Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trnfsetN Structured version   Visualization version   GIF version

Theorem trnfsetN 40152
Description: The mapping from fiducial atom to set of translations. (Contributed by NM, 4-Feb-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
trnset.a 𝐴 = (Atoms‘𝐾)
trnset.s 𝑆 = (PSubSp‘𝐾)
trnset.p + = (+𝑃𝐾)
trnset.o = (⊥𝑃𝐾)
trnset.w 𝑊 = (WAtoms‘𝐾)
trnset.m 𝑀 = (PAut‘𝐾)
trnset.l 𝐿 = (Dil‘𝐾)
trnset.t 𝑇 = (Trn‘𝐾)
Assertion
Ref Expression
trnfsetN (𝐾𝐶𝑇 = (𝑑𝐴 ↦ {𝑓 ∈ (𝐿𝑑) ∣ ∀𝑞 ∈ (𝑊𝑑)∀𝑟 ∈ (𝑊𝑑)((𝑞 + (𝑓𝑞)) ∩ ( ‘{𝑑})) = ((𝑟 + (𝑓𝑟)) ∩ ( ‘{𝑑}))}))
Distinct variable groups:   𝐴,𝑑   𝑓,𝑑,𝑞,𝑟,𝐾   𝑓,𝐿   𝑊,𝑞,𝑟
Allowed substitution hints:   𝐴(𝑓,𝑟,𝑞)   𝐶(𝑓,𝑟,𝑞,𝑑)   + (𝑓,𝑟,𝑞,𝑑)   𝑆(𝑓,𝑟,𝑞,𝑑)   𝑇(𝑓,𝑟,𝑞,𝑑)   𝐿(𝑟,𝑞,𝑑)   𝑀(𝑓,𝑟,𝑞,𝑑)   (𝑓,𝑟,𝑞,𝑑)   𝑊(𝑓,𝑑)

Proof of Theorem trnfsetN
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 elex 3502 . 2 (𝐾𝐶𝐾 ∈ V)
2 trnset.t . . 3 𝑇 = (Trn‘𝐾)
3 fveq2 6914 . . . . . 6 (𝑘 = 𝐾 → (Atoms‘𝑘) = (Atoms‘𝐾))
4 trnset.a . . . . . 6 𝐴 = (Atoms‘𝐾)
53, 4eqtr4di 2795 . . . . 5 (𝑘 = 𝐾 → (Atoms‘𝑘) = 𝐴)
6 fveq2 6914 . . . . . . . 8 (𝑘 = 𝐾 → (Dil‘𝑘) = (Dil‘𝐾))
7 trnset.l . . . . . . . 8 𝐿 = (Dil‘𝐾)
86, 7eqtr4di 2795 . . . . . . 7 (𝑘 = 𝐾 → (Dil‘𝑘) = 𝐿)
98fveq1d 6916 . . . . . 6 (𝑘 = 𝐾 → ((Dil‘𝑘)‘𝑑) = (𝐿𝑑))
10 fveq2 6914 . . . . . . . . 9 (𝑘 = 𝐾 → (WAtoms‘𝑘) = (WAtoms‘𝐾))
11 trnset.w . . . . . . . . 9 𝑊 = (WAtoms‘𝐾)
1210, 11eqtr4di 2795 . . . . . . . 8 (𝑘 = 𝐾 → (WAtoms‘𝑘) = 𝑊)
1312fveq1d 6916 . . . . . . 7 (𝑘 = 𝐾 → ((WAtoms‘𝑘)‘𝑑) = (𝑊𝑑))
14 fveq2 6914 . . . . . . . . . . . 12 (𝑘 = 𝐾 → (+𝑃𝑘) = (+𝑃𝐾))
15 trnset.p . . . . . . . . . . . 12 + = (+𝑃𝐾)
