![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dmtopon | Structured version Visualization version GIF version |
Description: The domain of TopOn is the universal class V. (Contributed by BJ, 29-Apr-2021.) |
Ref | Expression |
---|---|
dmtopon | ⊢ dom TopOn = V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vpwex 5395 | . . . 4 ⊢ 𝒫 𝑥 ∈ V | |
2 | 1 | pwex 5398 | . . 3 ⊢ 𝒫 𝒫 𝑥 ∈ V |
3 | eqcom 2747 | . . . . 5 ⊢ (𝑥 = ∪ 𝑦 ↔ ∪ 𝑦 = 𝑥) | |
4 | 3 | rabbii 3449 | . . . 4 ⊢ {𝑦 ∈ Top ∣ 𝑥 = ∪ 𝑦} = {𝑦 ∈ Top ∣ ∪ 𝑦 = 𝑥} |
5 | rabssab 4108 | . . . . 5 ⊢ {𝑦 ∈ Top ∣ ∪ 𝑦 = 𝑥} ⊆ {𝑦 ∣ ∪ 𝑦 = 𝑥} | |
6 | pwpwssunieq 5127 | . . . . 5 ⊢ {𝑦 ∣ ∪ 𝑦 = 𝑥} ⊆ 𝒫 𝒫 𝑥 | |
7 | 5, 6 | sstri 4018 | . . . 4 ⊢ {𝑦 ∈ Top ∣ ∪ 𝑦 = 𝑥} ⊆ 𝒫 𝒫 𝑥 |
8 | 4, 7 | eqsstri 4043 | . . 3 ⊢ {𝑦 ∈ Top ∣ 𝑥 = ∪ 𝑦} ⊆ 𝒫 𝒫 𝑥 |
9 | 2, 8 | ssexi 5340 | . 2 ⊢ {𝑦 ∈ Top ∣ 𝑥 = ∪ 𝑦} ∈ V |
10 | df-topon 22938 | . 2 ⊢ TopOn = (𝑥 ∈ V ↦ {𝑦 ∈ Top ∣ 𝑥 = ∪ 𝑦}) | |
11 | 9, 10 | dmmpti 6724 | 1 ⊢ dom TopOn = V |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 {cab 2717 {crab 3443 Vcvv 3488 𝒫 cpw 4622 ∪ cuni 4931 dom cdm 5700 Topctop 22920 TopOnctopon 22937 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-fun 6575 df-fn 6576 df-topon 22938 |
This theorem is referenced by: fntopon 22951 |
Copyright terms: Public domain | W3C validator |