| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > istopon | Structured version Visualization version GIF version | ||
| Description: Property of being a topology with a given base set. (Contributed by Stefan O'Rear, 31-Jan-2015.) (Revised by Mario Carneiro, 13-Aug-2015.) |
| Ref | Expression |
|---|---|
| istopon | ⊢ (𝐽 ∈ (TopOn‘𝐵) ↔ (𝐽 ∈ Top ∧ 𝐵 = ∪ 𝐽)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfvex 6862 | . 2 ⊢ (𝐽 ∈ (TopOn‘𝐵) → 𝐵 ∈ V) | |
| 2 | uniexg 7680 | . . . 4 ⊢ (𝐽 ∈ Top → ∪ 𝐽 ∈ V) | |
| 3 | eleq1 2816 | . . . 4 ⊢ (𝐵 = ∪ 𝐽 → (𝐵 ∈ V ↔ ∪ 𝐽 ∈ V)) | |
| 4 | 2, 3 | syl5ibrcom 247 | . . 3 ⊢ (𝐽 ∈ Top → (𝐵 = ∪ 𝐽 → 𝐵 ∈ V)) |
| 5 | 4 | imp 406 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝐵 = ∪ 𝐽) → 𝐵 ∈ V) |
| 6 | eqeq1 2733 | . . . . . 6 ⊢ (𝑏 = 𝐵 → (𝑏 = ∪ 𝑗 ↔ 𝐵 = ∪ 𝑗)) | |
| 7 | 6 | rabbidv 3404 | . . . . 5 ⊢ (𝑏 = 𝐵 → {𝑗 ∈ Top ∣ 𝑏 = ∪ 𝑗} = {𝑗 ∈ Top ∣ 𝐵 = ∪ 𝑗}) |
| 8 | df-topon 22814 | . . . . 5 ⊢ TopOn = (𝑏 ∈ V ↦ {𝑗 ∈ Top ∣ 𝑏 = ∪ 𝑗}) | |
| 9 | vpwex 5319 | . . . . . . 7 ⊢ 𝒫 𝑏 ∈ V | |
| 10 | 9 | pwex 5322 | . . . . . 6 ⊢ 𝒫 𝒫 𝑏 ∈ V |
| 11 | rabss 4025 | . . . . . . 7 ⊢ ({𝑗 ∈ Top ∣ 𝑏 = ∪ 𝑗} ⊆ 𝒫 𝒫 𝑏 ↔ ∀𝑗 ∈ Top (𝑏 = ∪ 𝑗 → 𝑗 ∈ 𝒫 𝒫 𝑏)) | |
| 12 | pwuni 4898 | . . . . . . . . . 10 ⊢ 𝑗 ⊆ 𝒫 ∪ 𝑗 | |
| 13 | pweq 4567 | . . . . . . . . . 10 ⊢ (𝑏 = ∪ 𝑗 → 𝒫 𝑏 = 𝒫 ∪ 𝑗) | |
| 14 | 12, 13 | sseqtrrid 3981 | . . . . . . . . 9 ⊢ (𝑏 = ∪ 𝑗 → 𝑗 ⊆ 𝒫 𝑏) |
| 15 | velpw 4558 | . . . . . . . . 9 ⊢ (𝑗 ∈ 𝒫 𝒫 𝑏 ↔ 𝑗 ⊆ 𝒫 𝑏) | |
| 16 | 14, 15 | sylibr 234 | . . . . . . . 8 ⊢ (𝑏 = ∪ 𝑗 → 𝑗 ∈ 𝒫 𝒫 𝑏) |
| 17 | 16 | a1i 11 | . . . . . . 7 ⊢ (𝑗 ∈ Top → (𝑏 = ∪ 𝑗 → 𝑗 ∈ 𝒫 𝒫 𝑏)) |
| 18 | 11, 17 | mprgbir 3051 | . . . . . 6 ⊢ {𝑗 ∈ Top ∣ 𝑏 = ∪ 𝑗} ⊆ 𝒫 𝒫 𝑏 |
| 19 | 10, 18 | ssexi 5264 | . . . . 5 ⊢ {𝑗 ∈ Top ∣ 𝑏 = ∪ 𝑗} ∈ V |
| 20 | 7, 8, 19 | fvmpt3i 6939 | . . . 4 ⊢ (𝐵 ∈ V → (TopOn‘𝐵) = {𝑗 ∈ Top ∣ 𝐵 = ∪ 𝑗}) |
| 21 | 20 | eleq2d 2814 | . . 3 ⊢ (𝐵 ∈ V → (𝐽 ∈ (TopOn‘𝐵) ↔ 𝐽 ∈ {𝑗 ∈ Top ∣ 𝐵 = ∪ 𝑗})) |
| 22 | unieq 4872 | . . . . 5 ⊢ (𝑗 = 𝐽 → ∪ 𝑗 = ∪ 𝐽) | |
| 23 | 22 | eqeq2d 2740 | . . . 4 ⊢ (𝑗 = 𝐽 → (𝐵 = ∪ 𝑗 ↔ 𝐵 = ∪ 𝐽)) |
| 24 | 23 | elrab 3650 | . . 3 ⊢ (𝐽 ∈ {𝑗 ∈ Top ∣ 𝐵 = ∪ 𝑗} ↔ (𝐽 ∈ Top ∧ 𝐵 = ∪ 𝐽)) |
| 25 | 21, 24 | bitrdi 287 | . 2 ⊢ (𝐵 ∈ V → (𝐽 ∈ (TopOn‘𝐵) ↔ (𝐽 ∈ Top ∧ 𝐵 = ∪ 𝐽))) |
| 26 | 1, 5, 25 | pm5.21nii 378 | 1 ⊢ (𝐽 ∈ (TopOn‘𝐵) ↔ (𝐽 ∈ Top ∧ 𝐵 = ∪ 𝐽)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {crab 3396 Vcvv 3438 ⊆ wss 3905 𝒫 cpw 4553 ∪ cuni 4861 ‘cfv 6486 Topctop 22796 TopOnctopon 22813 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-iota 6442 df-fun 6488 df-fv 6494 df-topon 22814 |
| This theorem is referenced by: topontop 22816 toponuni 22817 toptopon 22820 toponcom 22831 istps2 22838 tgtopon 22874 distopon 22900 indistopon 22904 fctop 22907 cctop 22909 ppttop 22910 epttop 22912 mretopd 22995 toponmre 22996 resttopon 23064 resttopon2 23071 kgentopon 23441 txtopon 23494 pttopon 23499 xkotopon 23503 qtoptopon 23607 flimtopon 23873 fclstopon 23915 fclsfnflim 23930 utoptopon 24140 qtopt1 33801 neibastop1 36332 onsuctopon 36407 rfcnpre1 44997 cnfex 45006 icccncfext 45869 stoweidlem47 46029 |
| Copyright terms: Public domain | W3C validator |