MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-trkg Structured version   Visualization version   GIF version

Definition df-trkg 26718
Description: Define the class of Tarski geometries. A Tarski geometry is a set of points, equipped with a betweenness relation (denoting that a point lies on a line segment between two other points) and a congruence relation (denoting equality of line segment lengths). Here, we are using the following:
  • for congruence, (𝑥 𝑦) = (𝑧 𝑤) where = (dist‘𝑊)
  • for betweenness, 𝑦 ∈ (𝑥𝐼𝑧), where 𝐼 = (Itv‘𝑊)
With this definition, the axiom A2 is actually equivalent to the transitivity of equality, eqtrd 2778.

Tarski originally had more axioms, but later reduced his list to 11:

  • A1 A kind of reflexivity for the congruence relation (TarskiGC)
  • A2 Transitivity for the congruence relation (TarskiGC)
  • A3 Identity for the congruence relation (TarskiGC)
  • A4 Axiom of segment construction (TarskiGCB)
  • A5 5-segment axiom (TarskiGCB)
  • A6 Identity for the betweenness relation (TarskiGB)
  • A7 Axiom of Pasch (TarskiGB)
  • A8 Lower dimension axiom (DimTarskiG≥ “ {2})
  • A9 Upper dimension axiom (V ∖ (DimTarskiG≥ “ {3}))
  • A10 Euclid's axiom (TarskiGE)
  • A11 Axiom of continuity (TarskiGB)
Our definition is split into 5 parts:
  • congruence axioms TarskiGC (which metric spaces fulfill)
  • betweenness axioms TarskiGB
  • congruence and betweenness axioms TarskiGCB
  • upper and lower dimension axioms DimTarskiG
  • axiom of Euclid / parallel postulate TarskiGE

So our definition of a Tarskian Geometry includes the 3 axioms for the quaternary congruence relation (A1, A2, A3), the 3 axioms for the ternary betweenness relation (A6, A7, A11), and the 2 axioms of compatibility of the congruence and the betweenness relations (A4,A5).

It does not include Euclid's axiom A10, nor the 2-dimensional axioms A8 (Lower dimension axiom) and A9 (Upper dimension axiom) so the number of dimensions of the geometry it formalizes is not constrained.

Considering A2 as one of the 3 axioms for the quaternary congruence relation is somewhat conventional, because the transitivity of the congruence relation is automatically given by our choice to take the distance as this congruence relation in our definition of Tarski geometries. (Contributed by Thierry Arnoux, 24-Aug-2017.) (Revised by Thierry Arnoux, 27-Apr-2019.)

Assertion
Ref Expression
df-trkg TarskiG = ((TarskiGC ∩ TarskiGB) ∩ (TarskiGCB ∩ {𝑓[(Base‘𝑓) / 𝑝][(Itv‘𝑓) / 𝑖](LineG‘𝑓) = (𝑥𝑝, 𝑦 ∈ (𝑝 ∖ {𝑥}) ↦ {𝑧𝑝 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})}))
Distinct variable group:   𝑓,𝑝,𝑖,𝑥,𝑦,𝑧

