Detailed syntax breakdown of Definition df-trkgld
| Step | Hyp | Ref
| Expression |
| 1 | | cstrkgld 28410 |
. 2
class
DimTarskiG≥ |
| 2 | | c1 11130 |
. . . . . . . . . 10
class
1 |
| 3 | | vn |
. . . . . . . . . . 11
setvar 𝑛 |
| 4 | 3 | cv 1539 |
. . . . . . . . . 10
class 𝑛 |
| 5 | | cfzo 13671 |
. . . . . . . . . 10
class
..^ |
| 6 | 2, 4, 5 | co 7405 |
. . . . . . . . 9
class
(1..^𝑛) |
| 7 | | vp |
. . . . . . . . . 10
setvar 𝑝 |
| 8 | 7 | cv 1539 |
. . . . . . . . 9
class 𝑝 |
| 9 | | vf |
. . . . . . . . . 10
setvar 𝑓 |
| 10 | 9 | cv 1539 |
. . . . . . . . 9
class 𝑓 |
| 11 | 6, 8, 10 | wf1 6528 |
. . . . . . . 8
wff 𝑓:(1..^𝑛)–1-1→𝑝 |
| 12 | 2, 10 | cfv 6531 |
. . . . . . . . . . . . . . . 16
class (𝑓‘1) |
| 13 | | vx |
. . . . . . . . . . . . . . . . 17
setvar 𝑥 |
| 14 | 13 | cv 1539 |
. . . . . . . . . . . . . . . 16
class 𝑥 |
| 15 | | vd |
. . . . . . . . . . . . . . . . 17
setvar 𝑑 |
| 16 | 15 | cv 1539 |
. . . . . . . . . . . . . . . 16
class 𝑑 |
| 17 | 12, 14, 16 | co 7405 |
. . . . . . . . . . . . . . 15
class ((𝑓‘1)𝑑𝑥) |
| 18 | | vj |
. . . . . . . . . . . . . . . . . 18
setvar 𝑗 |
| 19 | 18 | cv 1539 |
. . . . . . . . . . . . . . . . 17
class 𝑗 |
| 20 | 19, 10 | cfv 6531 |
. . . . . . . . . . . . . . . 16
class (𝑓‘𝑗) |
| 21 | 20, 14, 16 | co 7405 |
. . . . . . . . . . . . . . 15
class ((𝑓‘𝑗)𝑑𝑥) |
| 22 | 17, 21 | wceq 1540 |
. . . . . . . . . . . . . 14
wff ((𝑓‘1)𝑑𝑥) = ((𝑓‘𝑗)𝑑𝑥) |
| 23 | | vy |
. . . . . . . . . . . . . . . . 17
setvar 𝑦 |
| 24 | 23 | cv 1539 |
. . . . . . . . . . . . . . . 16
class 𝑦 |
| 25 | 12, 24, 16 | co 7405 |
. . . . . . . . . . . . . . 15
class ((𝑓‘1)𝑑𝑦) |
| 26 | 20, 24, 16 | co 7405 |
. . . . . . . . . . . . . . 15
class ((𝑓‘𝑗)𝑑𝑦) |
| 27 | 25, 26 | wceq 1540 |
. . . . . . . . . . . . . 14
wff ((𝑓‘1)𝑑𝑦) = ((𝑓‘𝑗)𝑑𝑦) |
| 28 | | vz |
. . . . . . . . . . . . . . . . 17
setvar 𝑧 |
| 29 | 28 | cv 1539 |
. . . . . . . . . . . . . . . 16
class 𝑧 |
| 30 | 12, 29, 16 | co 7405 |
. . . . . . . . . . . . . . 15
class ((𝑓‘1)𝑑𝑧) |
| 31 | 20, 29, 16 | co 7405 |
. . . . . . . . . . . . . . 15
class ((𝑓‘𝑗)𝑑𝑧) |
| 32 | 30, 31 | wceq 1540 |
. . . . . . . . . . . . . 14
