MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-trg Structured version   Visualization version   GIF version

Definition df-trg 23320
Description: Define a topological ring, which is a ring such that the addition is a topological group operation and the multiplication is continuous. (Contributed by Mario Carneiro, 5-Oct-2015.)
Assertion
Ref Expression
df-trg TopRing = {𝑟 ∈ (TopGrp ∩ Ring) ∣ (mulGrp‘𝑟) ∈ TopMnd}

Detailed syntax breakdown of Definition df-trg
StepHypRef Expression
1 ctrg 23316 . 2 class TopRing
2 vr . . . . . 6 setvar 𝑟
32cv 1538 . . . . 5 class 𝑟
4 cmgp 19729 . . . . 5 class mulGrp
53, 4cfv 6437 . . . 4 class (mulGrp‘𝑟)
6 ctmd 23230 . . . 4 class TopMnd
75, 6wcel 2107 . . 3 wff (mulGrp‘𝑟) ∈ TopMnd
8 ctgp 23231 . . . 4 class TopGrp
9 crg 19792 . . . 4 class Ring
108, 9cin 3887 . . 3 class (TopGrp ∩ Ring)
117, 2, 10crab 3069 . 2 class {𝑟 ∈ (TopGrp ∩ Ring) ∣ (mulGrp‘𝑟) ∈ TopMnd}
121, 11wceq 1539 1 wff TopRing = {𝑟 ∈ (TopGrp ∩ Ring) ∣ (mulGrp‘𝑟) ∈ TopMnd}
Colors of variables: wff setvar class
This definition is referenced by:  istrg  23324
  Copyright terms: Public domain W3C validator