MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  istrg Structured version   Visualization version   GIF version

Theorem istrg 23223
Description: Express the predicate "𝑅 is a topological ring". (Contributed by Mario Carneiro, 5-Oct-2015.)
Hypothesis
Ref Expression
istrg.1 𝑀 = (mulGrp‘𝑅)
Assertion
Ref Expression
istrg (𝑅 ∈ TopRing ↔ (𝑅 ∈ TopGrp ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ TopMnd))

Proof of Theorem istrg
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 elin 3899 . . 3 (𝑅 ∈ (TopGrp ∩ Ring) ↔ (𝑅 ∈ TopGrp ∧ 𝑅 ∈ Ring))
21anbi1i 623 . 2 ((𝑅 ∈ (TopGrp ∩ Ring) ∧ 𝑀 ∈ TopMnd) ↔ ((𝑅 ∈ TopGrp ∧ 𝑅 ∈ Ring) ∧ 𝑀 ∈ TopMnd))
3 fveq2 6756 . . . . 5 (𝑟 = 𝑅 → (mulGrp‘𝑟) = (mulGrp‘𝑅))
4 istrg.1 . . . . 5 𝑀 = (mulGrp‘𝑅)
53, 4eqtr4di 2797 . . . 4 (𝑟 = 𝑅 → (mulGrp‘𝑟) = 𝑀)
65eleq1d 2823 . . 3 (𝑟 = 𝑅 → ((mulGrp‘𝑟) ∈ TopMnd ↔ 𝑀 ∈ TopMnd))
7 df-trg 23219 . . 3 TopRing = {𝑟 ∈ (TopGrp ∩ Ring) ∣ (mulGrp‘𝑟) ∈ TopMnd}
86, 7elrab2 3620 . 2 (𝑅 ∈ TopRing ↔ (𝑅 ∈ (TopGrp ∩ Ring) ∧ 𝑀 ∈ TopMnd))
9 df-3an 1087 . 2 ((𝑅 ∈ TopGrp ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ TopMnd) ↔ ((𝑅 ∈ TopGrp ∧ 𝑅 ∈ Ring) ∧ 𝑀 ∈ TopMnd))
102, 8, 93bitr4i 302 1 (𝑅 ∈ TopRing ↔ (𝑅 ∈ TopGrp ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ TopMnd))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  cin 3882  cfv 6418  mulGrpcmgp 19635  Ringcrg 19698  TopMndctmd 23129  TopGrpctgp 23130  TopRingctrg 23215
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-iota 6376  df-fv 6426  df-trg 23219
This theorem is referenced by:  trgtmd  23224  trgtgp  23227  trgring  23230  nrgtrg  23760
  Copyright terms: Public domain W3C validator