Detailed syntax breakdown of Definition df-trkg
StepHypRef Expression
1 cstrkg 26693 . 2 class TarskiG
2 cstrkgc 26694 . . . 4 class TarskiGC
3 cstrkgb 26695 . . . 4 class TarskiGB
42, 3cin 3882 . . 3 class (TarskiGC ∩ TarskiGB)
5 cstrkgcb 26696 . . . 4 class TarskiGCB
6 vf . . . . . . . . . 10 setvar 𝑓
76cv 1538 . . . . . . . . 9 class 𝑓
8 clng 26700 . . . . . . . . 9 class LineG
97, 8cfv 6418 . . . . . . . 8 class (LineG‘𝑓)
10 vx . . . . . . . . 9 setvar 𝑥
11 vy . . . . . . . . 9 setvar 𝑦
12 vp . . . . . . . . . 10 setvar 𝑝
1312cv 1538 . . . . . . . . 9 class 𝑝
1410cv 1538 . . . . . . . . . . 11 class 𝑥
1514csn 4558 . . . . . . . . . 10 class {𝑥}
1613, 15cdif 3880 . . . . . . . . 9 class (𝑝 ∖ {𝑥})
17 vz . . . . . . . . . . . . 13 setvar 𝑧
1817cv 1538 . . . . . . . . . . . 12 class 𝑧
1911cv 1538 . . . . . . . . . . . . 13 class 𝑦
20 vi . . . . . . . . . . . . . 14 setvar 𝑖
2120cv 1538 . . . . . . . . . . . . 13 class 𝑖
2214, 19, 21co 7255 . . . . . . . . . . . 12 class (𝑥𝑖𝑦)
2318, 22wcel 2108 . . . . . . . . . . 11 wff 𝑧 ∈ (𝑥𝑖𝑦)
2418, 19, 21co 7255 . . . . . . . . . . . 12 class (𝑧𝑖𝑦)
2514, 24wcel 2108 . . . . . . . . . . 11 wff 𝑥 ∈ (𝑧𝑖𝑦)
2614, 18, 21co 7255 . . . . . . . . . . . 12 class (𝑥𝑖𝑧)
2719, 26wcel 2108 . . . . . . . . . . 11 wff 𝑦 ∈ (𝑥𝑖𝑧)
2823, 25, 27w3o 1084 . . . . . . . . . 10 wff (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))
2928, 17, 13crab 3067 . . . . . . . . 9 class {𝑧𝑝 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))}
3010, 11, 13, 16, 29cmpo 7257 . . . . . . . 8 class (𝑥𝑝, 𝑦 ∈ (𝑝 ∖ {𝑥}) ↦ {𝑧𝑝 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})
319, 30wceq 1539 . . . . . . 7 wff (LineG‘𝑓) = (𝑥𝑝, 𝑦 ∈ (𝑝 ∖ {𝑥}) ↦ {𝑧𝑝 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})
32 citv 26699 . . . . . . . 8 class Itv
337, 32cfv 6418 . . . . . . 7 class (Itv‘𝑓)
3431, 20, 33wsbc 3711 . . . . . 6 wff [(Itv‘𝑓) / 𝑖](LineG‘𝑓) = (𝑥𝑝, 𝑦 ∈ (𝑝 ∖ {𝑥}) ↦ {𝑧𝑝 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})
35 cbs 16840 . . . . . . 7 class Base
367, 35cfv 6418 . . . . . 6 class (Base‘𝑓)
3734, 12, 36wsbc 3711 . . . . 5 wff [(Base‘𝑓) / 𝑝][(Itv‘𝑓) / 𝑖](LineG‘𝑓) = (𝑥𝑝, 𝑦 ∈ (𝑝 ∖ {𝑥}) ↦ {𝑧𝑝 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})
3837, 6cab 2715 . . . 4 class {𝑓[(Base‘𝑓) / 𝑝][(Itv‘𝑓) / 𝑖](LineG‘𝑓) = (𝑥𝑝, 𝑦 ∈ (𝑝 ∖ {𝑥}) ↦ {𝑧𝑝 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})}
395, 38cin 3882 . . 3 class (TarskiGCB ∩ {𝑓[(Base‘𝑓) / 𝑝][(Itv‘𝑓) / 𝑖](LineG‘𝑓) = (𝑥𝑝, 𝑦 ∈ (𝑝 ∖ {𝑥}) ↦ {𝑧𝑝 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})})
404, 39cin 3882 . 2 class ((TarskiGC ∩ TarskiGB) ∩ (TarskiGCB ∩ {𝑓[(Base‘𝑓) / 𝑝][(Itv‘𝑓) / 𝑖](LineG‘𝑓) = (𝑥𝑝, 𝑦 ∈ (𝑝 ∖ {𝑥}) ↦ {𝑧𝑝 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})}))
411, 40wceq 1539 1 wff TarskiG = ((TarskiGC ∩ TarskiGB) ∩ (TarskiGCB ∩ {𝑓[(Base‘𝑓) / 𝑝][(Itv‘𝑓) / 𝑖](LineG‘𝑓) = (𝑥𝑝, 𝑦 ∈ (𝑝 ∖ {𝑥}) ↦ {𝑧𝑝 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})}))
Colors of variables: wff setvar class
This definition is referenced by:  axtgcgrrflx  26727  axtgcgrid  26728  axtgsegcon  26729  axtg5seg  26730  axtgbtwnid  26731  axtgpasch  26732  axtgcont1  26733  tglng  26811  f1otrg  27136  eengtrkg  27257
  Copyright terms: Public domain W3C validator