MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tsmsfbas Structured version   Visualization version   GIF version

Theorem tsmsfbas 24071
Description: The collection of all sets of the form 𝐹(𝑧) = {𝑦𝑆𝑧𝑦}, which can be read as the set of all finite subsets of 𝐴 which contain 𝑧 as a subset, for each finite subset 𝑧 of 𝐴, form a filter base. (Contributed by Mario Carneiro, 2-Sep-2015.)
Hypotheses
Ref Expression
tsmsfbas.s 𝑆 = (𝒫 𝐴 ∩ Fin)
tsmsfbas.f 𝐹 = (𝑧𝑆 ↦ {𝑦𝑆𝑧𝑦})
tsmsfbas.l 𝐿 = ran 𝐹
tsmsfbas.a (𝜑𝐴𝑊)
Assertion
Ref Expression
tsmsfbas (𝜑𝐿 ∈ (fBas‘𝑆))
Distinct variable groups:   𝑧,𝐴   𝑦,𝑧,𝑆
Allowed substitution hints:   𝜑(𝑦,𝑧)   𝐴(𝑦)   𝐹(𝑦,𝑧)   𝐿(𝑦,𝑧)   𝑊(𝑦,𝑧)

Proof of Theorem tsmsfbas
Dummy variables 𝑢 𝑎 𝑣 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tsmsfbas.a . 2 (𝜑𝐴𝑊)
2 elex 3485 . 2 (𝐴𝑊𝐴 ∈ V)
3 tsmsfbas.l . . 3 𝐿 = ran 𝐹
4 ssrab2 4060 . . . . . . 7 {𝑦𝑆𝑧𝑦} ⊆ 𝑆
5 tsmsfbas.s . . . . . . . . . 10 𝑆 = (𝒫 𝐴 ∩ Fin)
6 pwexg 5353 . . . . . . . . . . 11 (𝐴 ∈ V → 𝒫 𝐴 ∈ V)
7 inex1g 5294 . . . . . . . . . . 11 (𝒫 𝐴 ∈ V → (𝒫 𝐴 ∩ Fin) ∈ V)
86, 7syl 17 . . . . . . . . . 10 (𝐴 ∈ V → (𝒫 𝐴 ∩ Fin) ∈ V)
95, 8eqeltrid 2839 . . . . . . . . 9 (𝐴 ∈ V → 𝑆 ∈ V)
109adantr 480 . . . . . . . 8 ((𝐴 ∈ V ∧ 𝑧𝑆) → 𝑆 ∈ V)
11 elpw2g 5308 . . . . . . . 8 (𝑆 ∈ V → ({𝑦𝑆𝑧𝑦} ∈ 𝒫 𝑆 ↔ {𝑦𝑆𝑧𝑦} ⊆ 𝑆))
1210, 11syl 17 . . . . . . 7 ((𝐴 ∈ V ∧ 𝑧𝑆) → ({𝑦𝑆𝑧𝑦} ∈ 𝒫 𝑆 ↔ {𝑦𝑆𝑧𝑦} ⊆ 𝑆))
134, 12mpbiri 258 . . . . . 6 ((𝐴 ∈ V ∧ 𝑧𝑆) → {𝑦𝑆𝑧𝑦} ∈ 𝒫 𝑆)
14 tsmsfbas.f . . . . . 6 𝐹 = (𝑧𝑆 ↦ {𝑦𝑆𝑧𝑦})
1513, 14fmptd 7109 . . . . 5 (𝐴 ∈ V → 𝐹:𝑆⟶𝒫 𝑆)
1615frnd 6719 . . . 4 (𝐴 ∈ V → ran 𝐹 ⊆ 𝒫 𝑆)
17 0ss 4380 . . . . . . . . . 10 ∅ ⊆ 𝐴
18 0fi 9061 . . . . . . . . . 10 ∅ ∈ Fin
19 elfpw 9371 . . . . . . . . . 10 (∅ ∈ (𝒫 𝐴 ∩ Fin) ↔ (∅ ⊆ 𝐴 ∧ ∅ ∈ Fin))
2017, 18, 19mpbir2an 711 . . . . . . . . 9 ∅ ∈ (𝒫 𝐴 ∩ Fin)
2120, 5eleqtrri 2834 . . . . . . . 8 ∅ ∈ 𝑆
22 0ss 4380 . . . . . . . . 9 ∅ ⊆ 𝑦
2322rgenw 3056 . . . . . . . 8 𝑦𝑆 ∅ ⊆ 𝑦
24 rabid2 3454 . . . . . . . . . 10 (𝑆 = {𝑦𝑆𝑧𝑦} ↔ ∀𝑦𝑆 𝑧𝑦)
25 sseq1 3989 . . . . . . . . . . 11 (𝑧 = ∅ → (𝑧𝑦 ↔ ∅ ⊆ 𝑦))
2625ralbidv 3164 . . . . . . . . . 10 (𝑧 = ∅ → (∀𝑦𝑆 𝑧𝑦 ↔ ∀𝑦𝑆 ∅ ⊆ 𝑦))
2724, 26bitrid 283 . . . . . . . . 9 (𝑧 = ∅ → (𝑆 = {𝑦𝑆𝑧𝑦} ↔ ∀𝑦𝑆 ∅ ⊆ 𝑦))
2827rspcev 3606 . . . . . . . 8 ((∅ ∈ 𝑆 ∧ ∀𝑦𝑆 ∅ ⊆ 𝑦) → ∃𝑧𝑆 𝑆 = {𝑦𝑆𝑧𝑦})
2921, 23, 28mp2an 692 . . . . . . 7 𝑧𝑆 𝑆 = {𝑦𝑆𝑧𝑦}
3014elrnmpt 5943 . . . . . . . 8 (𝑆 ∈ V → (𝑆 ∈ ran 𝐹 ↔ ∃𝑧𝑆 𝑆 = {𝑦𝑆𝑧𝑦}))
319, 30syl 17 . . . . . . 7 (𝐴 ∈ V → (𝑆 ∈ ran 𝐹 ↔ ∃𝑧𝑆 𝑆 = {𝑦𝑆𝑧𝑦}))
3229, 31mpbiri 258 . . . . . 6 (𝐴 ∈ V → 𝑆 ∈ ran 𝐹)
3332ne0d 4322 . . . . 5 (𝐴 ∈ V → ran 𝐹 ≠ ∅)
34 simpr 484 . . . . . . . . . . . 12 ((𝐴 ∈ V ∧ 𝑧𝑆) → 𝑧𝑆)
35 ssid 3986 . . . . . . . . . . . 12 𝑧𝑧
36 sseq2 3990 . . . . . . . . . . . . 13 (𝑦 = 𝑧 → (𝑧𝑦𝑧𝑧))
3736rspcev 3606 . . . . . . . . . . . 12 ((𝑧𝑆𝑧𝑧) → ∃𝑦𝑆 𝑧𝑦)
3834, 35, 37sylancl 586 . . . . . . . . . . 11 ((𝐴 ∈ V ∧ 𝑧𝑆) → ∃𝑦𝑆 𝑧𝑦)
39 rabn0 4369 . . . . . . . . . . 11 ({𝑦𝑆𝑧𝑦} ≠ ∅ ↔ ∃𝑦𝑆 𝑧𝑦)
4038, 39sylibr 234 . . . . . . . . . 10 ((𝐴 ∈ V ∧ 𝑧𝑆) → {𝑦𝑆𝑧𝑦} ≠ ∅)
4140necomd 2988 . . . . . . . . 9 ((𝐴 ∈ V ∧ 𝑧𝑆) → ∅ ