MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  istrkgld Structured version   Visualization version   GIF version

Theorem istrkgld 28467
Description: Property of fulfilling the lower dimension 𝑁 axiom. (Contributed by Thierry Arnoux, 20-Nov-2019.)
Hypotheses
Ref Expression
istrkg.p 𝑃 = (Base‘𝐺)
istrkg.d = (dist‘𝐺)
istrkg.i 𝐼 = (Itv‘𝐺)
Assertion
Ref Expression
istrkgld ((𝐺𝑉𝑁 ∈ (ℤ‘2)) → (𝐺DimTarskiG𝑁 ↔ ∃𝑓(𝑓:(1..^𝑁)–1-1𝑃 ∧ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (∀𝑗 ∈ (2..^𝑁)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))))))
Distinct variable groups:   𝑓,𝐺   𝑓,𝑗,𝑥,𝑦,𝑧,𝐼   𝑃,𝑓,𝑗,𝑥,𝑦,𝑧   ,𝑓,𝑗,𝑥,𝑦,𝑧   𝑓,𝑁,𝑗,𝑥,𝑦,𝑧
Allowed substitution hints:   𝐺(𝑥,𝑦,𝑧,𝑗)   𝑉(𝑥,𝑦,𝑧,𝑓,𝑗)

Proof of Theorem istrkgld
Dummy variables 𝑑 𝑔 𝑖 𝑛 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 istrkg.p . . 3 𝑃 = (Base‘𝐺)
2 istrkg.d . . 3 = (dist‘𝐺)
3 istrkg.i . . 3 𝐼 = (Itv‘𝐺)
4 eqidd 2738 . . . . . 6 ((𝑝 = 𝑃𝑑 = 𝑖 = 𝐼) → 𝑓 = 𝑓)
5 eqidd 2738 . . . . . 6 ((𝑝 = 𝑃𝑑 = 𝑖 = 𝐼) → (1..^𝑛) = (1..^𝑛))
6 simp1 1137 . . . . . . 7 ((𝑝 = 𝑃𝑑 = 𝑖 = 𝐼) → 𝑝 = 𝑃)
76eqcomd 2743 . . . . . 6 ((𝑝 = 𝑃𝑑 = 𝑖 = 𝐼) → 𝑃 = 𝑝)
84, 5, 7f1eq123d 6840 . . . . 5 ((𝑝 = 𝑃𝑑 = 𝑖 = 𝐼) → (𝑓:(1..^𝑛)–1-1𝑃𝑓:(1..^𝑛)–1-1𝑝))
9 simp2 1138 . . . . . . . . . . . . . 14 ((𝑝 = 𝑃𝑑 = 𝑖 = 𝐼) → 𝑑 = )
109eqcomd 2743 . . . . . . . . . . . . 13 ((𝑝 = 𝑃𝑑 = 𝑖 = 𝐼) → = 𝑑)
1110oveqd 7448 . . . . . . . . . . . 12 ((𝑝 = 𝑃𝑑 = 𝑖 = 𝐼) → ((𝑓‘1) 𝑥) = ((𝑓‘1)𝑑𝑥))
1210oveqd 7448 . . . . . . . . . . . 12 ((𝑝 = 𝑃𝑑 = 𝑖 = 𝐼) → ((𝑓𝑗) 𝑥) = ((𝑓𝑗)𝑑𝑥))
1311, 12eqeq12d 2753 . . . . . . . . . . 11 ((𝑝 = 𝑃𝑑 = 𝑖 = 𝐼) → (((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ↔ ((𝑓‘1)𝑑𝑥) = ((𝑓𝑗)𝑑𝑥)))
1410oveqd 7448 . . . . . . . . . . . 12 ((𝑝 = 𝑃𝑑 = 𝑖 = 𝐼) → ((𝑓‘1) 𝑦) = ((𝑓‘1)𝑑𝑦))
1510oveqd 7448 . . . . . . . . . . . 12 ((𝑝 = 𝑃𝑑 = 𝑖 = 𝐼) → ((𝑓𝑗) 𝑦) = ((𝑓𝑗)𝑑𝑦))
1614, 15eqeq12d 2753 . . . . . . . . . . 11 ((𝑝 = 𝑃𝑑 = 𝑖 = 𝐼) → (((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ↔ ((𝑓‘1)𝑑𝑦) = ((𝑓𝑗)𝑑𝑦)))
1710oveqd 7448 . . . . . . . . . . . 12 ((𝑝 = 𝑃𝑑 = 𝑖 = 𝐼) → ((𝑓‘1) 𝑧) = ((𝑓‘1)𝑑𝑧))
1810oveqd 7448 . . . . . . . . . . . 12 ((𝑝 = 𝑃𝑑 = 𝑖 = 𝐼) → ((𝑓𝑗) 𝑧) = ((𝑓𝑗)𝑑𝑧))
