Step | Hyp | Ref
| Expression |
1 | | istrkg.p |
. . 3
β’ π = (BaseβπΊ) |
2 | | istrkg.d |
. . 3
β’ β =
(distβπΊ) |
3 | | istrkg.i |
. . 3
β’ πΌ = (ItvβπΊ) |
4 | | eqidd 2734 |
. . . . . 6
β’ ((π = π β§ π = β β§ π = πΌ) β π = π) |
5 | | eqidd 2734 |
. . . . . 6
β’ ((π = π β§ π = β β§ π = πΌ) β (1..^π) = (1..^π)) |
6 | | simp1 1137 |
. . . . . . 7
β’ ((π = π β§ π = β β§ π = πΌ) β π = π) |
7 | 6 | eqcomd 2739 |
. . . . . 6
β’ ((π = π β§ π = β β§ π = πΌ) β π = π) |
8 | 4, 5, 7 | f1eq123d 6826 |
. . . . 5
β’ ((π = π β§ π = β β§ π = πΌ) β (π:(1..^π)β1-1βπ β π:(1..^π)β1-1βπ)) |
9 | | simp2 1138 |
. . . . . . . . . . . . . 14
β’ ((π = π β§ π = β β§ π = πΌ) β π = β ) |
10 | 9 | eqcomd 2739 |
. . . . . . . . . . . . 13
β’ ((π = π β§ π = β β§ π = πΌ) β β = π) |
11 | 10 | oveqd 7426 |
. . . . . . . . . . . 12
β’ ((π = π β§ π = β β§ π = πΌ) β ((πβ1) β π₯) = ((πβ1)ππ₯)) |
12 | 10 | oveqd 7426 |
. . . . . . . . . . . 12
β’ ((π = π β§ π = β β§ π = πΌ) β ((πβπ) β π₯) = ((πβπ)ππ₯)) |
13 | 11, 12 | eqeq12d 2749 |
. . . . . . . . . . 11
β’ ((π = π β§ π = β β§ π = πΌ) β (((πβ1) β π₯) = ((πβπ) β π₯) β ((πβ1)ππ₯) = ((πβπ)ππ₯))) |
14 | 10 | oveqd 7426 |
. . . . . . . . . . . 12
β’ ((π = π β§ π = β β§ π = πΌ) β ((πβ1) β π¦) = ((πβ1)ππ¦)) |
15 | 10 | oveqd 7426 |
. . . . . . . . . . . 12
β’ ((π = π β§ π = β β§ π = πΌ) β ((πβπ) β π¦) = ((πβπ)ππ¦)) |
16 | 14, 15 | eqeq12d 2749 |
. . . . . . . . . . 11
β’ ((π = π β§ π = β β§ π = πΌ) β (((πβ1) β π¦) = ((πβπ) β π¦) β ((πβ1)ππ¦) = ((πβπ)ππ¦))) |
17 | 10 | oveqd 7426 |
. . . . . . . . . . . 12
β’ ((π = π β§ π = β β§ π = πΌ) β ((πβ1) β π§) = ((πβ1)ππ§)) |
18 | 10 | oveqd 7426 |
. . . . . . . . . . . 12
β’ ((π = π β§ π = β β§ π = πΌ) β ((πβπ) β π§) = ((πβπ)ππ§)) |
19 | 17, 18 | eqeq12d 2749 |
. . . . . . . . . . 11
β’ ((π = π β§ π = β β§ π = πΌ) β (((πβ1) β π§) = ((πβπ) β π§) β ((πβ1)ππ§) = ((πβπ)ππ§))) |
20 | 13, 16, 19 | 3anbi123d 1437 |
. . . . . . . . . 10
