Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > istopon | Structured version Visualization version GIF version |
Description: Property of being a topology with a given base set. (Contributed by Stefan O'Rear, 31-Jan-2015.) (Revised by Mario Carneiro, 13-Aug-2015.) |
Ref | Expression |
---|---|
istopon | ⊢ (𝐽 ∈ (TopOn‘𝐵) ↔ (𝐽 ∈ Top ∧ 𝐵 = ∪ 𝐽)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfvex 6789 | . 2 ⊢ (𝐽 ∈ (TopOn‘𝐵) → 𝐵 ∈ V) | |
2 | uniexg 7571 | . . . 4 ⊢ (𝐽 ∈ Top → ∪ 𝐽 ∈ V) | |
3 | eleq1 2826 | . . . 4 ⊢ (𝐵 = ∪ 𝐽 → (𝐵 ∈ V ↔ ∪ 𝐽 ∈ V)) | |
4 | 2, 3 | syl5ibrcom 246 | . . 3 ⊢ (𝐽 ∈ Top → (𝐵 = ∪ 𝐽 → 𝐵 ∈ V)) |
5 | 4 | imp 406 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝐵 = ∪ 𝐽) → 𝐵 ∈ V) |
6 | eqeq1 2742 | . . . . . 6 ⊢ (𝑏 = 𝐵 → (𝑏 = ∪ 𝑗 ↔ 𝐵 = ∪ 𝑗)) | |
7 | 6 | rabbidv 3404 | . . . . 5 ⊢ (𝑏 = 𝐵 → {𝑗 ∈ Top ∣ 𝑏 = ∪ 𝑗} = {𝑗 ∈ Top ∣ 𝐵 = ∪ 𝑗}) |
8 | df-topon 21968 | . . . . 5 ⊢ TopOn = (𝑏 ∈ V ↦ {𝑗 ∈ Top ∣ 𝑏 = ∪ 𝑗}) | |
9 | vpwex 5295 | . . . . . . 7 ⊢ 𝒫 𝑏 ∈ V | |
10 | 9 | pwex 5298 | . . . . . 6 ⊢ 𝒫 𝒫 𝑏 ∈ V |
11 | rabss 4001 | . . . . . . 7 ⊢ ({𝑗 ∈ Top ∣ 𝑏 = ∪ 𝑗} ⊆ 𝒫 𝒫 𝑏 ↔ ∀𝑗 ∈ Top (𝑏 = ∪ 𝑗 → 𝑗 ∈ 𝒫 𝒫 𝑏)) | |
12 | pwuni 4875 | . . . . . . . . . 10 ⊢ 𝑗 ⊆ 𝒫 ∪ 𝑗 | |
13 | pweq 4546 | . . . . . . . . . 10 ⊢ (𝑏 = ∪ 𝑗 → 𝒫 𝑏 = 𝒫 ∪ 𝑗) | |
14 | 12, 13 | sseqtrrid 3970 | . . . . . . . . 9 ⊢ (𝑏 = ∪ 𝑗 → 𝑗 ⊆ 𝒫 𝑏) |
15 | velpw 4535 | . . . . . . . . 9 ⊢ (𝑗 ∈ 𝒫 𝒫 𝑏 ↔ 𝑗 ⊆ 𝒫 𝑏) | |
16 | 14, 15 | sylibr 233 | . . . . . . . 8 ⊢ (𝑏 = ∪ 𝑗 → 𝑗 ∈ 𝒫 𝒫 𝑏) |
17 | 16 | a1i 11 | . . . . . . 7 ⊢ (𝑗 ∈ Top → (𝑏 = ∪ 𝑗 → 𝑗 ∈ 𝒫 𝒫 𝑏)) |
18 | 11, 17 | mprgbir 3078 | . . . . . 6 ⊢ {𝑗 ∈ Top ∣ 𝑏 = ∪ 𝑗} ⊆ 𝒫 𝒫 𝑏 |
19 | 10, 18 | ssexi 5241 | . . . . 5 ⊢ {𝑗 ∈ Top ∣ 𝑏 = ∪ 𝑗} ∈ V |
20 | 7, 8, 19 | fvmpt3i 6862 | . . . 4 ⊢ (𝐵 ∈ V → (TopOn‘𝐵) = {𝑗 ∈ Top ∣ 𝐵 = ∪ 𝑗}) |
21 | 20 | eleq2d 2824 | . . 3 ⊢ (𝐵 ∈ V → (𝐽 ∈ (TopOn‘𝐵) ↔ 𝐽 ∈ {𝑗 ∈ Top ∣ 𝐵 = ∪ 𝑗})) |
22 | unieq 4847 | . . . . 5 ⊢ (𝑗 = 𝐽 → ∪ 𝑗 = ∪ 𝐽) | |
23 | 22 | eqeq2d 2749 | . . . 4 ⊢ (𝑗 = 𝐽 → (𝐵 = ∪ 𝑗 ↔ 𝐵 = ∪ 𝐽)) |
24 | 23 | elrab 3617 | . . 3 ⊢ (𝐽 ∈ {𝑗 ∈ Top ∣ 𝐵 = ∪ 𝑗} ↔ (𝐽 ∈ Top ∧ 𝐵 = ∪ 𝐽)) |
25 | 21, 24 | bitrdi 286 | . 2 ⊢ (𝐵 ∈ V → (𝐽 ∈ (TopOn‘𝐵) ↔ (𝐽 ∈ Top ∧ 𝐵 = ∪ 𝐽))) |
26 | 1, 5, 25 | pm5.21nii 379 | 1 ⊢ (𝐽 ∈ (TopOn‘𝐵) ↔ (𝐽 ∈ Top ∧ 𝐵 = ∪ 𝐽)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 {crab 3067 Vcvv 3422 ⊆ wss 3883 𝒫 cpw 4530 ∪ cuni 4836 ‘cfv 6418 Topctop 21950 TopOnctopon 21967 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-iota 6376 df-fun 6420 df-fv 6426 df-topon 21968 |
This theorem is referenced by: topontop 21970 toponuni 21971 toptopon 21974 toponcom 21985 istps2 21992 tgtopon 22029 distopon 22055 indistopon 22059 fctop 22062 cctop 22064 ppttop 22065 epttop 22067 mretopd 22151 toponmre 22152 resttopon 22220 resttopon2 22227 kgentopon 22597 txtopon 22650 pttopon 22655 xkotopon 22659 qtoptopon 22763 flimtopon 23029 fclstopon 23071 fclsfnflim 23086 utoptopon 23296 qtopt1 31687 neibastop1 34475 onsuctopon 34550 rfcnpre1 42451 cnfex 42460 icccncfext 43318 stoweidlem47 43478 |
Copyright terms: Public domain | W3C validator |