1917, 18eqeq12d 2753 . . . . . . . . . . 11 ((𝑝 = 𝑃𝑑 = 𝑖 = 𝐼) → (((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧) ↔ ((𝑓‘1)𝑑𝑧) = ((𝑓𝑗)𝑑𝑧)))
2013, 16, 193anbi123d 1438 . . . . . . . . . 10 ((𝑝 = 𝑃𝑑 = 𝑖 = 𝐼) → ((((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ↔ (((𝑓‘1)𝑑𝑥) = ((𝑓𝑗)𝑑𝑥) ∧ ((𝑓‘1)𝑑𝑦) = ((𝑓𝑗)𝑑𝑦) ∧ ((𝑓‘1)𝑑𝑧) = ((𝑓𝑗)𝑑𝑧))))
2120ralbidv 3178 . . . . . . . . 9 ((𝑝 = 𝑃𝑑 = 𝑖 = 𝐼) → (∀𝑗 ∈ (2..^𝑛)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ↔ ∀𝑗 ∈ (2..^𝑛)(((𝑓‘1)𝑑𝑥) = ((𝑓𝑗)𝑑𝑥) ∧ ((𝑓‘1)𝑑𝑦) = ((𝑓𝑗)𝑑𝑦) ∧ ((𝑓‘1)𝑑𝑧) = ((𝑓𝑗)𝑑𝑧))))
22 simp3 1139 . . . . . . . . . . . . . 14 ((𝑝 = 𝑃𝑑 = 𝑖 = 𝐼) → 𝑖 = 𝐼)
2322eqcomd 2743 . . . . . . . . . . . . 13 ((𝑝 = 𝑃𝑑 = 𝑖 = 𝐼) → 𝐼 = 𝑖)
2423oveqd 7448 . . . . . . . . . . . 12 ((𝑝 = 𝑃𝑑 = 𝑖 = 𝐼) → (𝑥𝐼𝑦) = (𝑥𝑖𝑦))
2524eleq2d 2827 . . . . . . . . . . 11 ((𝑝 = 𝑃𝑑 = 𝑖 = 𝐼) → (𝑧 ∈ (𝑥𝐼𝑦) ↔ 𝑧 ∈ (𝑥𝑖𝑦)))
2623oveqd 7448 . . . . . . . . . . . 12 ((𝑝 = 𝑃𝑑 = 𝑖 = 𝐼) → (𝑧𝐼𝑦) = (𝑧𝑖𝑦))
2726eleq2d 2827 . . . . . . . . . . 11 ((𝑝 = 𝑃𝑑 = 𝑖 = 𝐼) → (𝑥 ∈ (𝑧𝐼𝑦) ↔ 𝑥 ∈ (𝑧𝑖𝑦)))
2823oveqd 7448 . . . . . . . . . . . 12 ((𝑝 = 𝑃𝑑 = 𝑖 = 𝐼) → (𝑥𝐼𝑧) = (𝑥𝑖𝑧))
2928eleq2d 2827 . . . . . . . . . . 11 ((𝑝 = 𝑃𝑑 = 𝑖 = 𝐼) → (𝑦 ∈ (𝑥𝐼𝑧) ↔ 𝑦 ∈ (𝑥𝑖𝑧)))
3025, 27, 293orbi123d 1437 . . . . . . . . . 10 ((𝑝 = 𝑃𝑑 = 𝑖 = 𝐼) → ((𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)) ↔ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))))
3130notbid 318 . . . . . . . . 9 ((𝑝 = 𝑃𝑑 = 𝑖 = 𝐼) → (¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)) ↔ ¬ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))))
3221, 31anbi12d 632 . . . . . . . 8 ((𝑝 = 𝑃𝑑 = 𝑖 = 𝐼) → ((∀𝑗 ∈ (2..^𝑛)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))) ↔ (∀𝑗 ∈ (2..^𝑛)(((𝑓‘1)𝑑𝑥) = ((𝑓𝑗)𝑑𝑥) ∧ ((𝑓‘1)𝑑𝑦) = ((𝑓𝑗)𝑑𝑦) ∧ ((𝑓‘1)𝑑𝑧) = ((𝑓𝑗)𝑑𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧)))))
337, 32rexeqbidv 3347 . . . . . . 7 ((𝑝 = 𝑃𝑑 = 𝑖 = 𝐼) → (∃𝑧𝑃 (∀𝑗 ∈ (2..^𝑛)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))) ↔ ∃𝑧𝑝 (∀𝑗 ∈ (2..^𝑛)(((𝑓‘1)𝑑𝑥) = ((𝑓𝑗)𝑑𝑥) ∧ ((𝑓‘1)𝑑𝑦) = ((𝑓𝑗)𝑑𝑦) ∧ ((𝑓‘1)𝑑𝑧) = ((𝑓𝑗)𝑑𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧)))))
347, 33rexeqbidv 3347 . . . . . 6 ((𝑝 = 𝑃𝑑 = 𝑖 = 𝐼) → (∃𝑦𝑃𝑧𝑃 (∀𝑗 ∈ (2..^𝑛)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))) ↔ ∃𝑦𝑝𝑧𝑝 (∀𝑗 ∈ (2..^𝑛)(((𝑓‘1)𝑑𝑥) = ((𝑓𝑗)𝑑𝑥) ∧ ((𝑓‘1)𝑑𝑦) = ((𝑓𝑗)𝑑𝑦) ∧ ((𝑓‘1)𝑑𝑧) = ((𝑓𝑗)𝑑𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧)))))