β’ ((π = π β§ π = β β§ π = πΌ) β ((((πβ1) β π₯) = ((πβπ) β π₯) β§ ((πβ1) β π¦) = ((πβπ) β π¦) β§ ((πβ1) β π§) = ((πβπ) β π§)) β (((πβ1)ππ₯) = ((πβπ)ππ₯) β§ ((πβ1)ππ¦) = ((πβπ)ππ¦) β§ ((πβ1)ππ§) = ((πβπ)ππ§)))) |
21 | 20 | ralbidv 3178 |
. . . . . . . . 9
β’ ((π = π β§ π = β β§ π = πΌ) β (βπ β (2..^π)(((πβ1) β π₯) = ((πβπ) β π₯) β§ ((πβ1) β π¦) = ((πβπ) β π¦) β§ ((πβ1) β π§) = ((πβπ) β π§)) β βπ β (2..^π)(((πβ1)ππ₯) = ((πβπ)ππ₯) β§ ((πβ1)ππ¦) = ((πβπ)ππ¦) β§ ((πβ1)ππ§) = ((πβπ)ππ§)))) |
22 | | simp3 1139 |
. . . . . . . . . . . . . 14
β’ ((π = π β§ π = β β§ π = πΌ) β π = πΌ) |
23 | 22 | eqcomd 2739 |
. . . . . . . . . . . . 13
β’ ((π = π β§ π = β β§ π = πΌ) β πΌ = π) |
24 | 23 | oveqd 7426 |
. . . . . . . . . . . 12
β’ ((π = π β§ π = β β§ π = πΌ) β (π₯πΌπ¦) = (π₯ππ¦)) |
25 | 24 | eleq2d 2820 |
. . . . . . . . . . 11
β’ ((π = π β§ π = β β§ π = πΌ) β (π§ β (π₯πΌπ¦) β π§ β (π₯ππ¦))) |
26 | 23 | oveqd 7426 |
. . . . . . . . . . . 12
β’ ((π = π β§ π = β β§ π = πΌ) β (π§πΌπ¦) = (π§ππ¦)) |
27 | 26 | eleq2d 2820 |
. . . . . . . . . . 11
β’ ((π = π β§ π = β β§ π = πΌ) β (π₯ β (π§πΌπ¦) β π₯ β (π§ππ¦))) |
28 | 23 | oveqd 7426 |
. . . . . . . . . . . 12
β’ ((π = π β§ π = β β§ π = πΌ) β (π₯πΌπ§) = (π₯ππ§)) |
29 | 28 | eleq2d 2820 |
. . . . . . . . . . 11
β’ ((π = π β§ π = β β§ π = πΌ) β (π¦ β (π₯πΌπ§) β π¦ β (π₯ππ§))) |
30 | 25, 27, 29 | 3orbi123d 1436 |
. . . . . . . . . 10
β’ ((π = π β§ π = β β§ π = πΌ) β ((π§ β (π₯πΌπ¦) β¨ π₯ β (π§πΌπ¦) β¨ π¦ β (π₯πΌπ§)) β (π§ β (π₯ππ¦) β¨ π₯ β (π§ππ¦) β¨ π¦ β (π₯ππ§)))) |
31 | 30 | notbid 318 |
. . . . . . . . 9
β’ ((π = π β§ π = β β§ π = πΌ) β (Β¬ (π§ β (π₯πΌπ¦) β¨ π₯ β (π§πΌπ¦) β¨ π¦ β (π₯πΌπ§)) β Β¬ (π§ β (π₯ππ¦) β¨ π₯ β (π§ππ¦) β¨ π¦ β (π₯ππ§)))) |
32 | 21, 31 | anbi12d 632 |
. . . . . . . 8
β’ ((π = π β§ π = β β§ π = πΌ) β ((βπ β (2..^π)(((πβ1) β π₯) = ((πβπ) β π₯) β§ ((πβ1) β π¦) = ((πβπ) β π¦) β§ ((πβ1) β π§) = ((πβπ) β π§)) β§ Β¬ (π§ β (π₯πΌπ¦) β¨ π₯ β (π§πΌπ¦) β¨ π¦ β (π₯πΌπ§))) β (βπ β (2..^π)(((πβ1)ππ₯) = ((πβπ)ππ₯) β§ ((πβ1)ππ¦) = ((πβπ)ππ¦) β§ ((πβ1)ππ§) = ((πβπ)ππ§)) β§ Β¬ (π§ β (π₯ππ¦) β¨ π₯ β (π§ππ¦) β¨ π¦ β (π₯ππ§))))) |
