| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > istopon | Structured version Visualization version GIF version | ||
| Description: Property of being a topology with a given base set. (Contributed by Stefan O'Rear, 31-Jan-2015.) (Revised by Mario Carneiro, 13-Aug-2015.) |
| Ref | Expression |
|---|---|
| istopon | ⊢ (𝐽 ∈ (TopOn‘𝐵) ↔ (𝐽 ∈ Top ∧ 𝐵 = ∪ 𝐽)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfvex 6863 | . 2 ⊢ (𝐽 ∈ (TopOn‘𝐵) → 𝐵 ∈ V) | |
| 2 | uniexg 7679 | . . . 4 ⊢ (𝐽 ∈ Top → ∪ 𝐽 ∈ V) | |
| 3 | eleq1 2821 | . . . 4 ⊢ (𝐵 = ∪ 𝐽 → (𝐵 ∈ V ↔ ∪ 𝐽 ∈ V)) | |
| 4 | 2, 3 | syl5ibrcom 247 | . . 3 ⊢ (𝐽 ∈ Top → (𝐵 = ∪ 𝐽 → 𝐵 ∈ V)) |
| 5 | 4 | imp 406 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝐵 = ∪ 𝐽) → 𝐵 ∈ V) |
| 6 | eqeq1 2737 | . . . . . 6 ⊢ (𝑏 = 𝐵 → (𝑏 = ∪ 𝑗 ↔ 𝐵 = ∪ 𝑗)) | |
| 7 | 6 | rabbidv 3403 | . . . . 5 ⊢ (𝑏 = 𝐵 → {𝑗 ∈ Top ∣ 𝑏 = ∪ 𝑗} = {𝑗 ∈ Top ∣ 𝐵 = ∪ 𝑗}) |
| 8 | df-topon 22827 | . . . . 5 ⊢ TopOn = (𝑏 ∈ V ↦ {𝑗 ∈ Top ∣ 𝑏 = ∪ 𝑗}) | |
| 9 | vpwex 5317 | . . . . . . 7 ⊢ 𝒫 𝑏 ∈ V | |
| 10 | 9 | pwex 5320 | . . . . . 6 ⊢ 𝒫 𝒫 𝑏 ∈ V |
| 11 | rabss 4019 | . . . . . . 7 ⊢ ({𝑗 ∈ Top ∣ 𝑏 = ∪ 𝑗} ⊆ 𝒫 𝒫 𝑏 ↔ ∀𝑗 ∈ Top (𝑏 = ∪ 𝑗 → 𝑗 ∈ 𝒫 𝒫 𝑏)) | |
| 12 | pwuni 4896 | . . . . . . . . . 10 ⊢ 𝑗 ⊆ 𝒫 ∪ 𝑗 | |
| 13 | pweq 4563 | . . . . . . . . . 10 ⊢ (𝑏 = ∪ 𝑗 → 𝒫 𝑏 = 𝒫 ∪ 𝑗) | |
| 14 | 12, 13 | sseqtrrid 3974 | . . . . . . . . 9 ⊢ (𝑏 = ∪ 𝑗 → 𝑗 ⊆ 𝒫 𝑏) |
| 15 | velpw 4554 | . . . . . . . . 9 ⊢ (𝑗 ∈ 𝒫 𝒫 𝑏 ↔ 𝑗 ⊆ 𝒫 𝑏) | |
| 16 | 14, 15 | sylibr 234 | . . . . . . . 8 ⊢ (𝑏 = ∪ 𝑗 → 𝑗 ∈ 𝒫 𝒫 𝑏) |
| 17 | 16 | a1i 11 | . . . . . . 7 ⊢ (𝑗 ∈ Top → (𝑏 = ∪ 𝑗 → 𝑗 ∈ 𝒫 𝒫 𝑏)) |
| 18 | 11, 17 | mprgbir 3055 | . . . . . 6 ⊢ {𝑗 ∈ Top ∣ 𝑏 = ∪ 𝑗} ⊆ 𝒫 𝒫 𝑏 |
| 19 | 10, 18 | ssexi 5262 | . . . . 5 ⊢ {𝑗 ∈ Top ∣ 𝑏 = ∪ 𝑗} ∈ V |
| 20 | 7, 8, 19 | fvmpt3i 6940 | . . . 4 ⊢ (𝐵 ∈ V → (TopOn‘𝐵) = {𝑗 ∈ Top ∣ 𝐵 = ∪ 𝑗}) |
| 21 | 20 | eleq2d 2819 | . . 3 ⊢ (𝐵 ∈ V → (𝐽 ∈ (TopOn‘𝐵) ↔ 𝐽 ∈ {𝑗 ∈ Top ∣ 𝐵 = ∪ 𝑗})) |
| 22 | unieq 4869 | . . . . 5 ⊢ (𝑗 = 𝐽 → ∪ 𝑗 = ∪ 𝐽) | |
| 23 | 22 | eqeq2d 2744 | . . . 4 ⊢ (𝑗 = 𝐽 → (𝐵 = ∪ 𝑗 ↔ 𝐵 = ∪ 𝐽)) |
| 24 | 23 | elrab 3643 | . . 3 ⊢ (𝐽 ∈ {𝑗 ∈ Top ∣ 𝐵 = ∪ 𝑗} ↔ (𝐽 ∈ Top ∧ 𝐵 = ∪ 𝐽)) |
| 25 | 21, 24 | bitrdi 287 | . 2 ⊢ (𝐵 ∈ V → (𝐽 ∈ (TopOn‘𝐵) ↔ (𝐽 ∈ Top ∧ 𝐵 = ∪ 𝐽))) |
| 26 | 1, 5, 25 | pm5.21nii 378 | 1 ⊢ (𝐽 ∈ (TopOn‘𝐵) ↔ (𝐽 ∈ Top ∧ 𝐵 = ∪ 𝐽)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2113 {crab 3396 Vcvv 3437 ⊆ wss 3898 𝒫 cpw 4549 ∪ cuni 4858 ‘cfv 6486 Topctop 22809 TopOnctopon 22826 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-iota 6442 df-fun 6488 df-fv 6494 df-topon 22827 |
| This theorem is referenced by: topontop 22829 toponuni 22830 toptopon 22833 toponcom 22844 istps2 22851 tgtopon 22887 distopon 22913 indistopon 22917 fctop 22920 cctop 22922 ppttop 22923 epttop 22925 mretopd 23008 toponmre 23009 resttopon 23077 resttopon2 23084 kgentopon 23454 txtopon 23507 pttopon 23512 xkotopon 23516 qtoptopon 23620 flimtopon 23886 fclstopon 23928 fclsfnflim 23943 utoptopon 24152 qtopt1 33869 neibastop1 36424 onsuctopon 36499 rfcnpre1 45140 cnfex 45149 icccncfext 46009 stoweidlem47 46169 |
| Copyright terms: Public domain | W3C validator |