Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trnfsetN Structured version   Visualization version   GIF version

Theorem trnfsetN 38169
Description: The mapping from fiducial atom to set of translations. (Contributed by NM, 4-Feb-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
trnset.a 𝐴 = (Atoms‘𝐾)
trnset.s 𝑆 = (PSubSp‘𝐾)
trnset.p + = (+𝑃𝐾)
trnset.o = (⊥𝑃𝐾)
trnset.w 𝑊 = (WAtoms‘𝐾)
trnset.m 𝑀 = (PAut‘𝐾)
trnset.l 𝐿 = (Dil‘𝐾)
trnset.t 𝑇 = (Trn‘𝐾)
Assertion
Ref Expression
trnfsetN (𝐾𝐶𝑇 = (𝑑𝐴 ↦ {𝑓 ∈ (𝐿𝑑) ∣ ∀𝑞 ∈ (𝑊𝑑)∀𝑟 ∈ (𝑊𝑑)((𝑞 + (𝑓𝑞)) ∩ ( ‘{𝑑})) = ((𝑟 + (𝑓𝑟)) ∩ ( ‘{𝑑}))}))
Distinct variable groups:   𝐴,𝑑   𝑓,𝑑,𝑞,𝑟,𝐾   𝑓,𝐿   𝑊,𝑞,𝑟
Allowed substitution hints:   𝐴(𝑓,𝑟,𝑞)   𝐶(𝑓,𝑟,𝑞,𝑑)   + (𝑓,𝑟,𝑞,𝑑)   𝑆(𝑓,𝑟,𝑞,𝑑)   𝑇(𝑓,𝑟,𝑞,𝑑)   𝐿(𝑟,𝑞,𝑑)   𝑀(𝑓,𝑟,𝑞,𝑑)   (𝑓,𝑟,𝑞,𝑑)   𝑊(𝑓,𝑑)

Proof of Theorem trnfsetN
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 elex 3450 . 2 (𝐾𝐶𝐾 ∈ V)
2 trnset.t . . 3 𝑇 = (Trn‘𝐾)
3 fveq2 6774 . . . . . 6 (𝑘 = 𝐾 → (Atoms‘𝑘) = (Atoms‘𝐾))
4 trnset.a . . . . . 6 𝐴 = (Atoms‘𝐾)
53, 4eqtr4di 2796 . . . . 5 (𝑘 = 𝐾 → (Atoms‘𝑘) = 𝐴)
6 fveq2 6774 . . . . . . . 8 (𝑘 = 𝐾 → (Dil‘𝑘) = (Dil‘𝐾))
7 trnset.l . . . . . . . 8 𝐿 = (Dil‘𝐾)
86, 7eqtr4di 2796 . . . . . . 7 (𝑘 = 𝐾 → (Dil‘𝑘) = 𝐿)
98fveq1d 6776 . . . . . 6 (𝑘 = 𝐾 → ((Dil‘𝑘)‘𝑑) = (𝐿𝑑))
10 fveq2 6774 . . . . . . . . 9 (𝑘 = 𝐾 → (WAtoms‘𝑘) = (WAtoms‘𝐾))
11 trnset.w . . . . . . . . 9 𝑊 = (WAtoms‘𝐾)
1210, 11eqtr4di 2796 . . . . . . . 8 (𝑘 = 𝐾 → (WAtoms‘𝑘) = 𝑊)