33 | 7, 32 | rexeqbidv 3344 |
. . . . . . 7
β’ ((π = π β§ π = β β§ π = πΌ) β (βπ§ β π (βπ β (2..^π)(((πβ1) β π₯) = ((πβπ) β π₯) β§ ((πβ1) β π¦) = ((πβπ) β π¦) β§ ((πβ1) β π§) = ((πβπ) β π§)) β§ Β¬ (π§ β (π₯πΌπ¦) β¨ π₯ β (π§πΌπ¦) β¨ π¦ β (π₯πΌπ§))) β βπ§ β π (βπ β (2..^π)(((πβ1)ππ₯) = ((πβπ)ππ₯) β§ ((πβ1)ππ¦) = ((πβπ)ππ¦) β§ ((πβ1)ππ§) = ((πβπ)ππ§)) β§ Β¬ (π§ β (π₯ππ¦) β¨ π₯ β (π§ππ¦) β¨ π¦ β (π₯ππ§))))) |
34 | 7, 33 | rexeqbidv 3344 |
. . . . . 6
β’ ((π = π β§ π = β β§ π = πΌ) β (βπ¦ β π βπ§ β π (βπ β (2..^π)(((πβ1) β π₯) = ((πβπ) β π₯) β§ ((πβ1) β π¦) = ((πβπ) β π¦) β§ ((πβ1) β π§) = ((πβπ) β π§)) β§ Β¬ (π§ β (π₯πΌπ¦) β¨ π₯ β (π§πΌπ¦) β¨ π¦ β (π₯πΌπ§))) β βπ¦ β π βπ§ β π (βπ β (2..^π)(((πβ1)ππ₯) = ((πβπ)ππ₯) β§ ((πβ1)ππ¦) = ((πβπ)ππ¦) β§ ((πβ1)ππ§) = ((πβπ)ππ§)) β§ Β¬ (π§ β (π₯ππ¦) β¨ π₯ β (π§ππ¦) β¨ π¦ β (π₯ππ§))))) |
35 | 7, 34 | rexeqbidv 3344 |
. . . . 5
β’ ((π = π β§ π = β β§ π = πΌ) β (βπ₯ β π βπ¦ β π βπ§ β π (βπ β (2..^π)(((πβ1) β π₯) = ((πβπ) β π₯) β§ ((πβ1) β π¦) = ((πβπ) β π¦) β§ ((πβ1) β π§) = ((πβπ) β π§)) β§ Β¬ (π§ β (π₯πΌπ¦) β¨ π₯ β (π§πΌπ¦) β¨ π¦ β (π₯πΌπ§))) β βπ₯ β π βπ¦ β π βπ§ β π (βπ β (2..^π)(((πβ1)ππ₯) = ((πβπ)ππ₯) β§ ((πβ1)ππ¦) = ((πβπ)ππ¦) β§ ((πβ1)ππ§) = ((πβπ)ππ§)) β§ Β¬ (π§ β (π₯ππ¦) β¨ π₯ β (π§ππ¦) β¨ π¦ β (π₯ππ§))))) |
36 | 8, 35 | anbi12d 632 |
. . . 4
β’ ((π = π β§ π = β β§ π = πΌ) β ((π:(1..^π)β1-1βπ β§ βπ₯ β π βπ¦ β π βπ§ β π (βπ β (2..^π)(((πβ1) β π₯) = ((πβπ) β π₯) β§ ((πβ1) β π¦) = ((πβπ) β π¦) β§ ((πβ1) β π§) = ((πβπ) β π§)) β§ Β¬ (π§ β (π₯πΌπ¦) β¨ π₯ β (π§πΌπ¦) β¨ π¦ β (π₯πΌπ§)))) β (π:(1..^π)β1-1βπ β§ βπ₯ β π βπ¦ β π βπ§ β π (βπ β (2..^π)(((πβ1)ππ₯) = ((πβπ)ππ₯) β§ ((πβ1)ππ¦) = ((πβπ)ππ¦) β§ ((πβ1)ππ§) = ((πβπ)ππ§)) β§ Β¬ (π§ β (π₯ππ¦) β¨ π₯ β (π§ππ¦) β¨ π¦ β (π₯ππ§)))))) |
37 | 36 | exbidv 1925 |
. . 3
β’ ((π = π β§ π = β β§ π = πΌ) β (βπ(π:(1..^π)β1-1βπ β§ βπ₯ β π βπ¦ β π βπ§ β π (βπ β (2..^π)(((πβ1) β π₯) = ((πβπ) β π₯) β§ ((πβ1) β π¦) = ((πβπ) β π¦) β§ ((πβ1) β π§) = ((πβπ) β π§)) β§ Β¬ (π§ β (π₯πΌπ¦) β¨ π₯ β (π§πΌπ¦) β¨ π¦ β (π₯πΌπ§)))) β βπ(π:(1..^π)β1-1βπ β§ βπ₯ β π βπ¦ β π βπ§ β π (βπ β (2..^π)(((πβ1)ππ₯) = ((πβπ)ππ₯) β§ ((πβ1)ππ¦) = ((πβπ)ππ¦) β§ ((πβ1)ππ§) = ((πβπ)ππ§)) β§ Β¬ (π§ β (π₯ππ¦) β¨ π₯ β (π§ππ¦) β¨ π¦ β (π₯ππ§)))))) |