wff ((𝑓‘1)𝑑𝑧) = ((𝑓‘𝑗)𝑑𝑧) |
| 33 | 22, 27, 32 | w3a 1086 |
. . . . . . . . . . . . 13
wff (((𝑓‘1)𝑑𝑥) = ((𝑓‘𝑗)𝑑𝑥) ∧ ((𝑓‘1)𝑑𝑦) = ((𝑓‘𝑗)𝑑𝑦) ∧ ((𝑓‘1)𝑑𝑧) = ((𝑓‘𝑗)𝑑𝑧)) |
| 34 | | c2 12295 |
. . . . . . . . . . . . . 14
class
2 |
| 35 | 34, 4, 5 | co 7405 |
. . . . . . . . . . . . 13
class
(2..^𝑛) |
| 36 | 33, 18, 35 | wral 3051 |
. . . . . . . . . . . 12
wff
∀𝑗 ∈
(2..^𝑛)(((𝑓‘1)𝑑𝑥) = ((𝑓‘𝑗)𝑑𝑥) ∧ ((𝑓‘1)𝑑𝑦) = ((𝑓‘𝑗)𝑑𝑦) ∧ ((𝑓‘1)𝑑𝑧) = ((𝑓‘𝑗)𝑑𝑧)) |
| 37 | | vi |
. . . . . . . . . . . . . . . . 17
setvar 𝑖 |
| 38 | 37 | cv 1539 |
. . . . . . . . . . . . . . . 16
class 𝑖 |
| 39 | 14, 24, 38 | co 7405 |
. . . . . . . . . . . . . . 15
class (𝑥𝑖𝑦) |
| 40 | 29, 39 | wcel 2108 |
. . . . . . . . . . . . . 14
wff 𝑧 ∈ (𝑥𝑖𝑦) |
| 41 | 29, 24, 38 | co 7405 |
. . . . . . . . . . . . . . 15
class (𝑧𝑖𝑦) |
| 42 | 14, 41 | wcel 2108 |
. . . . . . . . . . . . . 14
wff 𝑥 ∈ (𝑧𝑖𝑦) |
| 43 | 14, 29, 38 | co 7405 |
. . . . . . . . . . . . . . 15
class (𝑥𝑖𝑧) |
| 44 | 24, 43 | wcel 2108 |
. . . . . . . . . . . . . 14
wff 𝑦 ∈ (𝑥𝑖𝑧) |
| 45 | 40, 42, 44 | w3o 1085 |
. . . . . . . . . . . . 13
wff (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧)) |
| 46 | 45 | wn 3 |
. . . . . . . . . . . 12
wff ¬
(𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧)) |
| 47 | 36, 46 | wa 395 |
. . . . . . . . . . 11
wff
(∀𝑗 ∈
(2..^𝑛)(((𝑓‘1)𝑑𝑥) = ((𝑓‘𝑗)𝑑𝑥) ∧ ((𝑓‘1)𝑑𝑦) = ((𝑓‘𝑗)𝑑𝑦) ∧ ((𝑓‘1)𝑑𝑧) = ((𝑓‘𝑗)𝑑𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))) |
| 48 | 47, 28, 8 | wrex 3060 |
. . . . . . . . . 10
wff
∃𝑧 ∈
𝑝 (∀𝑗 ∈ (2..^𝑛)(((𝑓‘1)𝑑𝑥) = ((𝑓‘𝑗)𝑑𝑥) ∧ ((𝑓‘1)𝑑𝑦) = ((𝑓‘𝑗)𝑑𝑦) ∧ ((𝑓‘1)𝑑𝑧) = ((𝑓‘𝑗)𝑑𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))) |
| 49 | 48, 23, 8 | wrex 3060 |
. . . . . . . . 9
wff
∃𝑦 ∈
𝑝 ∃𝑧 ∈ 𝑝 (∀𝑗 ∈ (2..^𝑛)(((𝑓‘1)𝑑𝑥) = ((𝑓‘𝑗)𝑑𝑥) ∧ ((𝑓‘1)𝑑𝑦) = ((𝑓‘𝑗)𝑑𝑦) ∧ ((𝑓‘1)𝑑𝑧) = ((𝑓‘𝑗)𝑑𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))) |
| 50 | 49, 13, 8 | wrex 3060 |
. . . . . . . 8
wff
∃𝑥 ∈
𝑝 ∃𝑦 ∈ 𝑝 ∃𝑧 ∈ 𝑝 (∀𝑗 ∈ (2..^𝑛)(((𝑓‘1)𝑑𝑥) = ((𝑓‘𝑗)𝑑𝑥) ∧ ((𝑓‘1)𝑑𝑦) = ((𝑓‘𝑗)𝑑𝑦) ∧ ((𝑓‘1)𝑑𝑧) = ((𝑓‘𝑗)𝑑𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))) |
| 51 | 11, 50 | wa 395 |
. . . . . . 7
