| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dmtopon | Structured version Visualization version GIF version | ||
| Description: The domain of TopOn is the universal class V. (Contributed by BJ, 29-Apr-2021.) |
| Ref | Expression |
|---|---|
| dmtopon | ⊢ dom TopOn = V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vpwex 5347 | . . . 4 ⊢ 𝒫 𝑥 ∈ V | |
| 2 | 1 | pwex 5350 | . . 3 ⊢ 𝒫 𝒫 𝑥 ∈ V |
| 3 | eqcom 2742 | . . . . 5 ⊢ (𝑥 = ∪ 𝑦 ↔ ∪ 𝑦 = 𝑥) | |
| 4 | 3 | rabbii 3421 | . . . 4 ⊢ {𝑦 ∈ Top ∣ 𝑥 = ∪ 𝑦} = {𝑦 ∈ Top ∣ ∪ 𝑦 = 𝑥} |
| 5 | rabssab 4060 | . . . . 5 ⊢ {𝑦 ∈ Top ∣ ∪ 𝑦 = 𝑥} ⊆ {𝑦 ∣ ∪ 𝑦 = 𝑥} | |
| 6 | pwpwssunieq 5080 | . . . . 5 ⊢ {𝑦 ∣ ∪ 𝑦 = 𝑥} ⊆ 𝒫 𝒫 𝑥 | |
| 7 | 5, 6 | sstri 3968 | . . . 4 ⊢ {𝑦 ∈ Top ∣ ∪ 𝑦 = 𝑥} ⊆ 𝒫 𝒫 𝑥 |
| 8 | 4, 7 | eqsstri 4005 | . . 3 ⊢ {𝑦 ∈ Top ∣ 𝑥 = ∪ 𝑦} ⊆ 𝒫 𝒫 𝑥 |
| 9 | 2, 8 | ssexi 5292 | . 2 ⊢ {𝑦 ∈ Top ∣ 𝑥 = ∪ 𝑦} ∈ V |
| 10 | df-topon 22847 | . 2 ⊢ TopOn = (𝑥 ∈ V ↦ {𝑦 ∈ Top ∣ 𝑥 = ∪ 𝑦}) | |
| 11 | 9, 10 | dmmpti 6681 | 1 ⊢ dom TopOn = V |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 {cab 2713 {crab 3415 Vcvv 3459 𝒫 cpw 4575 ∪ cuni 4883 dom cdm 5654 Topctop 22829 TopOnctopon 22846 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-fun 6532 df-fn 6533 df-topon 22847 |
| This theorem is referenced by: fntopon 22860 |
| Copyright terms: Public domain | W3C validator |