38 | 1, 2, 3, 37 | sbcie3s 17095 |
. 2
β’ (π = πΊ β ([(Baseβπ) / π][(distβπ) / π][(Itvβπ) / π]βπ(π:(1..^π)β1-1βπ β§ βπ₯ β π βπ¦ β π βπ§ β π (βπ β (2..^π)(((πβ1)ππ₯) = ((πβπ)ππ₯) β§ ((πβ1)ππ¦) = ((πβπ)ππ¦) β§ ((πβ1)ππ§) = ((πβπ)ππ§)) β§ Β¬ (π§ β (π₯ππ¦) β¨ π₯ β (π§ππ¦) β¨ π¦ β (π₯ππ§)))) β βπ(π:(1..^π)β1-1βπ β§ βπ₯ β π βπ¦ β π βπ§ β π (βπ β (2..^π)(((πβ1) β π₯) = ((πβπ) β π₯) β§ ((πβ1) β π¦) = ((πβπ) β π¦) β§ ((πβ1) β π§) = ((πβπ) β π§)) β§ Β¬ (π§ β (π₯πΌπ¦) β¨ π₯ β (π§πΌπ¦) β¨ π¦ β (π₯πΌπ§)))))) |
39 | | eqidd 2734 |
. . . . 5
β’ (π = π β π = π) |
40 | | oveq2 7417 |
. . . . 5
β’ (π = π β (1..^π) = (1..^π)) |
41 | | eqidd 2734 |
. . . . 5
β’ (π = π β π = π) |
42 | 39, 40, 41 | f1eq123d 6826 |
. . . 4
β’ (π = π β (π:(1..^π)β1-1βπ β π:(1..^π)β1-1βπ)) |
43 | | oveq2 7417 |
. . . . . . . 8
β’ (π = π β (2..^π) = (2..^π)) |
44 | 43 | raleqdv 3326 |
. . . . . . 7
β’ (π = π β (βπ β (2..^π)(((πβ1) β π₯) = ((πβπ) β π₯) β§ ((πβ1) β π¦) = ((πβπ) β π¦) β§ ((πβ1) β π§) = ((πβπ) β π§)) β βπ β (2..^π)(((πβ1) β π₯) = ((πβπ) β π₯) β§ ((πβ1) β π¦) = ((πβπ) β π¦) β§ ((πβ1) β π§) = ((πβπ) β π§)))) |
45 | 44 | anbi1d 631 |
. . . . . 6
β’ (π = π β ((βπ β (2..^π)(((πβ1) β π₯) = ((πβπ) β π₯) β§ ((πβ1) β π¦) = ((πβπ) β π¦) β§ ((πβ1) β π§) = ((πβπ) β π§)) β§ Β¬ (π§ β (π₯πΌπ¦) β¨ π₯ β (π§πΌπ¦) β¨ π¦ β (π₯πΌπ§))) β (βπ β (2..^π)(((πβ1) β π₯) = ((πβπ) β π₯) β§ ((πβ1) β π¦) = ((πβπ) β π¦) β§ ((πβ1) β π§) = ((πβπ) β π§)) β§ Β¬ (π§ β (π₯πΌπ¦) β¨ π₯ β (π§πΌπ¦) β¨ π¦ β (π₯πΌπ§))))) |
46 | 45 | rexbidv 3179 |
. . . . 5
β’ (π = π β (βπ§ β π (βπ β (2..^π)(((πβ1) β π₯) = ((πβπ) β π₯) β§ ((πβ1) β π¦) = ((πβπ) β π¦) β§ ((πβ1) β π§) = ((πβπ) β π§)) β§ Β¬ (π§ β (π₯πΌπ¦) β¨ π₯ β (π§πΌπ¦) β¨ π¦ β (π₯πΌπ§))) β βπ§ β π (βπ β (2..^π)(((πβ1) β π₯) = ((πβπ) β π₯) β§ ((πβ1) β π¦) = ((πβπ) β π¦) β§ ((πβ1) β π§) = ((πβπ) β π§)) β§ Β¬ (π§ β (π₯πΌπ¦) β¨ π₯ β (π§πΌπ¦) β¨ π¦ β (π₯πΌπ§))))) |