wff (𝑓:(1..^𝑛)–1-1→𝑝 ∧ ∃𝑥 ∈ 𝑝 ∃𝑦 ∈ 𝑝 ∃𝑧 ∈ 𝑝 (∀𝑗 ∈ (2..^𝑛)(((𝑓‘1)𝑑𝑥) = ((𝑓‘𝑗)𝑑𝑥) ∧ ((𝑓‘1)𝑑𝑦) = ((𝑓‘𝑗)𝑑𝑦) ∧ ((𝑓‘1)𝑑𝑧) = ((𝑓‘𝑗)𝑑𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧)))) |
| 52 | 51, 9 | wex 1779 |
. . . . . 6
wff
∃𝑓(𝑓:(1..^𝑛)–1-1→𝑝 ∧ ∃𝑥 ∈ 𝑝 ∃𝑦 ∈ 𝑝 ∃𝑧 ∈ 𝑝 (∀𝑗 ∈ (2..^𝑛)(((𝑓‘1)𝑑𝑥) = ((𝑓‘𝑗)𝑑𝑥) ∧ ((𝑓‘1)𝑑𝑦) = ((𝑓‘𝑗)𝑑𝑦) ∧ ((𝑓‘1)𝑑𝑧) = ((𝑓‘𝑗)𝑑𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧)))) |
| 53 | | vg |
. . . . . . . 8
setvar 𝑔 |
| 54 | 53 | cv 1539 |
. . . . . . 7
class 𝑔 |
| 55 | | citv 28412 |
. . . . . . 7
class
Itv |
| 56 | 54, 55 | cfv 6531 |
. . . . . 6
class
(Itv‘𝑔) |
| 57 | 52, 37, 56 | wsbc 3765 |
. . . . 5
wff
[(Itv‘𝑔) / 𝑖]∃𝑓(𝑓:(1..^𝑛)–1-1→𝑝 ∧ ∃𝑥 ∈ 𝑝 ∃𝑦 ∈ 𝑝 ∃𝑧 ∈ 𝑝 (∀𝑗 ∈ (2..^𝑛)(((𝑓‘1)𝑑𝑥) = ((𝑓‘𝑗)𝑑𝑥) ∧ ((𝑓‘1)𝑑𝑦) = ((𝑓‘𝑗)𝑑𝑦) ∧ ((𝑓‘1)𝑑𝑧) = ((𝑓‘𝑗)𝑑𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧)))) |
| 58 | | cds 17280 |
. . . . . 6
class
dist |
| 59 | 54, 58 | cfv 6531 |
. . . . 5
class
(dist‘𝑔) |
| 60 | 57, 15, 59 | wsbc 3765 |
. . . 4
wff
[(dist‘𝑔) / 𝑑][(Itv‘𝑔) / 𝑖]∃𝑓(𝑓:(1..^𝑛)–1-1→𝑝 ∧ ∃𝑥 ∈ 𝑝 ∃𝑦 ∈ 𝑝 ∃𝑧 ∈ 𝑝 (∀𝑗 ∈ (2..^𝑛)(((𝑓‘1)𝑑𝑥) = ((𝑓‘𝑗)𝑑𝑥) ∧ ((𝑓‘1)𝑑𝑦) = ((𝑓‘𝑗)𝑑𝑦) ∧ ((𝑓‘1)𝑑𝑧) = ((𝑓‘𝑗)𝑑𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧)))) |
| 61 | | cbs 17228 |
. . . . 5
class
Base |
| 62 | 54, 61 | cfv 6531 |
. . . 4
class
(Base‘𝑔) |
| 63 | 60, 7, 62 | wsbc 3765 |
. . 3
wff
[(Base‘𝑔) / 𝑝][(dist‘𝑔) / 𝑑][(Itv‘𝑔) / 𝑖]∃𝑓(𝑓:(1..^𝑛)–1-1→𝑝 ∧ ∃𝑥 ∈ 𝑝 ∃𝑦 ∈ 𝑝 ∃𝑧 ∈ 𝑝 (∀𝑗 ∈ (2..^𝑛)(((𝑓‘1)𝑑𝑥) = ((𝑓‘𝑗)𝑑𝑥) ∧ ((𝑓‘1)𝑑𝑦) = ((𝑓‘𝑗)𝑑𝑦) ∧ ((𝑓‘1)𝑑𝑧) = ((𝑓‘𝑗)𝑑𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧)))) |
| 64 | 63, 53, 3 | copab 5181 |
. 2
class
{〈𝑔, 𝑛〉 ∣
[(Base‘𝑔) /
𝑝][(dist‘𝑔) / 𝑑][(Itv‘𝑔) / 𝑖]∃𝑓(𝑓:(1..^𝑛)–1-1→𝑝 ∧ ∃𝑥 ∈ 𝑝 ∃𝑦 ∈ 𝑝 ∃𝑧 ∈ 𝑝 (∀𝑗 ∈ (2..^𝑛)(((𝑓‘1)𝑑𝑥) = ((𝑓‘𝑗)𝑑𝑥) ∧ ((𝑓‘1)𝑑𝑦) = ((𝑓‘𝑗)𝑑𝑦) ∧ ((𝑓‘1)𝑑𝑧) = ((𝑓‘𝑗)𝑑𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))))} |
| 65 | 1, 64 | wceq 1540 |
1
wff
DimTarskiG≥ = {〈𝑔, 𝑛〉 ∣ [(Base‘𝑔) / 𝑝][(dist‘𝑔) / 𝑑][(Itv‘𝑔) / 𝑖]∃𝑓(𝑓:(1..^𝑛)–1-1→𝑝 ∧ ∃𝑥 ∈ 𝑝 ∃𝑦 ∈ 𝑝 ∃𝑧 ∈ 𝑝 (∀𝑗 ∈ (2..^𝑛)(((𝑓‘1)𝑑𝑥) = ((𝑓‘𝑗)𝑑𝑥) ∧ ((𝑓‘1)𝑑𝑦) = ((𝑓‘𝑗)𝑑𝑦) ∧ ((𝑓‘1)𝑑𝑧) = ((𝑓‘𝑗)𝑑𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))))} |