![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > istrg | Structured version Visualization version GIF version |
Description: Express the predicate "𝑅 is a topological ring". (Contributed by Mario Carneiro, 5-Oct-2015.) |
Ref | Expression |
---|---|
istrg.1 | ⊢ 𝑀 = (mulGrp‘𝑅) |
Ref | Expression |
---|---|
istrg | ⊢ (𝑅 ∈ TopRing ↔ (𝑅 ∈ TopGrp ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ TopMnd)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elin 3963 | . . 3 ⊢ (𝑅 ∈ (TopGrp ∩ Ring) ↔ (𝑅 ∈ TopGrp ∧ 𝑅 ∈ Ring)) | |
2 | 1 | anbi1i 624 | . 2 ⊢ ((𝑅 ∈ (TopGrp ∩ Ring) ∧ 𝑀 ∈ TopMnd) ↔ ((𝑅 ∈ TopGrp ∧ 𝑅 ∈ Ring) ∧ 𝑀 ∈ TopMnd)) |
3 | fveq2 6888 | . . . . 5 ⊢ (𝑟 = 𝑅 → (mulGrp‘𝑟) = (mulGrp‘𝑅)) | |
4 | istrg.1 | . . . . 5 ⊢ 𝑀 = (mulGrp‘𝑅) | |
5 | 3, 4 | eqtr4di 2790 | . . . 4 ⊢ (𝑟 = 𝑅 → (mulGrp‘𝑟) = 𝑀) |
6 | 5 | eleq1d 2818 | . . 3 ⊢ (𝑟 = 𝑅 → ((mulGrp‘𝑟) ∈ TopMnd ↔ 𝑀 ∈ TopMnd)) |
7 | df-trg 23655 | . . 3 ⊢ TopRing = {𝑟 ∈ (TopGrp ∩ Ring) ∣ (mulGrp‘𝑟) ∈ TopMnd} | |
8 | 6, 7 | elrab2 3685 | . 2 ⊢ (𝑅 ∈ TopRing ↔ (𝑅 ∈ (TopGrp ∩ Ring) ∧ 𝑀 ∈ TopMnd)) |
9 | df-3an 1089 | . 2 ⊢ ((𝑅 ∈ TopGrp ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ TopMnd) ↔ ((𝑅 ∈ TopGrp ∧ 𝑅 ∈ Ring) ∧ 𝑀 ∈ TopMnd)) | |
10 | 2, 8, 9 | 3bitr4i 302 | 1 ⊢ (𝑅 ∈ TopRing ↔ (𝑅 ∈ TopGrp ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ TopMnd)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 ∩ cin 3946 ‘cfv 6540 mulGrpcmgp 19981 Ringcrg 20049 TopMndctmd 23565 TopGrpctgp 23566 TopRingctrg 23651 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-rab 3433 df-v 3476 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-iota 6492 df-fv 6548 df-trg 23655 |
This theorem is referenced by: trgtmd 23660 trgtgp 23663 trgring 23666 nrgtrg 24198 |
Copyright terms: Public domain | W3C validator |