MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-trkg Structured version   Visualization version   GIF version

Definition df-trkg 28398
Description: Define the class of Tarski geometries. A Tarski geometry is a set of points, equipped with a betweenness relation (denoting that a point lies on a line segment between two other points) and a congruence relation (denoting equality of line segment lengths). Here, we are using the following:
  • for congruence, (𝑥 𝑦) = (𝑧 𝑤) where = (dist‘𝑊)
  • for betweenness, 𝑦 ∈ (𝑥𝐼𝑧), where 𝐼 = (Itv‘𝑊)
With this definition, the axiom A2 is actually equivalent to the transitivity of equality, eqtrd 2764.

Tarski originally had more axioms, but later reduced his list to 11:

  • A1 A kind of reflexivity for the congruence relation (TarskiGC)
  • A2 Transitivity for the congruence relation (TarskiGC)
  • A3 Identity for the congruence relation (TarskiGC)
  • A4 Axiom of segment construction (TarskiGCB)
  • A5 5-segment axiom (TarskiGCB)
  • A6 Identity for the betweenness relation (TarskiGB)
  • A7 Axiom of Pasch (TarskiGB)
  • A8 Lower dimension axiom (DimTarskiG≥ “ {2})
  • A9 Upper dimension axiom (V ∖ (DimTarskiG≥ “ {3}))
  • A10 Euclid's axiom (TarskiGE)
  • A11 Axiom of continuity (TarskiGB)
Our definition is split into 5 parts:
  • congruence axioms TarskiGC (which metric spaces fulfill)
  • betweenness axioms TarskiGB
  • congruence and betweenness axioms TarskiGCB
  • upper and lower dimension axioms DimTarskiG
  • axiom of Euclid / parallel postulate TarskiGE

So our definition of a Tarskian Geometry includes the 3 axioms for the quaternary congruence relation (A1, A2, A3), the 3 axioms for the ternary betweenness relation (A6, A7, A11), and the 2 axioms of compatibility of the congruence and the betweenness relations (A4,A5).

It does not include Euclid's axiom A10, nor the 2-dimensional axioms A8 (Lower dimension axiom) and A9 (Upper dimension axiom) so the number of dimensions of the geometry it formalizes is not constrained.

Considering A2 as one of the 3 axioms for the quaternary congruence relation is somewhat conventional, because the transitivity of the congruence relation is automatically given by our choice to take the distance as this congruence relation in our definition of Tarski geometries. (Contributed by Thierry Arnoux, 24-Aug-2017.) (Revised by Thierry Arnoux, 27-Apr-2019.)

Assertion
Ref Expression
df-trkg TarskiG = ((TarskiGC ∩ TarskiGB) ∩ (TarskiGCB ∩ {𝑓[(Base‘𝑓) / 𝑝][(Itv‘𝑓) / 𝑖](LineG‘𝑓) = (𝑥𝑝, 𝑦 ∈ (𝑝 ∖ {𝑥}) ↦ {𝑧𝑝 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})}))
Distinct variable group:   𝑓,𝑝,𝑖,𝑥,𝑦,𝑧