357, 34rexeqbidv 3347 . . . . 5 ((𝑝 = 𝑃𝑑 = 𝑖 = 𝐼) → (∃𝑥𝑃𝑦𝑃𝑧𝑃 (∀𝑗 ∈ (2..^𝑛)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))) ↔ ∃𝑥𝑝𝑦𝑝𝑧𝑝 (∀𝑗 ∈ (2..^𝑛)(((𝑓‘1)𝑑𝑥) = ((𝑓𝑗)𝑑𝑥) ∧ ((𝑓‘1)𝑑𝑦) = ((𝑓𝑗)𝑑𝑦) ∧ ((𝑓‘1)𝑑𝑧) = ((𝑓𝑗)𝑑𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧)))))
368, 35anbi12d 632 . . . 4 ((𝑝 = 𝑃𝑑 = 𝑖 = 𝐼) → ((𝑓:(1..^𝑛)–1-1𝑃 ∧ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (∀𝑗 ∈ (2..^𝑛)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))) ↔ (𝑓:(1..^𝑛)–1-1𝑝 ∧ ∃𝑥𝑝𝑦𝑝𝑧𝑝 (∀𝑗 ∈ (2..^𝑛)(((𝑓‘1)𝑑𝑥) = ((𝑓𝑗)𝑑𝑥) ∧ ((𝑓‘1)𝑑𝑦) = ((𝑓𝑗)𝑑𝑦) ∧ ((𝑓‘1)𝑑𝑧) = ((𝑓𝑗)𝑑𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))))))
3736exbidv 1921 . . 3 ((𝑝 = 𝑃𝑑 = 𝑖 = 𝐼) → (∃𝑓(𝑓:(1..^𝑛)–1-1𝑃 ∧ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (∀𝑗 ∈ (2..^𝑛)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))) ↔ ∃𝑓(𝑓:(1..^𝑛)–1-1𝑝 ∧ ∃𝑥𝑝𝑦𝑝𝑧𝑝 (∀𝑗 ∈ (2..^𝑛)(((𝑓‘1)𝑑𝑥) = ((𝑓𝑗)𝑑𝑥) ∧ ((𝑓‘1)𝑑𝑦) = ((𝑓𝑗)𝑑𝑦) ∧ ((𝑓‘1)𝑑𝑧) = ((𝑓𝑗)𝑑𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))))))
381, 2, 3, 37sbcie3s 17199 . 2 (𝑔 = 𝐺 → ([(Base‘𝑔) / 𝑝][(dist‘𝑔) / 𝑑][(Itv‘𝑔) / 𝑖]𝑓(𝑓:(1..^𝑛)–1-1𝑝 ∧ ∃𝑥𝑝𝑦𝑝𝑧𝑝 (∀𝑗 ∈ (2..^𝑛)(((𝑓‘1)𝑑𝑥) = ((𝑓𝑗)𝑑𝑥) ∧ ((𝑓‘1)𝑑𝑦) = ((𝑓𝑗)𝑑𝑦) ∧ ((𝑓‘1)𝑑𝑧) = ((𝑓𝑗)𝑑𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧)))) ↔ ∃𝑓(𝑓:(1..^𝑛)–1-1𝑃 ∧ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (∀𝑗 ∈ (2..^𝑛)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))))))
39 eqidd 2738 . . . . 5 (𝑛 = 𝑁𝑓 = 𝑓)
40 oveq2 7439 . . . . 5 (𝑛 = 𝑁 → (1..^𝑛) = (1..^𝑁))
41 eqidd 2738 . . . . 5 (𝑛 = 𝑁𝑃 = 𝑃)
4239, 40, 41f1eq123d 6840 . . . 4 (𝑛 = 𝑁 → (𝑓:(1..^𝑛)–1-1𝑃𝑓:(1..^𝑁)–1-1𝑃))
43 oveq2 7439 . . . . . . . 8 (𝑛 = 𝑁 → (2..^𝑛) = (2..^𝑁))
4443raleqdv 3326 . . . . . . 7 (𝑛 = 𝑁 → (∀𝑗 ∈ (2..^𝑛)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ↔ ∀𝑗 ∈ (2..^𝑁)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧))))
4544anbi1d 631 . . . . . 6 (𝑛 = 𝑁 → ((∀𝑗 ∈ (2..^𝑛)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))) ↔ (∀𝑗 ∈ (2..^𝑁)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))))