47 | 46 | 2rexbidv 3220 |
. . . 4
β’ (π = π β (βπ₯ β π βπ¦ β π βπ§ β π (βπ β (2..^π)(((πβ1) β π₯) = ((πβπ) β π₯) β§ ((πβ1) β π¦) = ((πβπ) β π¦) β§ ((πβ1) β π§) = ((πβπ) β π§)) β§ Β¬ (π§ β (π₯πΌπ¦) β¨ π₯ β (π§πΌπ¦) β¨ π¦ β (π₯πΌπ§))) β βπ₯ β π βπ¦ β π βπ§ β π (βπ β (2..^π)(((πβ1) β π₯) = ((πβπ) β π₯) β§ ((πβ1) β π¦) = ((πβπ) β π¦) β§ ((πβ1) β π§) = ((πβπ) β π§)) β§ Β¬ (π§ β (π₯πΌπ¦) β¨ π₯ β (π§πΌπ¦) β¨ π¦ β (π₯πΌπ§))))) |
48 | 42, 47 | anbi12d 632 |
. . 3
β’ (π = π β ((π:(1..^π)β1-1βπ β§ βπ₯ β π βπ¦ β π βπ§ β π (βπ β (2..^π)(((πβ1) β π₯) = ((πβπ) β π₯) β§ ((πβ1) β π¦) = ((πβπ) β π¦) β§ ((πβ1) β π§) = ((πβπ) β π§)) β§ Β¬ (π§ β (π₯πΌπ¦) β¨ π₯ β (π§πΌπ¦) β¨ π¦ β (π₯πΌπ§)))) β (π:(1..^π)β1-1βπ β§ βπ₯ β π βπ¦ β π βπ§ β π (βπ β (2..^π)(((πβ1) β π₯) = ((πβπ) β π₯) β§ ((πβ1) β π¦) = ((πβπ) β π¦) β§ ((πβ1) β π§) = ((πβπ) β π§)) β§ Β¬ (π§ β (π₯πΌπ¦) β¨ π₯ β (π§πΌπ¦) β¨ π¦ β (π₯πΌπ§)))))) |
49 | 48 | exbidv 1925 |
. 2
β’ (π = π β (βπ(π:(1..^π)β1-1βπ β§ βπ₯ β π βπ¦ β π βπ§ β π (βπ β (2..^π)(((πβ1) β π₯) = ((πβπ) β π₯) β§ ((πβ1) β π¦) = ((πβπ) β π¦) β§ ((πβ1) β π§) = ((πβπ) β π§)) β§ Β¬ (π§ β (π₯πΌπ¦) β¨ π₯ β (π§πΌπ¦) β¨ π¦ β (π₯πΌπ§)))) β βπ(π:(1..^π)β1-1βπ β§ βπ₯ β π βπ¦ β π βπ§ β π (βπ β (2..^π)(((πβ1) β π₯) = ((πβπ) β π₯) β§ ((πβ1) β π¦) = ((πβπ) β π¦) β§ ((πβ1) β π§) = ((πβπ) β π§)) β§ Β¬ (π§ β (π₯πΌπ¦) β¨ π₯ β (π§πΌπ¦) β¨ π¦ β (π₯πΌπ§)))))) |
50 | | df-trkgld 27703 |
. 2
β’
DimTarskiGβ₯ = {β¨π, πβ© β£ [(Baseβπ) / π][(distβπ) / π][(Itvβπ) / π]βπ(π:(1..^π)β1-1βπ β§ βπ₯ β π βπ¦ β π βπ§ β π (βπ β (2..^π)(((πβ1)ππ₯) = ((πβπ)ππ₯) β§ ((πβ1)ππ¦) = ((πβπ)ππ¦) β§ ((πβ1)ππ§) = ((πβπ)ππ§)) β§ Β¬ (π§ β (π₯ππ¦) β¨ π₯ β (π§ππ¦) β¨ π¦ β (π₯ππ§))))} |
51 | 38, 49, 50 | brabg 5540 |
1
β’ ((πΊ β π β§ π β (β€β₯β2))
β (πΊDimTarskiGβ₯π β βπ(π:(1..^π)β1-1βπ β§ βπ₯ β π βπ¦ β π βπ§ β π (βπ β (2..^π)(((πβ1) β π₯) = ((πβπ) β π₯) β§ ((πβ1) β π¦) = ((πβπ) β π¦) β§ ((πβ1) β π§) = ((πβπ) β π§)) β§ Β¬ (π§ β (π₯πΌπ¦) β¨ π₯ β (π§πΌπ¦) β¨ π¦ β (π₯πΌπ§)))))) |