1614, 15eqtr4di 2795 . . . . . . . . . . 11 (𝑘 = 𝐾 → (+𝑃𝑘) = + )
1716oveqd 7455 . . . . . . . . . 10 (𝑘 = 𝐾 → (𝑞(+𝑃𝑘)(𝑓𝑞)) = (𝑞 + (𝑓𝑞)))
18 fveq2 6914 . . . . . . . . . . . 12 (𝑘 = 𝐾 → (⊥𝑃𝑘) = (⊥𝑃𝐾))
19 trnset.o . . . . . . . . . . . 12 = (⊥𝑃𝐾)
2018, 19eqtr4di 2795 . . . . . . . . . . 11 (𝑘 = 𝐾 → (⊥𝑃𝑘) = )
2120fveq1d 6916 . . . . . . . . . 10 (𝑘 = 𝐾 → ((⊥𝑃𝑘)‘{𝑑}) = ( ‘{𝑑}))
2217, 21ineq12d 4232 . . . . . . . . 9 (𝑘 = 𝐾 → ((𝑞(+𝑃𝑘)(𝑓𝑞)) ∩ ((⊥𝑃𝑘)‘{𝑑})) = ((𝑞 + (𝑓𝑞)) ∩ ( ‘{𝑑})))
2316oveqd 7455 . . . . . . . . . 10 (𝑘 = 𝐾 → (𝑟(+𝑃𝑘)(𝑓𝑟)) = (𝑟 + (𝑓𝑟)))
2423, 21ineq12d 4232 . . . . . . . . 9 (𝑘 = 𝐾 → ((𝑟(+𝑃𝑘)(𝑓𝑟)) ∩ ((⊥𝑃𝑘)‘{𝑑})) = ((𝑟 + (𝑓𝑟)) ∩ ( ‘{𝑑})))
2522, 24eqeq12d 2753 . . . . . . . 8 (𝑘 = 𝐾 → (((𝑞(+𝑃𝑘)(𝑓𝑞)) ∩ ((⊥𝑃𝑘)‘{𝑑})) = ((𝑟(+𝑃𝑘)(𝑓𝑟)) ∩ ((⊥𝑃𝑘)‘{𝑑})) ↔ ((𝑞 + (𝑓𝑞)) ∩ ( ‘{𝑑})) = ((𝑟 + (𝑓𝑟)) ∩ ( ‘{𝑑}))))
2613, 25raleqbidv 3346 . . . . . . 7 (𝑘 = 𝐾 → (∀𝑟 ∈ ((WAtoms‘𝑘)‘𝑑)((𝑞(+𝑃𝑘)(𝑓𝑞)) ∩ ((⊥𝑃𝑘)‘{𝑑})) = ((𝑟(+𝑃𝑘)(𝑓𝑟)) ∩ ((⊥𝑃𝑘)‘{𝑑})) ↔ ∀𝑟 ∈ (𝑊𝑑)((𝑞 + (𝑓𝑞)) ∩ ( ‘{𝑑})) = ((𝑟 + (𝑓𝑟)) ∩ ( ‘{𝑑}))))
2713, 26raleqbidv 3346 . . . . . 6 (𝑘 = 𝐾 → (∀𝑞 ∈ ((WAtoms‘𝑘)‘𝑑)∀𝑟 ∈ ((WAtoms‘𝑘)‘𝑑)((𝑞(+𝑃𝑘)(𝑓𝑞)) ∩ ((⊥𝑃𝑘)‘{𝑑})) = ((𝑟(+𝑃𝑘)(𝑓𝑟)) ∩ ((⊥𝑃𝑘)‘{𝑑})) ↔ ∀𝑞 ∈ (𝑊𝑑)∀𝑟 ∈ (𝑊𝑑)((𝑞 + (𝑓𝑞)) ∩ ( ‘{𝑑})) = ((𝑟 + (𝑓𝑟)) ∩ ( ‘{𝑑}))))
289, 27rabeqbidv 3455 . . . . 5 (𝑘 = 𝐾 → {𝑓 ∈ ((Dil‘𝑘)‘𝑑) ∣ ∀𝑞 ∈ ((WAtoms‘𝑘)‘𝑑)∀𝑟 ∈ ((WAtoms‘𝑘)‘𝑑)((𝑞(+𝑃𝑘)(𝑓𝑞)) ∩ ((⊥𝑃𝑘)‘{𝑑})) = ((𝑟(+𝑃𝑘)(𝑓𝑟)) ∩ ((⊥𝑃𝑘)‘{𝑑}))} = {𝑓 ∈ (𝐿𝑑) ∣ ∀𝑞 ∈ (𝑊𝑑)∀𝑟 ∈ (𝑊𝑑)((𝑞 + (𝑓𝑞)) ∩ ( ‘{𝑑})) = ((𝑟 + (𝑓𝑟)) ∩ ( ‘{𝑑}))})
295, 28mpteq12dv 5242 . . . 4 (𝑘 = 𝐾 → (𝑑 ∈ (Atoms‘𝑘) ↦ {𝑓 ∈ ((Dil‘𝑘)‘𝑑) ∣ ∀𝑞 ∈ ((WAtoms‘𝑘)‘𝑑)∀𝑟 ∈ ((WAtoms‘𝑘)‘𝑑)((𝑞(+𝑃𝑘)(𝑓𝑞)) ∩ ((⊥𝑃𝑘)‘{𝑑})) = ((𝑟(+𝑃𝑘)(𝑓𝑟)) ∩ ((⊥𝑃𝑘)‘{𝑑}))}) = (𝑑𝐴 ↦ {𝑓 ∈ (𝐿𝑑) ∣ ∀𝑞 ∈ (𝑊𝑑)∀𝑟 ∈ (𝑊𝑑)((𝑞 + (𝑓𝑞)) ∩ ( ‘{𝑑})) = ((𝑟 + (𝑓𝑟)) ∩ ( ‘{𝑑}))}))
