Detailed syntax breakdown of Definition df-tsms
| Step | Hyp | Ref
| Expression |
| 1 | | ctsu 24134 |
. 2
class
tsums |
| 2 | | vw |
. . 3
setvar 𝑤 |
| 3 | | vf |
. . 3
setvar 𝑓 |
| 4 | | cvv 3480 |
. . 3
class
V |
| 5 | | vs |
. . . 4
setvar 𝑠 |
| 6 | 3 | cv 1539 |
. . . . . . 7
class 𝑓 |
| 7 | 6 | cdm 5685 |
. . . . . 6
class dom 𝑓 |
| 8 | 7 | cpw 4600 |
. . . . 5
class 𝒫
dom 𝑓 |
| 9 | | cfn 8985 |
. . . . 5
class
Fin |
| 10 | 8, 9 | cin 3950 |
. . . 4
class
(𝒫 dom 𝑓
∩ Fin) |
| 11 | | vy |
. . . . . 6
setvar 𝑦 |
| 12 | 5 | cv 1539 |
. . . . . 6
class 𝑠 |
| 13 | 2 | cv 1539 |
. . . . . . 7
class 𝑤 |
| 14 | 11 | cv 1539 |
. . . . . . . 8
class 𝑦 |
| 15 | 6, 14 | cres 5687 |
. . . . . . 7
class (𝑓 ↾ 𝑦) |
| 16 | | cgsu 17485 |
. . . . . . 7
class
Σg |
| 17 | 13, 15, 16 | co 7431 |
. . . . . 6
class (𝑤 Σg
(𝑓 ↾ 𝑦)) |
| 18 | 11, 12, 17 | cmpt 5225 |
. . . . 5
class (𝑦 ∈ 𝑠 ↦ (𝑤 Σg (𝑓 ↾ 𝑦))) |
| 19 | | ctopn 17466 |
. . . . . . 7
class
TopOpen |
| 20 | 13, 19 | cfv 6561 |
. . . . . 6
class
(TopOpen‘𝑤) |
| 21 | | vz |
. . . . . . . . 9
setvar 𝑧 |
| 22 | 21 | cv 1539 |
. . . . . . . . . . 11
class 𝑧 |
| 23 | 22, 14 | wss 3951 |
. . . . . . . . . 10
wff 𝑧 ⊆ 𝑦 |
| 24 | 23, 11, 12 | crab 3436 |
. . . . . . . . 9
class {𝑦 ∈ 𝑠 ∣ 𝑧 ⊆ 𝑦} |
| 25 | 21, 12, 24 | cmpt 5225 |
. . . . . . . 8
class (𝑧 ∈ 𝑠 ↦ {𝑦 ∈ 𝑠 ∣ 𝑧 ⊆ 𝑦}) |
| 26 | 25 | crn 5686 |
. . . . . . 7
class ran
(𝑧 ∈ 𝑠 ↦ {𝑦 ∈ 𝑠 ∣ 𝑧 ⊆ 𝑦}) |
| 27 | | cfg 21353 |
. . . . . . 7
class
filGen |
| 28 | 12, 26, 27 | co 7431 |
. . . . . 6
class (𝑠filGenran (𝑧 ∈ 𝑠 ↦ {𝑦 ∈ 𝑠 ∣ 𝑧 ⊆ 𝑦})) |
| 29 | | cflf 23943 |
. . . . . 6
class
fLimf |
| 30 | 20, 28, 29 | co 7431 |
. . . . 5
class
((TopOpen‘𝑤)
fLimf (𝑠filGenran (𝑧 ∈ 𝑠 ↦ {𝑦 ∈ 𝑠 ∣ 𝑧 ⊆ 𝑦}))) |
| 31 | 18, 30 | cfv 6561 |
. . . 4
class
(((TopOpen‘𝑤)
fLimf (𝑠filGenran (𝑧 ∈ 𝑠 ↦ {𝑦 ∈ 𝑠 ∣ 𝑧 ⊆ 𝑦})))‘(𝑦 ∈ 𝑠 ↦ (𝑤 Σg (𝑓 ↾ 𝑦)))) |
| 32 | 5, 10, 31 | csb 3899 |
. . 3
class
⦋(𝒫 dom 𝑓 ∩ Fin) / 𝑠⦌(((TopOpen‘𝑤) fLimf (𝑠filGenran (𝑧 ∈ 𝑠 ↦ {𝑦 ∈ 𝑠 ∣ 𝑧 ⊆ 𝑦})))‘(𝑦 ∈ 𝑠 ↦ (𝑤 Σg (𝑓 ↾ 𝑦)))) |
| 33 | 2, 3, 4, 4, 32 | cmpo 7433 |
. 2
class (𝑤 ∈ V, 𝑓 ∈ V ↦ ⦋(𝒫
dom 𝑓 ∩ Fin) / 𝑠⦌(((TopOpen‘𝑤) fLimf (𝑠filGenran (𝑧 ∈ 𝑠 ↦ {𝑦 ∈ 𝑠 ∣ 𝑧 ⊆ 𝑦})))‘(𝑦 ∈ 𝑠 ↦ (𝑤 Σg (𝑓 ↾ 𝑦))))) |
| 34 | 1, 33 | wceq 1540 |
1
wff tsums =
(𝑤 ∈ V, 𝑓 ∈ V ↦
⦋(𝒫 dom 𝑓 ∩ Fin) / 𝑠⦌(((TopOpen‘𝑤) fLimf (𝑠filGenran (𝑧 ∈ 𝑠 ↦ {𝑦 ∈ 𝑠 ∣ 𝑧 ⊆ 𝑦})))‘(𝑦 ∈ 𝑠 ↦ (𝑤 Σg (𝑓 ↾ 𝑦))))) |