Detailed syntax breakdown of Definition df-trkg
StepHypRef Expression
1 cstrkg 28372 . 2 class TarskiG
2 cstrkgc 28373 . . . 4 class TarskiGC
3 cstrkgb 28374 . . . 4 class TarskiGB
42, 3cin 3902 . . 3 class (TarskiGC ∩ TarskiGB)
5 cstrkgcb 28375 . . . 4 class TarskiGCB
6 vf . . . . . . . . . 10 setvar 𝑓
76cv 1539 . . . . . . . . 9 class 𝑓
8 clng 28379 . . . . . . . . 9 class LineG
97, 8cfv 6482 . . . . . . . 8 class (LineG‘𝑓)
10 vx . . . . . . . . 9 setvar 𝑥
11 vy . . . . . . . . 9 setvar 𝑦
12 vp . . . . . . . . . 10 setvar 𝑝
1312cv 1539 . . . . . . . . 9 class 𝑝
1410cv 1539 . . . . . . . . . . 11 class 𝑥
1514csn 4577 . . . . . . . . . 10 class {𝑥}
1613, 15cdif 3900 . . . . . . . . 9 class (𝑝 ∖ {𝑥})
17 vz . . . . . . . . . . . . 13 setvar 𝑧
1817cv 1539 . . . . . . . . . . . 12 class 𝑧
1911cv 1539 . . . . . . . . . . . . 13 class 𝑦
20 vi . . . . . . . . . . . . . 14 setvar 𝑖
2120cv 1539 . . . . . . . . . . . . 13 class 𝑖
2214, 19, 21co 7349 . . . . . . . . . . . 12 class (𝑥𝑖𝑦)
2318, 22wcel 2109 . . . . . . . . . . 11 wff 𝑧 ∈ (𝑥𝑖𝑦)
2418, 19, 21co 7349 . . . . . . . . . . . 12 class (𝑧𝑖𝑦)
2514, 24wcel 2109 . . . . . . . . . . 11 wff 𝑥 ∈ (𝑧𝑖𝑦)
2614, 18, 21co 7349 . . . . . . . . . . . 12 class (𝑥𝑖𝑧)
2719, 26wcel 2109 . . . . . . . . . . 11 wff 𝑦 ∈ (𝑥𝑖𝑧)
2823, 25, 27w3o 1085 . . . . . . . . . 10 wff (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))
2928, 17, 13crab 3394 . . . . . . . . 9 class {𝑧𝑝 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))}
3010, 11, 13, 16, 29cmpo 7351 . . . . . . . 8 class (𝑥𝑝, 𝑦 ∈ (𝑝 ∖ {𝑥}) ↦ {𝑧𝑝 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})
319, 30wceq 1540 . . . . . . 7 wff (LineG‘𝑓) = (𝑥𝑝, 𝑦 ∈ (𝑝 ∖ {𝑥}) ↦ {𝑧𝑝 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})
32 citv 28378 . . . . . . . 8 class Itv
337, 32cfv 6482 . . . . . . 7 class (Itv‘𝑓)
3431, 20, 33wsbc 3742 . . . . . 6 wff [(Itv‘𝑓) / 𝑖](LineG‘𝑓) = (𝑥𝑝, 𝑦 ∈ (𝑝 ∖ {𝑥}) ↦ {𝑧𝑝 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})
35 cbs 17120 . . . . . . 7 class Base
367, 35cfv 6482 . . . . . 6 class (Base‘𝑓)
3734, 12, 36wsbc 3742 . . . . 5 wff [(Base‘𝑓) / 𝑝][(Itv‘𝑓) / 𝑖](LineG‘𝑓) = (𝑥𝑝, 𝑦 ∈ (𝑝 ∖ {𝑥}) ↦ {𝑧𝑝 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})
3837, 6cab 2707 . . . 4 class {𝑓[(Base‘𝑓) / 𝑝][(Itv‘𝑓) / 𝑖](LineG‘𝑓) = (𝑥𝑝, 𝑦 ∈ (𝑝 ∖ {𝑥}) ↦ {𝑧𝑝 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})}
395, 38cin 3902 . . 3 class (TarskiGCB ∩ {𝑓[(Base‘𝑓) / 𝑝][(Itv‘𝑓) / 𝑖](LineG‘𝑓) = (𝑥𝑝, 𝑦 ∈ (𝑝 ∖ {𝑥}) ↦ {𝑧𝑝 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})})
404, 39cin 3902 . 2 class ((TarskiGC ∩ TarskiGB) ∩ (TarskiGCB ∩ {𝑓[(Base‘𝑓) / 𝑝][(Itv‘𝑓) / 𝑖](LineG‘𝑓) = (𝑥𝑝, 𝑦 ∈ (𝑝 ∖ {𝑥}) ↦ {𝑧𝑝 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})}))
411, 40wceq 1540 1 wff TarskiG = ((TarskiGC ∩ TarskiGB) ∩ (TarskiGCB ∩ {𝑓[(Base‘𝑓) / 𝑝][(Itv‘𝑓) / 𝑖](LineG‘𝑓) = (𝑥𝑝, 𝑦 ∈ (𝑝 ∖ {𝑥}) ↦ {𝑧𝑝 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})}))
Colors of variables: wff setvar class
This definition is referenced by:  axtgcgrrflx  28407  axtgcgrid  28408  axtgsegcon  28409  axtg5seg  28410  axtgbtwnid  28411  axtgpasch  28412  axtgcont1  28413  tglng  28491  f1otrg  28816  eengtrkg  28931
  Copyright terms: Public domain W3C validator