4645rexbidv 3179 . . . . 5 (𝑛 = 𝑁 → (∃𝑧𝑃 (∀𝑗 ∈ (2..^𝑛)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))) ↔ ∃𝑧𝑃 (∀𝑗 ∈ (2..^𝑁)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))))
47462rexbidv 3222 . . . 4 (𝑛 = 𝑁 → (∃𝑥𝑃𝑦𝑃𝑧𝑃 (∀𝑗 ∈ (2..^𝑛)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))) ↔ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (∀𝑗 ∈ (2..^𝑁)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))))
4842, 47anbi12d 632 . . 3 (𝑛 = 𝑁 → ((𝑓:(1..^𝑛)–1-1𝑃 ∧ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (∀𝑗 ∈ (2..^𝑛)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))) ↔ (𝑓:(1..^𝑁)–1-1𝑃 ∧ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (∀𝑗 ∈ (2..^𝑁)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))))))
4948exbidv 1921 . 2 (𝑛 = 𝑁 → (∃𝑓(𝑓:(1..^𝑛)–1-1𝑃 ∧ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (∀𝑗 ∈ (2..^𝑛)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))) ↔ ∃𝑓(𝑓:(1..^𝑁)–1-1𝑃 ∧ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (∀𝑗 ∈ (2..^𝑁)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))))))
50 df-trkgld 28460 . 2 DimTarskiG≥ = {⟨𝑔, 𝑛⟩ ∣ [(Base‘𝑔) / 𝑝][(dist‘𝑔) / 𝑑][(Itv‘𝑔) / 𝑖]𝑓(𝑓:(1..^𝑛)–1-1𝑝 ∧ ∃𝑥𝑝𝑦𝑝𝑧𝑝 (∀𝑗 ∈ (2..^𝑛)(((𝑓‘1)𝑑𝑥) = ((𝑓𝑗)𝑑𝑥) ∧ ((𝑓‘1)𝑑𝑦) = ((𝑓𝑗)𝑑𝑦) ∧ ((𝑓‘1)𝑑𝑧) = ((𝑓𝑗)𝑑𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))))}
5138, 49, 50brabg 5544 1 ((𝐺𝑉𝑁 ∈ (ℤ‘2)) → (𝐺DimTarskiG𝑁 ↔ ∃𝑓(𝑓:(1..^𝑁)–1-1𝑃 ∧ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (∀𝑗 ∈ (2..^𝑁)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3o 1086  w3a 1087   = wceq 1540  wex 1779  wcel 2108  wral 3061  wrex 3070  [wsbc 3788   class class class wbr 5143  1-1wf1 6558  cfv 6561  (class class class)co 7431  1c1 11156  2c2 12321  cuz 12878  ..^cfzo 13694  Basecbs 17247  distcds 17306  DimTarskiGcstrkgld 28439  Itvcitv 28441
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pr 5432
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-sbc 3789  df-dif 3954  df-un 3956  df-ss 3968  df-nul 4334  df-if 4526  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fv 6569  df-ov 7434  df-trkgld 28460
This theorem is referenced by:  istrkg2ld  28468  istrkg3ld  28469
  Copyright terms: Public domain W3C validator