1312fveq1d 6776 . . . . . . 7 (𝑘 = 𝐾 → ((WAtoms‘𝑘)‘𝑑) = (𝑊𝑑))
14 fveq2 6774 . . . . . . . . . . . 12 (𝑘 = 𝐾 → (+𝑃𝑘) = (+𝑃𝐾))
15 trnset.p . . . . . . . . . . . 12 + = (+𝑃𝐾)
1614, 15eqtr4di 2796 . . . . . . . . . . 11 (𝑘 = 𝐾 → (+𝑃𝑘) = + )
1716oveqd 7292 . . . . . . . . . 10 (𝑘 = 𝐾 → (𝑞(+𝑃𝑘)(𝑓𝑞)) = (𝑞 + (𝑓𝑞)))
18 fveq2 6774 . . . . . . . . . . . 12 (𝑘 = 𝐾 → (⊥𝑃𝑘) = (⊥𝑃𝐾))
19 trnset.o . . . . . . . . . . . 12 = (⊥𝑃𝐾)
2018, 19eqtr4di 2796 . . . . . . . . . . 11 (𝑘 = 𝐾 → (⊥𝑃𝑘) = )
2120fveq1d 6776 . . . . . . . . . 10 (𝑘 = 𝐾 → ((⊥𝑃𝑘)‘{𝑑}) = ( ‘{𝑑}))
2217, 21ineq12d 4147 . . . . . . . . 9 (𝑘 = 𝐾 → ((𝑞(+𝑃𝑘)(𝑓𝑞)) ∩ ((⊥𝑃𝑘)‘{𝑑})) = ((𝑞 + (𝑓𝑞)) ∩ ( ‘{𝑑})))
2316oveqd 7292 . . . . . . . . . 10 (𝑘 = 𝐾 → (𝑟(+𝑃𝑘)(𝑓𝑟)) = (𝑟 + (𝑓𝑟)))
2423, 21ineq12d 4147 . . . . . . . . 9 (𝑘 = 𝐾 → ((𝑟(+𝑃𝑘)(𝑓𝑟)) ∩ ((⊥𝑃𝑘)‘{𝑑})) = ((𝑟 + (𝑓𝑟)) ∩ ( ‘{𝑑})))
2522, 24eqeq12d 2754 . . . . . . . 8 (𝑘 = 𝐾 → (((𝑞(+𝑃𝑘)(𝑓𝑞)) ∩ ((⊥𝑃𝑘)‘{𝑑})) = ((𝑟(+𝑃𝑘)(𝑓𝑟)) ∩ ((⊥𝑃𝑘)‘{𝑑})) ↔ ((𝑞 + (𝑓𝑞)) ∩ ( ‘{𝑑})) = ((𝑟 + (𝑓𝑟)) ∩ ( ‘{𝑑}))))
2613, 25raleqbidv 3336 . . . . . . 7 (𝑘 = 𝐾 → (∀𝑟 ∈ ((WAtoms‘𝑘)‘𝑑)((𝑞(+𝑃𝑘)(𝑓𝑞)) ∩ ((⊥𝑃𝑘)‘{𝑑})) = ((𝑟(+𝑃𝑘)(𝑓𝑟)) ∩ ((⊥𝑃𝑘)‘{𝑑})) ↔ ∀𝑟 ∈ (𝑊𝑑)((𝑞 + (𝑓𝑞)) ∩ ( ‘{𝑑})) = ((𝑟 + (𝑓𝑟)) ∩ ( ‘{𝑑}))))
2713, 26raleqbidv 3336 . . . . . 6 (𝑘 = 𝐾 → (∀𝑞 ∈ ((WAtoms‘𝑘)‘𝑑)∀𝑟 ∈ ((WAtoms‘𝑘)‘𝑑)((𝑞(+𝑃𝑘)(𝑓𝑞)) ∩ ((⊥𝑃𝑘)‘{𝑑})) = ((𝑟(+𝑃𝑘)(𝑓𝑟)) ∩ ((⊥𝑃𝑘)‘{𝑑})) ↔ ∀𝑞 ∈ (𝑊𝑑)∀𝑟 ∈ (𝑊𝑑)((𝑞 + (𝑓𝑞)) ∩ ( ‘{𝑑})) = ((𝑟 + (𝑓𝑟)) ∩ ( ‘{𝑑}))))
