MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  istopon Structured version   Visualization version   GIF version

Theorem istopon 22405
Description: Property of being a topology with a given base set. (Contributed by Stefan O'Rear, 31-Jan-2015.) (Revised by Mario Carneiro, 13-Aug-2015.)
Assertion
Ref Expression
istopon (𝐽 ∈ (TopOnβ€˜π΅) ↔ (𝐽 ∈ Top ∧ 𝐡 = βˆͺ 𝐽))

Proof of Theorem istopon
Dummy variables 𝑏 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elfvex 6926 . 2 (𝐽 ∈ (TopOnβ€˜π΅) β†’ 𝐡 ∈ V)
2 uniexg 7726 . . . 4 (𝐽 ∈ Top β†’ βˆͺ 𝐽 ∈ V)
3 eleq1 2821 . . . 4 (𝐡 = βˆͺ 𝐽 β†’ (𝐡 ∈ V ↔ βˆͺ 𝐽 ∈ V))
42, 3syl5ibrcom 246 . . 3 (𝐽 ∈ Top β†’ (𝐡 = βˆͺ 𝐽 β†’ 𝐡 ∈ V))
54imp 407 . 2 ((𝐽 ∈ Top ∧ 𝐡 = βˆͺ 𝐽) β†’ 𝐡 ∈ V)
6 eqeq1 2736 . . . . . 6 (𝑏 = 𝐡 β†’ (𝑏 = βˆͺ 𝑗 ↔ 𝐡 = βˆͺ 𝑗))
76rabbidv 3440 . . . . 5 (𝑏 = 𝐡 β†’ {𝑗 ∈ Top ∣ 𝑏 = βˆͺ 𝑗} = {𝑗 ∈ Top ∣ 𝐡 = βˆͺ 𝑗})
8 df-topon 22404 . . . . 5 TopOn = (𝑏 ∈ V ↦ {𝑗 ∈ Top ∣ 𝑏 = βˆͺ 𝑗})
9 vpwex 5374 . . . . . . 7 𝒫 𝑏 ∈ V
109pwex 5377 . . . . . 6 𝒫 𝒫 𝑏 ∈ V
11 rabss 4068 . . . . . . 7 ({𝑗 ∈ Top ∣ 𝑏 = βˆͺ 𝑗} βŠ† 𝒫 𝒫 𝑏 ↔ βˆ€π‘— ∈ Top (𝑏 = βˆͺ 𝑗 β†’ 𝑗 ∈ 𝒫 𝒫 𝑏))
12 pwuni 4948 . . . . . . . . . 10 𝑗 βŠ† 𝒫 βˆͺ 𝑗
13 pweq 4615 . . . . . . . . . 10 (𝑏 = βˆͺ 𝑗 β†’ 𝒫 𝑏 = 𝒫 βˆͺ 𝑗)
1412, 13sseqtrrid 4034 . . . . . . . . 9 (𝑏 = βˆͺ 𝑗 β†’ 𝑗 βŠ† 𝒫 𝑏)
15 velpw 4606 . . . . . . . . 9 (𝑗 ∈ 𝒫 𝒫 𝑏 ↔ 𝑗 βŠ† 𝒫 𝑏)
1614, 15sylibr 233 . . . . . . . 8 (𝑏 = βˆͺ 𝑗 β†’ 𝑗 ∈ 𝒫 𝒫 𝑏)
1716a1i 11 . . . . . . 7 (𝑗 ∈ Top β†’ (𝑏 = βˆͺ 𝑗 β†’ 𝑗 ∈ 𝒫 𝒫 𝑏))
1811, 17mprgbir 3068 . . . . . 6 {𝑗 ∈ Top ∣ 𝑏 = βˆͺ 𝑗} βŠ† 𝒫 𝒫 𝑏
1910, 18ssexi 5321 . . . . 5 {𝑗 ∈ Top ∣ 𝑏 = βˆͺ 𝑗} ∈ V
207, 8, 19fvmpt3i 7000 . . . 4 (𝐡 ∈ V β†’ (TopOnβ€˜π΅) = {𝑗 ∈ Top ∣ 𝐡 = βˆͺ 𝑗})
2120eleq2d 2819 . . 3 (𝐡 ∈ V β†’ (𝐽 ∈ (TopOnβ€˜π΅) ↔ 𝐽 ∈ {𝑗 ∈ Top ∣ 𝐡 = βˆͺ 𝑗}))
22 unieq 4918 . . . . 5 (𝑗 = 𝐽 β†’ βˆͺ 𝑗 = βˆͺ 𝐽)
2322eqeq2d 2743 . . . 4 (𝑗 = 𝐽 β†’ (𝐡 = βˆͺ 𝑗 ↔ 𝐡 = βˆͺ 𝐽))
2423elrab 3682 . . 3 (𝐽 ∈ {𝑗 ∈ Top ∣ 𝐡 = βˆͺ 𝑗} ↔ (𝐽 ∈ Top ∧ 𝐡 = βˆͺ 𝐽))
2521, 24bitrdi 286 . 2 (𝐡 ∈ V β†’ (𝐽 ∈ (TopOnβ€˜π΅) ↔ (𝐽 ∈ Top ∧ 𝐡 = βˆͺ 𝐽)))
261, 5, 25pm5.21nii 379 1 (𝐽 ∈ (TopOnβ€˜π΅) ↔ (𝐽 ∈ Top ∧ 𝐡 = βˆͺ 𝐽))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 396   = wceq 1541   ∈ wcel 2106  {crab 3432  Vcvv 3474   βŠ† wss 3947  π’« cpw 4601  βˆͺ cuni 4907  β€˜cfv 6540  Topctop 22386  TopOnctopon 22403
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-iota 6492  df-fun 6542  df-fv 6548  df-topon 22404
This theorem is referenced by:  topontop  22406  toponuni  22407  toptopon  22410  toponcom  22421  istps2  22428  tgtopon  22465  distopon  22491  indistopon  22495  fctop  22498  cctop  22500  ppttop  22501  epttop  22503  mretopd  22587  toponmre  22588  resttopon  22656  resttopon2  22663  kgentopon  23033  txtopon  23086  pttopon  23091  xkotopon  23095  qtoptopon  23199  flimtopon  23465  fclstopon  23507  fclsfnflim  23522  utoptopon  23732  qtopt1  32803  neibastop1  35232  onsuctopon  35307  rfcnpre1  43688  cnfex  43697  icccncfext  44589  stoweidlem47  44749
  Copyright terms: Public domain W3C validator