30 df-trnN 40104 . . . 4 Trn = (𝑘 ∈ V ↦ (𝑑 ∈ (Atoms‘𝑘) ↦ {𝑓 ∈ ((Dil‘𝑘)‘𝑑) ∣ ∀𝑞 ∈ ((WAtoms‘𝑘)‘𝑑)∀𝑟 ∈ ((WAtoms‘𝑘)‘𝑑)((𝑞(+𝑃𝑘)(𝑓𝑞)) ∩ ((⊥𝑃𝑘)‘{𝑑})) = ((𝑟(+𝑃𝑘)(𝑓𝑟)) ∩ ((⊥𝑃𝑘)‘{𝑑}))}))
3129, 30, 4mptfvmpt 7255 . . 3 (𝐾 ∈ V → (Trn‘𝐾) = (𝑑𝐴 ↦ {𝑓 ∈ (𝐿𝑑) ∣ ∀𝑞 ∈ (𝑊𝑑)∀𝑟 ∈ (𝑊𝑑)((𝑞 + (𝑓𝑞)) ∩ ( ‘{𝑑})) = ((𝑟 + (𝑓𝑟)) ∩ ( ‘{𝑑}))}))
322, 31eqtrid 2789 . 2 (𝐾 ∈ V → 𝑇 = (𝑑𝐴 ↦ {𝑓 ∈ (𝐿𝑑) ∣ ∀𝑞 ∈ (𝑊𝑑)∀𝑟 ∈ (𝑊𝑑)((𝑞 + (𝑓𝑞)) ∩ ( ‘{𝑑})) = ((𝑟 + (𝑓𝑟)) ∩ ( ‘{𝑑}))}))
331, 32syl 17 1 (𝐾𝐶𝑇 = (𝑑𝐴 ↦ {𝑓 ∈ (𝐿𝑑) ∣ ∀𝑞 ∈ (𝑊𝑑)∀𝑟 ∈ (𝑊𝑑)((𝑞 + (𝑓𝑞)) ∩ ( ‘{𝑑})) = ((𝑟 + (𝑓𝑟)) ∩ ( ‘{𝑑}))}))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108  wral 3061  {crab 3436  Vcvv 3481  cin 3965  {csn 4634  cmpt 5234  cfv 6569  (class class class)co 7438  Atomscatm 39259  PSubSpcpsubsp 39493  +𝑃cpadd 39792  𝑃cpolN 39899  WAtomscwpointsN 39983  PAutcpautN 39984  DilcdilN 40099  TrnctrnN 40100
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5288  ax-sep 5305  ax-nul 5315  ax-pr 5441
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3483  df-sbc 3795  df-csb 3912  df-dif 3969  df-un 3971  df-in 3973  df-ss 3983  df-nul 4343  df-if 4535  df-sn 4635  df-pr 4637  df-op 4641  df-uni 4916  df-iun 5001  df-br 5152  df-opab 5214  df-mpt 5235  df-id 5587  df-xp 5699  df-rel 5700  df-cnv 5701  df-co 5702  df-dm 5703  df-rn 5704  df-res 5705  df-ima 5706  df-iota 6522  df-fun 6571  df-fn 6572  df-f 6573  df-f1 6574  df-fo 6575  df-f1o 6576  df-fv 6577  df-ov 7441  df-trnN 40104
This theorem is referenced by:  trnsetN  40153
  Copyright terms: Public domain W3C validator