MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmtopon Structured version   Visualization version   GIF version

Theorem dmtopon 22858
Description: The domain of TopOn is the universal class V. (Contributed by BJ, 29-Apr-2021.)
Assertion
Ref Expression
dmtopon dom TopOn = V

Proof of Theorem dmtopon
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vpwex 5319 . . . 4 𝒫 𝑥 ∈ V
21pwex 5322 . . 3 𝒫 𝒫 𝑥 ∈ V
3 eqcom 2740 . . . . 5 (𝑥 = 𝑦 𝑦 = 𝑥)
43rabbii 3401 . . . 4 {𝑦 ∈ Top ∣ 𝑥 = 𝑦} = {𝑦 ∈ Top ∣ 𝑦 = 𝑥}
5 rabssab 4034 . . . . 5 {𝑦 ∈ Top ∣ 𝑦 = 𝑥} ⊆ {𝑦 𝑦 = 𝑥}
6 pwpwssunieq 5056 . . . . 5 {𝑦 𝑦 = 𝑥} ⊆ 𝒫 𝒫 𝑥
75, 6sstri 3940 . . . 4 {𝑦 ∈ Top ∣ 𝑦 = 𝑥} ⊆ 𝒫 𝒫 𝑥
84, 7eqsstri 3977 . . 3 {𝑦 ∈ Top ∣ 𝑥 = 𝑦} ⊆ 𝒫 𝒫 𝑥
92, 8ssexi 5264 . 2 {𝑦 ∈ Top ∣ 𝑥 = 𝑦} ∈ V
10 df-topon 22846 . 2 TopOn = (𝑥 ∈ V ↦ {𝑦 ∈ Top ∣ 𝑥 = 𝑦})
119, 10dmmpti 6633 1 dom TopOn = V
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  {cab 2711  {crab 3396  Vcvv 3437  𝒫 cpw 4551   cuni 4860  dom cdm 5621  Topctop 22828  TopOnctopon 22845
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-fun 6491  df-fn 6492  df-topon 22846
This theorem is referenced by:  fntopon  22859
  Copyright terms: Public domain W3C validator