MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-tsms Structured version   Visualization version   GIF version

Definition df-tsms 23630
Description: Define the set of limit points of an infinite group sum for the topological group 𝐺. If 𝐺 is Hausdorff, then there will be at most one element in this set and βˆͺ (π‘Š tsums 𝐹) selects this unique element if it exists. (π‘Š tsums 𝐹) β‰ˆ 1o is a way to say that the sum exists and is unique. Note that unlike Ξ£ (df-sum 15632) and Ξ£g (df-gsum 17387), this does not return the sum itself, but rather the set of all such sums, which is usually either empty or a singleton. (Contributed by Mario Carneiro, 2-Sep-2015.)
Assertion
Ref Expression
df-tsms tsums = (𝑀 ∈ V, 𝑓 ∈ V ↦ ⦋(𝒫 dom 𝑓 ∩ Fin) / π‘ β¦Œ(((TopOpenβ€˜π‘€) fLimf (𝑠filGenran (𝑧 ∈ 𝑠 ↦ {𝑦 ∈ 𝑠 ∣ 𝑧 βŠ† 𝑦})))β€˜(𝑦 ∈ 𝑠 ↦ (𝑀 Ξ£g (𝑓 β†Ύ 𝑦)))))
Distinct variable group:   𝑓,𝑠,𝑀,𝑦,𝑧

Detailed syntax breakdown of Definition df-tsms
StepHypRef Expression
1 ctsu 23629 . 2 class tsums
2 vw . . 3 setvar 𝑀
3 vf . . 3 setvar 𝑓
4 cvv 3474 . . 3 class V
5 vs . . . 4 setvar 𝑠
63cv 1540 . . . . . . 7 class 𝑓
76cdm 5676 . . . . . 6 class dom 𝑓
87cpw 4602 . . . . 5 class 𝒫 dom 𝑓
9 cfn 8938 . . . . 5 class Fin
108, 9cin 3947 . . . 4 class (𝒫 dom 𝑓 ∩ Fin)
11 vy . . . . . 6 setvar 𝑦
125cv 1540 . . . . . 6 class 𝑠
132cv 1540 . . . . . . 7 class 𝑀
1411cv 1540 . . . . . . . 8 class 𝑦
156, 14cres 5678 . . . . . . 7 class (𝑓 β†Ύ 𝑦)
16 cgsu 17385 . . . . . . 7 class Ξ£g
1713, 15, 16co 7408 . . . . . 6 class (𝑀 Ξ£g (𝑓 β†Ύ 𝑦))
1811, 12, 17cmpt 5231 . . . . 5 class (𝑦 ∈ 𝑠 ↦ (𝑀 Ξ£g (𝑓 β†Ύ 𝑦)))
19 ctopn 17366 . . . . . . 7 class TopOpen
2013, 19cfv 6543 . . . . . 6 class (TopOpenβ€˜π‘€)
21 vz . . . . . . . . 9 setvar 𝑧
2221cv 1540 . . . . . . . . . . 11 class 𝑧
2322, 14wss 3948 . . . . . . . . . 10 wff 𝑧 βŠ† 𝑦
2423, 11, 12crab 3432 . . . . . . . . 9 class {𝑦 ∈ 𝑠 ∣ 𝑧 βŠ† 𝑦}
2521, 12, 24cmpt 5231 . . . . . . . 8 class (𝑧 ∈ 𝑠 ↦ {𝑦 ∈ 𝑠 ∣ 𝑧 βŠ† 𝑦})
2625crn 5677 . . . . . . 7 class ran (𝑧 ∈ 𝑠 ↦ {𝑦 ∈ 𝑠 ∣ 𝑧 βŠ† 𝑦})
27 cfg 20932 . . . . . . 7 class filGen
2812, 26, 27co 7408 . . . . . 6 class (𝑠filGenran (𝑧 ∈ 𝑠 ↦ {𝑦 ∈ 𝑠 ∣ 𝑧 βŠ† 𝑦}))
29 cflf 23438 . . . . . 6 class fLimf
3020, 28, 29co 7408 . . . . 5 class ((TopOpenβ€˜π‘€) fLimf (𝑠filGenran (𝑧 ∈ 𝑠 ↦ {𝑦 ∈ 𝑠 ∣ 𝑧 βŠ† 𝑦})))
3118, 30cfv 6543 . . . 4 class (((TopOpenβ€˜π‘€) fLimf (𝑠filGenran (𝑧 ∈ 𝑠 ↦ {𝑦 ∈ 𝑠 ∣ 𝑧 βŠ† 𝑦})))β€˜(𝑦 ∈ 𝑠 ↦ (𝑀 Ξ£g (𝑓 β†Ύ 𝑦))))
325, 10, 31csb 3893 . . 3 class ⦋(𝒫 dom 𝑓 ∩ Fin) / π‘ β¦Œ(((TopOpenβ€˜π‘€) fLimf (𝑠filGenran (𝑧 ∈ 𝑠 ↦ {𝑦 ∈ 𝑠 ∣ 𝑧 βŠ† 𝑦})))β€˜(𝑦 ∈ 𝑠 ↦ (𝑀 Ξ£g (𝑓 β†Ύ 𝑦))))
332, 3, 4, 4, 32cmpo 7410 . 2 class (𝑀 ∈ V, 𝑓 ∈ V ↦ ⦋(𝒫 dom 𝑓 ∩ Fin) / π‘ β¦Œ(((TopOpenβ€˜π‘€) fLimf (𝑠filGenran (𝑧 ∈ 𝑠 ↦ {𝑦 ∈ 𝑠 ∣ 𝑧 βŠ† 𝑦})))β€˜(𝑦 ∈ 𝑠 ↦ (𝑀 Ξ£g (𝑓 β†Ύ 𝑦)))))
341, 33wceq 1541 1 wff tsums = (𝑀 ∈ V, 𝑓 ∈ V ↦ ⦋(𝒫 dom 𝑓 ∩ Fin) / π‘ β¦Œ(((TopOpenβ€˜π‘€) fLimf (𝑠filGenran (𝑧 ∈ 𝑠 ↦ {𝑦 ∈ 𝑠 ∣ 𝑧 βŠ† 𝑦})))β€˜(𝑦 ∈ 𝑠 ↦ (𝑀 Ξ£g (𝑓 β†Ύ 𝑦)))))
Colors of variables: wff setvar class
This definition is referenced by:  tsmsval2  23633
  Copyright terms: Public domain W3C validator