MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  istopon Structured version   Visualization version   GIF version

Theorem istopon 22634
Description: Property of being a topology with a given base set. (Contributed by Stefan O'Rear, 31-Jan-2015.) (Revised by Mario Carneiro, 13-Aug-2015.)
Assertion
Ref Expression
istopon (𝐽 ∈ (TopOnβ€˜π΅) ↔ (𝐽 ∈ Top ∧ 𝐡 = βˆͺ 𝐽))

Proof of Theorem istopon
Dummy variables 𝑏 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elfvex 6929 . 2 (𝐽 ∈ (TopOnβ€˜π΅) β†’ 𝐡 ∈ V)
2 uniexg 7732 . . . 4 (𝐽 ∈ Top β†’ βˆͺ 𝐽 ∈ V)
3 eleq1 2821 . . . 4 (𝐡 = βˆͺ 𝐽 β†’ (𝐡 ∈ V ↔ βˆͺ 𝐽 ∈ V))
42, 3syl5ibrcom 246 . . 3 (𝐽 ∈ Top β†’ (𝐡 = βˆͺ 𝐽 β†’ 𝐡 ∈ V))
54imp 407 . 2 ((𝐽 ∈ Top ∧ 𝐡 = βˆͺ 𝐽) β†’ 𝐡 ∈ V)
6 eqeq1 2736 . . . . . 6 (𝑏 = 𝐡 β†’ (𝑏 = βˆͺ 𝑗 ↔ 𝐡 = βˆͺ 𝑗))
76rabbidv 3440 . . . . 5 (𝑏 = 𝐡 β†’ {𝑗 ∈ Top ∣ 𝑏 = βˆͺ 𝑗} = {𝑗 ∈ Top ∣ 𝐡 = βˆͺ 𝑗})
8 df-topon 22633 . . . . 5 TopOn = (𝑏 ∈ V ↦ {𝑗 ∈ Top ∣ 𝑏 = βˆͺ 𝑗})
9 vpwex 5375 . . . . . . 7 𝒫 𝑏 ∈ V
109pwex 5378 . . . . . 6 𝒫 𝒫 𝑏 ∈ V
11 rabss 4069 . . . . . . 7 ({𝑗 ∈ Top ∣ 𝑏 = βˆͺ 𝑗} βŠ† 𝒫 𝒫 𝑏 ↔ βˆ€π‘— ∈ Top (𝑏 = βˆͺ 𝑗 β†’ 𝑗 ∈ 𝒫 𝒫 𝑏))
12 pwuni 4949 . . . . . . . . . 10 𝑗 βŠ† 𝒫 βˆͺ 𝑗
13 pweq 4616 . . . . . . . . . 10 (𝑏 = βˆͺ 𝑗 β†’ 𝒫 𝑏 = 𝒫 βˆͺ 𝑗)
1412, 13sseqtrrid 4035 . . . . . . . . 9 (𝑏 = βˆͺ 𝑗 β†’ 𝑗 βŠ† 𝒫 𝑏)
15 velpw 4607 . . . . . . . . 9 (𝑗 ∈ 𝒫 𝒫 𝑏 ↔ 𝑗 βŠ† 𝒫 𝑏)
1614, 15sylibr 233 . . . . . . . 8 (𝑏 = βˆͺ 𝑗 β†’ 𝑗 ∈ 𝒫 𝒫 𝑏)
1716a1i 11 . . . . . . 7 (𝑗 ∈ Top β†’ (𝑏 = βˆͺ 𝑗 β†’ 𝑗 ∈ 𝒫 𝒫 𝑏))
1811, 17mprgbir 3068 . . . . . 6 {𝑗 ∈ Top ∣ 𝑏 = βˆͺ 𝑗} βŠ† 𝒫 𝒫 𝑏
1910, 18ssexi 5322 . . . . 5 {𝑗 ∈ Top ∣ 𝑏 = βˆͺ 𝑗} ∈ V
207, 8, 19fvmpt3i 7003 . . . 4 (𝐡 ∈ V β†’ (TopOnβ€˜π΅) = {𝑗 ∈ Top ∣ 𝐡 = βˆͺ 𝑗})
2120eleq2d 2819 . . 3 (𝐡 ∈ V β†’ (𝐽 ∈ (TopOnβ€˜π΅) ↔ 𝐽 ∈ {𝑗 ∈ Top ∣ 𝐡 = βˆͺ 𝑗}))
22 unieq 4919 . . . . 5 (𝑗 = 𝐽 β†’ βˆͺ 𝑗 = βˆͺ 𝐽)
2322eqeq2d 2743 . . . 4 (𝑗 = 𝐽 β†’ (𝐡 = βˆͺ 𝑗 ↔ 𝐡 = βˆͺ 𝐽))
2423elrab 3683 . . 3 (𝐽 ∈ {𝑗 ∈ Top ∣ 𝐡 = βˆͺ 𝑗} ↔ (𝐽 ∈ Top ∧ 𝐡 = βˆͺ 𝐽))
2521, 24bitrdi 286 . 2 (𝐡 ∈ V β†’ (𝐽 ∈ (TopOnβ€˜π΅) ↔ (𝐽 ∈ Top ∧ 𝐡 = βˆͺ 𝐽)))
261, 5, 25pm5.21nii 379 1 (𝐽 ∈ (TopOnβ€˜π΅) ↔ (𝐽 ∈ Top ∧ 𝐡 = βˆͺ 𝐽))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 396   = wceq 1541   ∈ wcel 2106  {crab 3432  Vcvv 3474   βŠ† wss 3948  π’« cpw 4602  βˆͺ cuni 4908  β€˜cfv 6543  Topctop 22615  TopOnctopon 22632
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7727
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-iota 6495  df-fun 6545  df-fv 6551  df-topon 22633
This theorem is referenced by:  topontop  22635  toponuni  22636  toptopon  22639  toponcom  22650  istps2  22657  tgtopon  22694  distopon  22720  indistopon  22724  fctop  22727  cctop  22729  ppttop  22730  epttop  22732  mretopd  22816  toponmre  22817  resttopon  22885  resttopon2  22892  kgentopon  23262  txtopon  23315  pttopon  23320  xkotopon  23324  qtoptopon  23428  flimtopon  23694  fclstopon  23736  fclsfnflim  23751  utoptopon  23961  qtopt1  33101  neibastop1  35547  onsuctopon  35622  rfcnpre1  44005  cnfex  44014  icccncfext  44902  stoweidlem47  45062
  Copyright terms: Public domain W3C validator