MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-trkg Structured version   Visualization version   GIF version

Definition df-trkg 28479
Description: Define the class of Tarski geometries. A Tarski geometry is a set of points, equipped with a betweenness relation (denoting that a point lies on a line segment between two other points) and a congruence relation (denoting equality of line segment lengths). Here, we are using the following:
  • for congruence, (𝑥 𝑦) = (𝑧 𝑤) where = (dist‘𝑊)
  • for betweenness, 𝑦 ∈ (𝑥𝐼𝑧), where 𝐼 = (Itv‘𝑊)
With this definition, the axiom A2 is actually equivalent to the transitivity of equality, eqtrd 2780.

Tarski originally had more axioms, but later reduced his list to 11:

  • A1 A kind of reflexivity for the congruence relation (TarskiGC)
  • A2 Transitivity for the congruence relation (TarskiGC)
  • A3 Identity for the congruence relation (TarskiGC)
  • A4 Axiom of segment construction (TarskiGCB)
  • A5 5-segment axiom (TarskiGCB)
  • A6 Identity for the betweenness relation (TarskiGB)
  • A7 Axiom of Pasch (TarskiGB)
  • A8 Lower dimension axiom (DimTarskiG≥ “ {2})
  • A9 Upper dimension axiom (V ∖ (DimTarskiG≥ “ {3}))
  • A10 Euclid's axiom (TarskiGE)
  • A11 Axiom of continuity (TarskiGB)
Our definition is split into 5 parts:
  • congruence axioms TarskiGC (which metric spaces fulfill)
  • betweenness axioms TarskiGB
  • congruence and betweenness axioms TarskiGCB
  • upper and lower dimension axioms DimTarskiG
  • axiom of Euclid / parallel postulate TarskiGE

So our definition of a Tarskian Geometry includes the 3 axioms for the quaternary congruence relation (A1, A2, A3), the 3 axioms for the ternary betweenness relation (A6, A7, A11), and the 2 axioms of compatibility of the congruence and the betweenness relations (A4,A5).

It does not include Euclid's axiom A10, nor the 2-dimensional axioms A8 (Lower dimension axiom) and A9 (Upper dimension axiom) so the number of dimensions of the geometry it formalizes is not constrained.

Considering A2 as one of the 3 axioms for the quaternary congruence relation is somewhat conventional, because the transitivity of the congruence relation is automatically given by our choice to take the distance as this congruence relation in our definition of Tarski geometries. (Contributed by Thierry Arnoux, 24-Aug-2017.) (Revised by Thierry Arnoux, 27-Apr-2019.)

Assertion
Ref Expression
df-trkg TarskiG = ((TarskiGC ∩ TarskiGB) ∩ (TarskiGCB ∩ {𝑓[(Base‘𝑓) / 𝑝][(Itv‘𝑓) / 𝑖](LineG‘𝑓) = (𝑥𝑝, 𝑦 ∈ (𝑝 ∖ {𝑥}) ↦ {𝑧𝑝 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})}))
Distinct variable group:   𝑓,𝑝,𝑖,𝑥,𝑦,𝑧

