MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmtopon Structured version   Visualization version   GIF version

Theorem dmtopon 21980
Description: The domain of TopOn is the universal class V. (Contributed by BJ, 29-Apr-2021.)
Assertion
Ref Expression
dmtopon dom TopOn = V

Proof of Theorem dmtopon
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vpwex 5295 . . . 4 𝒫 𝑥 ∈ V
21pwex 5298 . . 3 𝒫 𝒫 𝑥 ∈ V
3 eqcom 2745 . . . . 5 (𝑥 = 𝑦 𝑦 = 𝑥)
43rabbii 3397 . . . 4 {𝑦 ∈ Top ∣ 𝑥 = 𝑦} = {𝑦 ∈ Top ∣ 𝑦 = 𝑥}
5 rabssab 4014 . . . . 5 {𝑦 ∈ Top ∣ 𝑦 = 𝑥} ⊆ {𝑦 𝑦 = 𝑥}
6 pwpwssunieq 5029 . . . . 5 {𝑦 𝑦 = 𝑥} ⊆ 𝒫 𝒫 𝑥
75, 6sstri 3926 . . . 4 {𝑦 ∈ Top ∣ 𝑦 = 𝑥} ⊆ 𝒫 𝒫 𝑥
84, 7eqsstri 3951 . . 3 {𝑦 ∈ Top ∣ 𝑥 = 𝑦} ⊆ 𝒫 𝒫 𝑥
92, 8ssexi 5241 . 2 {𝑦 ∈ Top ∣ 𝑥 = 𝑦} ∈ V
10 df-topon 21968 . 2 TopOn = (𝑥 ∈ V ↦ {𝑦 ∈ Top ∣ 𝑥 = 𝑦})
119, 10dmmpti 6561 1 dom TopOn = V
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  {cab 2715  {crab 3067  Vcvv 3422  𝒫 cpw 4530   cuni 4836  dom cdm 5580  Topctop 21950  TopOnctopon 21967
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-fun 6420  df-fn 6421  df-topon 21968
This theorem is referenced by:  fntopon  21981
  Copyright terms: Public domain W3C validator