| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dmtopon | Structured version Visualization version GIF version | ||
| Description: The domain of TopOn is the universal class V. (Contributed by BJ, 29-Apr-2021.) |
| Ref | Expression |
|---|---|
| dmtopon | ⊢ dom TopOn = V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vpwex 5332 | . . . 4 ⊢ 𝒫 𝑥 ∈ V | |
| 2 | 1 | pwex 5335 | . . 3 ⊢ 𝒫 𝒫 𝑥 ∈ V |
| 3 | eqcom 2736 | . . . . 5 ⊢ (𝑥 = ∪ 𝑦 ↔ ∪ 𝑦 = 𝑥) | |
| 4 | 3 | rabbii 3411 | . . . 4 ⊢ {𝑦 ∈ Top ∣ 𝑥 = ∪ 𝑦} = {𝑦 ∈ Top ∣ ∪ 𝑦 = 𝑥} |
| 5 | rabssab 4048 | . . . . 5 ⊢ {𝑦 ∈ Top ∣ ∪ 𝑦 = 𝑥} ⊆ {𝑦 ∣ ∪ 𝑦 = 𝑥} | |
| 6 | pwpwssunieq 5068 | . . . . 5 ⊢ {𝑦 ∣ ∪ 𝑦 = 𝑥} ⊆ 𝒫 𝒫 𝑥 | |
| 7 | 5, 6 | sstri 3956 | . . . 4 ⊢ {𝑦 ∈ Top ∣ ∪ 𝑦 = 𝑥} ⊆ 𝒫 𝒫 𝑥 |
| 8 | 4, 7 | eqsstri 3993 | . . 3 ⊢ {𝑦 ∈ Top ∣ 𝑥 = ∪ 𝑦} ⊆ 𝒫 𝒫 𝑥 |
| 9 | 2, 8 | ssexi 5277 | . 2 ⊢ {𝑦 ∈ Top ∣ 𝑥 = ∪ 𝑦} ∈ V |
| 10 | df-topon 22798 | . 2 ⊢ TopOn = (𝑥 ∈ V ↦ {𝑦 ∈ Top ∣ 𝑥 = ∪ 𝑦}) | |
| 11 | 9, 10 | dmmpti 6662 | 1 ⊢ dom TopOn = V |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 {cab 2707 {crab 3405 Vcvv 3447 𝒫 cpw 4563 ∪ cuni 4871 dom cdm 5638 Topctop 22780 TopOnctopon 22797 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-fun 6513 df-fn 6514 df-topon 22798 |
| This theorem is referenced by: fntopon 22811 |
| Copyright terms: Public domain | W3C validator |