Detailed syntax breakdown of Definition df-trkg
StepHypRef Expression
1 cstrkg 28453 . 2 class TarskiG
2 cstrkgc 28454 . . . 4 class TarskiGC
3 cstrkgb 28455 . . . 4 class TarskiGB
42, 3cin 3975 . . 3 class (TarskiGC ∩ TarskiGB)
5 cstrkgcb 28456 . . . 4 class TarskiGCB
6 vf . . . . . . . . . 10 setvar 𝑓
76cv 1536 . . . . . . . . 9 class 𝑓
8 clng 28460 . . . . . . . . 9 class LineG
97, 8cfv 6573 . . . . . . . 8 class (LineG‘𝑓)
10 vx . . . . . . . . 9 setvar 𝑥
11 vy . . . . . . . . 9 setvar 𝑦
12 vp . . . . . . . . . 10 setvar 𝑝
1312cv 1536 . . . . . . . . 9 class 𝑝
1410cv 1536 . . . . . . . . . . 11 class 𝑥
1514csn 4648 . . . . . . . . . 10 class {𝑥}
1613, 15cdif 3973 . . . . . . . . 9 class (𝑝 ∖ {𝑥})
17 vz . . . . . . . . . . . . 13 setvar 𝑧
1817cv 1536 . . . . . . . . . . . 12 class 𝑧
1911cv 1536 . . . . . . . . . . . . 13 class 𝑦
20 vi . . . . . . . . . . . . . 14 setvar 𝑖
2120cv 1536 . . . . . . . . . . . . 13 class 𝑖
2214, 19, 21co 7448 . . . . . . . . . . . 12 class (𝑥𝑖𝑦)
2318, 22wcel 2108 . . . . . . . . . . 11 wff 𝑧 ∈ (𝑥𝑖𝑦)
2418, 19, 21co 7448 . . . . . . . . . . . 12 class (𝑧𝑖𝑦)
2514, 24wcel 2108 . . . . . . . . . . 11 wff 𝑥 ∈ (𝑧𝑖𝑦)
2614, 18, 21co 7448 . . . . . . . . . . . 12 class (𝑥𝑖𝑧)
2719, 26wcel 2108 . . . . . . . . . . 11 wff 𝑦 ∈ (𝑥𝑖𝑧)
2823, 25, 27w3o 1086 . . . . . . . . . 10 wff (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))
2928, 17, 13crab 3443 . . . . . . . . 9 class {𝑧𝑝 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))}
3010, 11, 13, 16, 29cmpo 7450 . . . . . . . 8 class (𝑥𝑝, 𝑦 ∈ (𝑝 ∖ {𝑥}) ↦ {𝑧𝑝 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})
319, 30wceq 1537 . . . . . . 7 wff (LineG‘𝑓) = (𝑥𝑝, 𝑦 ∈ (𝑝 ∖ {𝑥}) ↦ {𝑧𝑝 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})
32 citv 28459 . . . . . . . 8 class Itv
337, 32cfv 6573 . . . . . . 7 class (Itv‘𝑓)
3431, 20, 33wsbc 3804 . . . . . 6 wff [(Itv‘𝑓) / 𝑖](LineG‘𝑓) = (𝑥𝑝, 𝑦 ∈ (𝑝 ∖ {𝑥}) ↦ {𝑧𝑝 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})
35 cbs 17258 . . . . . . 7 class Base
367, 35cfv 6573 . . . . . 6 class (Base‘𝑓)
3734, 12, 36wsbc 3804 . . . . 5 wff [(Base‘𝑓) / 𝑝][(Itv‘𝑓) / 𝑖](LineG‘𝑓) = (𝑥𝑝, 𝑦 ∈ (𝑝 ∖ {𝑥}) ↦ {𝑧𝑝 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})
3837, 6cab 2717 . . . 4 class {𝑓[(Base‘𝑓) / 𝑝][(Itv‘𝑓) / 𝑖](LineG‘𝑓) = (𝑥𝑝, 𝑦 ∈ (𝑝 ∖ {𝑥}) ↦ {𝑧𝑝 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})}
395, 38cin 3975 . . 3 class (TarskiGCB ∩ {𝑓[(Base‘𝑓) / 𝑝][(Itv‘𝑓) / 𝑖](LineG‘𝑓) = (𝑥𝑝, 𝑦 ∈ (𝑝 ∖ {𝑥}) ↦ {𝑧𝑝 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})})
404, 39cin 3975 . 2 class ((TarskiGC ∩ TarskiGB) ∩ (TarskiGCB ∩ {𝑓[(Base‘𝑓) / 𝑝][(Itv‘𝑓) / 𝑖](LineG‘𝑓) = (𝑥𝑝, 𝑦 ∈ (𝑝 ∖ {𝑥}) ↦ {𝑧𝑝 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})}))
411, 40wceq 1537 1 wff TarskiG = ((TarskiGC ∩ TarskiGB) ∩ (TarskiGCB ∩ {𝑓[(Base‘𝑓) / 𝑝][(Itv‘𝑓) / 𝑖](LineG‘𝑓) = (𝑥𝑝, 𝑦 ∈ (𝑝 ∖ {𝑥}) ↦ {𝑧𝑝 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})}))
Colors of variables: wff setvar class
This definition is referenced by:  axtgcgrrflx  28488  axtgcgrid  28489  axtgsegcon  28490  axtg5seg  28491  axtgbtwnid  28492  axtgpasch  28493  axtgcont1  28494  tglng  28572  f1otrg  28897  eengtrkg  29019
  Copyright terms: Public domain W3C validator