MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  istopon Structured version   Visualization version   GIF version

Theorem istopon 22815
Description: Property of being a topology with a given base set. (Contributed by Stefan O'Rear, 31-Jan-2015.) (Revised by Mario Carneiro, 13-Aug-2015.)
Assertion
Ref Expression
istopon (𝐽 ∈ (TopOn‘𝐵) ↔ (𝐽 ∈ Top ∧ 𝐵 = 𝐽))

Proof of Theorem istopon
Dummy variables 𝑏 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elfvex 6862 . 2 (𝐽 ∈ (TopOn‘𝐵) → 𝐵 ∈ V)
2 uniexg 7680 . . . 4 (𝐽 ∈ Top → 𝐽 ∈ V)
3 eleq1 2816 . . . 4 (𝐵 = 𝐽 → (𝐵 ∈ V ↔ 𝐽 ∈ V))
42, 3syl5ibrcom 247 . . 3 (𝐽 ∈ Top → (𝐵 = 𝐽𝐵 ∈ V))
54imp 406 . 2 ((𝐽 ∈ Top ∧ 𝐵 = 𝐽) → 𝐵 ∈ V)
6 eqeq1 2733 . . . . . 6 (𝑏 = 𝐵 → (𝑏 = 𝑗𝐵 = 𝑗))
76rabbidv 3404 . . . . 5 (𝑏 = 𝐵 → {𝑗 ∈ Top ∣ 𝑏 = 𝑗} = {𝑗 ∈ Top ∣ 𝐵 = 𝑗})
8 df-topon 22814 . . . . 5 TopOn = (𝑏 ∈ V ↦ {𝑗 ∈ Top ∣ 𝑏 = 𝑗})
9 vpwex 5319 . . . . . . 7 𝒫 𝑏 ∈ V
109pwex 5322 . . . . . 6 𝒫 𝒫 𝑏 ∈ V
11 rabss 4025 . . . . . . 7 ({𝑗 ∈ Top ∣ 𝑏 = 𝑗} ⊆ 𝒫 𝒫 𝑏 ↔ ∀𝑗 ∈ Top (𝑏 = 𝑗𝑗 ∈ 𝒫 𝒫 𝑏))
12 pwuni 4898 . . . . . . . . . 10 𝑗 ⊆ 𝒫 𝑗
13 pweq 4567 . . . . . . . . . 10 (𝑏 = 𝑗 → 𝒫 𝑏 = 𝒫 𝑗)
1412, 13sseqtrrid 3981 . . . . . . . . 9 (𝑏 = 𝑗𝑗 ⊆ 𝒫 𝑏)
15 velpw 4558 . . . . . . . . 9 (𝑗 ∈ 𝒫 𝒫 𝑏𝑗 ⊆ 𝒫 𝑏)
1614, 15sylibr 234 . . . . . . . 8 (𝑏 = 𝑗𝑗 ∈ 𝒫 𝒫 𝑏)
1716a1i 11 . . . . . . 7 (𝑗 ∈ Top → (𝑏 = 𝑗𝑗 ∈ 𝒫 𝒫 𝑏))
1811, 17mprgbir 3051 . . . . . 6 {𝑗 ∈ Top ∣ 𝑏 = 𝑗} ⊆ 𝒫 𝒫 𝑏
1910, 18ssexi 5264 . . . . 5 {𝑗 ∈ Top ∣ 𝑏 = 𝑗} ∈ V
207, 8, 19fvmpt3i 6939 . . . 4 (𝐵 ∈ V → (TopOn‘𝐵) = {𝑗 ∈ Top ∣ 𝐵 = 𝑗})
2120eleq2d 2814 . . 3 (𝐵 ∈ V → (𝐽 ∈ (TopOn‘𝐵) ↔ 𝐽 ∈ {𝑗 ∈ Top ∣ 𝐵 = 𝑗}))
22 unieq 4872 . . . . 5 (𝑗 = 𝐽 𝑗 = 𝐽)
2322eqeq2d 2740 . . . 4 (𝑗 = 𝐽 → (𝐵 = 𝑗𝐵 = 𝐽))
2423elrab 3650 . . 3 (𝐽 ∈ {𝑗 ∈ Top ∣ 𝐵 = 𝑗} ↔ (𝐽 ∈ Top ∧ 𝐵 = 𝐽))
2521, 24bitrdi 287 . 2 (𝐵 ∈ V → (𝐽 ∈ (TopOn‘𝐵) ↔ (𝐽 ∈ Top ∧ 𝐵 = 𝐽)))
261, 5, 25pm5.21nii 378 1 (𝐽 ∈ (TopOn‘𝐵) ↔ (𝐽 ∈ Top ∧ 𝐵 = 𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  {crab 3396  Vcvv 3438  wss 3905  𝒫 cpw 4553   cuni 4861  cfv 6486  Topctop 22796  TopOnctopon 22813
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-iota 6442  df-fun 6488  df-fv 6494  df-topon 22814
This theorem is referenced by:  topontop  22816  toponuni  22817  toptopon  22820  toponcom  22831  istps2  22838  tgtopon  22874  distopon  22900  indistopon  22904  fctop  22907  cctop  22909  ppttop  22910  epttop  22912  mretopd  22995  toponmre  22996  resttopon  23064  resttopon2  23071  kgentopon  23441  txtopon  23494  pttopon  23499  xkotopon  23503  qtoptopon  23607  flimtopon  23873  fclstopon  23915  fclsfnflim  23930  utoptopon  24140  qtopt1  33801  neibastop1  36332  onsuctopon  36407  rfcnpre1  44997  cnfex  45006  icccncfext  45869  stoweidlem47  46029
  Copyright terms: Public domain W3C validator