10 ⊢ 𝑗 ⊆ 𝒫 ∪ 𝑗 | |
| 13 | pweq 4580 | . . . . . . . . . 10 ⊢ (𝑏 = ∪ 𝑗 → 𝒫 𝑏 = 𝒫 ∪ 𝑗) | |
| 14 | 12, 13 | sseqtrrid 3993 | . . . . . . . . 9 ⊢ (𝑏 = ∪ 𝑗 → 𝑗 ⊆ 𝒫 𝑏) |
| 15 | velpw 4571 | . . . . . . . . 9 ⊢ (𝑗 ∈ 𝒫 𝒫 𝑏 ↔ 𝑗 ⊆ 𝒫 𝑏) | |
| 16 | 14, 15 | sylibr 234 | . . . . . . . 8 ⊢ (𝑏 = ∪ 𝑗 → 𝑗 ∈ 𝒫 𝒫 𝑏) |
| 17 | 16 | a1i 11 | . . . . . . 7 ⊢ (𝑗 ∈ Top → (𝑏 = ∪ 𝑗 → 𝑗 ∈ 𝒫 𝒫 𝑏)) |
| 18 | 11, 17 | mprgbir 3052 | . . . . . 6 ⊢ {𝑗 ∈ Top ∣ 𝑏 = ∪ 𝑗} ⊆ 𝒫 𝒫 𝑏 |
| 19 | 10, 18 | ssexi 5280 | . . . . 5 ⊢ {𝑗 ∈ Top ∣ 𝑏 = ∪ 𝑗} ∈ V |
| 20 | 7, 8, 19 | fvmpt3i 6976 | . . . 4 ⊢ (𝐵 ∈ V → (TopOn‘𝐵) = {𝑗 ∈ Top ∣ 𝐵 = ∪ 𝑗}) |
| 21 | 20 | eleq2d 2815 | . . 3 ⊢ (𝐵 ∈ V → (𝐽 ∈ (TopOn‘𝐵) ↔ 𝐽 ∈ {𝑗 ∈ Top ∣ 𝐵 = ∪ 𝑗})) |
| 22 | unieq 4885 | . . . . 5 ⊢ (𝑗 = 𝐽 → ∪ 𝑗 = ∪ 𝐽) | |
| 23 | 22 | eqeq2d 2741 | . . . 4 ⊢ (𝑗 = 𝐽 → (𝐵 = ∪ 𝑗 ↔ 𝐵 = ∪ 𝐽)) |
| 24 | 23 | elrab 3662 | . . 3 ⊢ (𝐽 ∈ {𝑗 ∈ Top ∣ 𝐵 = ∪ 𝑗} ↔ (𝐽 ∈ Top ∧ 𝐵 = ∪ 𝐽)) |
| 25 | 21, 24 | bitrdi 287 | . 2 ⊢ (𝐵 ∈ V → (𝐽 ∈ (TopOn‘𝐵) ↔ (𝐽 ∈ Top ∧ 𝐵 = ∪ 𝐽))) |
| 26 | 1, 5, 25 | pm5.21nii 378 | 1 ⊢ (𝐽 ∈ (TopOn‘𝐵) ↔ (𝐽 ∈ Top ∧ 𝐵 = ∪ 𝐽)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {crab 3408 Vcvv 3450 ⊆ wss 3917 𝒫 cpw 4566 ∪ cuni 4874 ‘cfv 6514 Topctop 22787 TopOnctopon 22804 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-iota 6467 df-fun 6516 df-fv 6522 df-topon 22805 |
| This theorem is referenced by: topontop 22807 toponuni 22808 toptopon 22811 toponcom 22822 istps2 22829 tgtopon 22865 distopon 22891 indistopon 22895 fctop 22898 cctop 22900 ppttop 22901 epttop 22903 mretopd 22986 toponmre 22987 resttopon 23055 resttopon2 23062 kgentopon 23432 txtopon 23485 pttopon 23490 xkotopon 23494 qtoptopon 23598 flimtopon 23864 fclstopon 23906 fclsfnflim 23921 utoptopon 24131 qtopt1 33832 neibastop1 36354 onsuctopon 36429 rfcnpre1 45020 cnfex 45029 icccncfext 45892 stoweidlem47 46052 |
| Copyright terms: Public domain | W3C validator |