Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dmtopon | Structured version Visualization version GIF version |
Description: The domain of TopOn is the universal class V. (Contributed by BJ, 29-Apr-2021.) |
Ref | Expression |
---|---|
dmtopon | ⊢ dom TopOn = V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vpwex 5300 | . . . 4 ⊢ 𝒫 𝑥 ∈ V | |
2 | 1 | pwex 5303 | . . 3 ⊢ 𝒫 𝒫 𝑥 ∈ V |
3 | eqcom 2745 | . . . . 5 ⊢ (𝑥 = ∪ 𝑦 ↔ ∪ 𝑦 = 𝑥) | |
4 | 3 | rabbii 3408 | . . . 4 ⊢ {𝑦 ∈ Top ∣ 𝑥 = ∪ 𝑦} = {𝑦 ∈ Top ∣ ∪ 𝑦 = 𝑥} |
5 | rabssab 4018 | . . . . 5 ⊢ {𝑦 ∈ Top ∣ ∪ 𝑦 = 𝑥} ⊆ {𝑦 ∣ ∪ 𝑦 = 𝑥} | |
6 | pwpwssunieq 5033 | . . . . 5 ⊢ {𝑦 ∣ ∪ 𝑦 = 𝑥} ⊆ 𝒫 𝒫 𝑥 | |
7 | 5, 6 | sstri 3930 | . . . 4 ⊢ {𝑦 ∈ Top ∣ ∪ 𝑦 = 𝑥} ⊆ 𝒫 𝒫 𝑥 |
8 | 4, 7 | eqsstri 3955 | . . 3 ⊢ {𝑦 ∈ Top ∣ 𝑥 = ∪ 𝑦} ⊆ 𝒫 𝒫 𝑥 |
9 | 2, 8 | ssexi 5246 | . 2 ⊢ {𝑦 ∈ Top ∣ 𝑥 = ∪ 𝑦} ∈ V |
10 | df-topon 22060 | . 2 ⊢ TopOn = (𝑥 ∈ V ↦ {𝑦 ∈ Top ∣ 𝑥 = ∪ 𝑦}) | |
11 | 9, 10 | dmmpti 6577 | 1 ⊢ dom TopOn = V |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 {cab 2715 {crab 3068 Vcvv 3432 𝒫 cpw 4533 ∪ cuni 4839 dom cdm 5589 Topctop 22042 TopOnctopon 22059 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-fun 6435 df-fn 6436 df-topon 22060 |
This theorem is referenced by: fntopon 22073 |
Copyright terms: Public domain | W3C validator |