289, 27rabeqbidv 3420 . . . . 5 (𝑘 = 𝐾 → {𝑓 ∈ ((Dil‘𝑘)‘𝑑) ∣ ∀𝑞 ∈ ((WAtoms‘𝑘)‘𝑑)∀𝑟 ∈ ((WAtoms‘𝑘)‘𝑑)((𝑞(+𝑃𝑘)(𝑓𝑞)) ∩ ((⊥𝑃𝑘)‘{𝑑})) = ((𝑟(+𝑃𝑘)(𝑓𝑟)) ∩ ((⊥𝑃𝑘)‘{𝑑}))} = {𝑓 ∈ (𝐿𝑑) ∣ ∀𝑞 ∈ (𝑊𝑑)∀𝑟 ∈ (𝑊𝑑)((𝑞 + (𝑓𝑞)) ∩ ( ‘{𝑑})) = ((𝑟 + (𝑓𝑟)) ∩ ( ‘{𝑑}))})
295, 28mpteq12dv 5165 . . . 4 (𝑘 = 𝐾 → (𝑑 ∈ (Atoms‘𝑘) ↦ {𝑓 ∈ ((Dil‘𝑘)‘𝑑) ∣ ∀𝑞 ∈ ((WAtoms‘𝑘)‘𝑑)∀𝑟 ∈ ((WAtoms‘𝑘)‘𝑑)((𝑞(+𝑃𝑘)(𝑓𝑞)) ∩ ((⊥𝑃𝑘)‘{𝑑})) = ((𝑟(+𝑃𝑘)(𝑓𝑟)) ∩ ((⊥𝑃𝑘)‘{𝑑}))}) = (𝑑𝐴 ↦ {𝑓 ∈ (𝐿𝑑) ∣ ∀𝑞 ∈ (𝑊𝑑)∀𝑟 ∈ (𝑊𝑑)((𝑞 + (𝑓𝑞)) ∩ ( ‘{𝑑})) = ((𝑟 + (𝑓𝑟)) ∩ ( ‘{𝑑}))}))
30 df-trnN 38121 . . . 4 Trn = (𝑘 ∈ V ↦ (𝑑 ∈ (Atoms‘𝑘) ↦ {𝑓 ∈ ((Dil‘𝑘)‘𝑑) ∣ ∀𝑞 ∈ ((WAtoms‘𝑘)‘𝑑)∀𝑟 ∈ ((WAtoms‘𝑘)‘𝑑)((𝑞(+𝑃𝑘)(𝑓𝑞)) ∩ ((⊥𝑃𝑘)‘{𝑑})) = ((𝑟(+𝑃𝑘)(𝑓𝑟)) ∩ ((⊥𝑃𝑘)‘{𝑑}))}))
3129, 30, 4mptfvmpt 7104 . . 3 (𝐾 ∈ V → (Trn‘𝐾) = (𝑑𝐴 ↦ {𝑓 ∈ (𝐿𝑑) ∣ ∀𝑞 ∈ (𝑊𝑑)∀𝑟 ∈ (𝑊𝑑)((𝑞 + (𝑓𝑞)) ∩ ( ‘{𝑑})) = ((𝑟 + (𝑓𝑟)) ∩ ( ‘{𝑑}))}))
322, 31eqtrid 2790 . 2 (𝐾 ∈ V → 𝑇 = (𝑑𝐴 ↦ {𝑓 ∈ (𝐿𝑑) ∣ ∀𝑞 ∈ (𝑊𝑑)∀𝑟 ∈ (𝑊𝑑)((𝑞 + (𝑓𝑞)) ∩ ( ‘{𝑑})) = ((𝑟 + (𝑓𝑟)) ∩ ( ‘{𝑑}))}))
331, 32syl 17 1 (𝐾𝐶𝑇 = (𝑑𝐴 ↦ {𝑓 ∈ (𝐿𝑑) ∣ ∀𝑞 ∈ (𝑊𝑑)∀𝑟 ∈ (𝑊𝑑)((𝑞 + (𝑓𝑞)) ∩ ( ‘{𝑑})) = ((𝑟 + (𝑓𝑟)) ∩ ( ‘{𝑑}))}))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2106  wral 3064  {crab 3068  Vcvv 3432  cin 3886  {csn 4561  cmpt 5157  cfv 6433  (class class class)co 7275  Atomscatm 37277  PSubSpcpsubsp 37510  +𝑃cpadd 37809  𝑃cpolN 37916  WAtomscwpointsN 38000  PAutcpautN 38001  DilcdilN 38116  TrnctrnN 38117
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-trnN 38121
This theorem is referenced by:  trnsetN  38170
  Copyright terms: Public domain W3C validator