Step | Hyp | Ref
| Expression |
1 | | ctsu 23629 |
. 2
class
tsums |
2 | | vw |
. . 3
setvar π€ |
3 | | vf |
. . 3
setvar π |
4 | | cvv 3474 |
. . 3
class
V |
5 | | vs |
. . . 4
setvar π |
6 | 3 | cv 1540 |
. . . . . . 7
class π |
7 | 6 | cdm 5676 |
. . . . . 6
class dom π |
8 | 7 | cpw 4602 |
. . . . 5
class π«
dom π |
9 | | cfn 8938 |
. . . . 5
class
Fin |
10 | 8, 9 | cin 3947 |
. . . 4
class
(π« dom π
β© Fin) |
11 | | vy |
. . . . . 6
setvar π¦ |
12 | 5 | cv 1540 |
. . . . . 6
class π |
13 | 2 | cv 1540 |
. . . . . . 7
class π€ |
14 | 11 | cv 1540 |
. . . . . . . 8
class π¦ |
15 | 6, 14 | cres 5678 |
. . . . . . 7
class (π βΎ π¦) |
16 | | cgsu 17385 |
. . . . . . 7
class
Ξ£g |
17 | 13, 15, 16 | co 7408 |
. . . . . 6
class (π€ Ξ£g
(π βΎ π¦)) |
18 | 11, 12, 17 | cmpt 5231 |
. . . . 5
class (π¦ β π β¦ (π€ Ξ£g (π βΎ π¦))) |
19 | | ctopn 17366 |
. . . . . . 7
class
TopOpen |
20 | 13, 19 | cfv 6543 |
. . . . . 6
class
(TopOpenβπ€) |
21 | | vz |
. . . . . . . . 9
setvar π§ |
22 | 21 | cv 1540 |
. . . . . . . . . . 11
class π§ |
23 | 22, 14 | wss 3948 |
. . . . . . . . . 10
wff π§ β π¦ |
24 | 23, 11, 12 | crab 3432 |
. . . . . . . . 9
class {π¦ β π β£ π§ β π¦} |
25 | 21, 12, 24 | cmpt 5231 |
. . . . . . . 8
class (π§ β π β¦ {π¦ β π β£ π§ β π¦}) |
26 | 25 | crn 5677 |
. . . . . . 7
class ran
(π§ β π β¦ {π¦ β π β£ π§ β π¦}) |
27 | | cfg 20932 |
. . . . . . 7
class
filGen |
28 | 12, 26, 27 | co 7408 |
. . . . . 6
class (π filGenran (π§ β π β¦ {π¦ β π β£ π§ β π¦})) |
29 | | cflf 23438 |
. . . . . 6
class
fLimf |
30 | 20, 28, 29 | co 7408 |
. . . . 5
class
((TopOpenβπ€)
fLimf (π filGenran (π§ β π β¦ {π¦ β π β£ π§ β π¦}))) |
31 | 18, 30 | cfv 6543 |
. . . 4
class
(((TopOpenβπ€)
fLimf (π filGenran (π§ β π β¦ {π¦ β π β£ π§ β π¦})))β(π¦ β π β¦ (π€ Ξ£g (π βΎ π¦)))) |
32 | 5, 10, 31 | csb 3893 |
. . 3
class
β¦(π« dom π β© Fin) / π β¦(((TopOpenβπ€) fLimf (π filGenran (π§ β π β¦ {π¦ β π β£ π§ β π¦})))β(π¦ β π β¦ (π€ Ξ£g (π βΎ π¦)))) |
33 | 2, 3, 4, 4, 32 | cmpo 7410 |
. 2
class (π€ β V, π β V β¦ β¦(π«
dom π β© Fin) / π β¦(((TopOpenβπ€) fLimf (π filGenran (π§ β π β¦ {π¦ β π β£ π§ β π¦})))β(π¦ β π β¦ (π€ Ξ£g (π βΎ π¦))))) |
34 | 1, 33 | wceq 1541 |
1
wff tsums =
(π€ β V, π β V β¦
β¦(π« dom π β© Fin) / π β¦(((TopOpenβπ€) fLimf (π filGenran (π§ β π β¦ {π¦ β π β£ π§ β π¦})))β(π¦ β π β¦ (π€ Ξ£g (π βΎ π¦))))) |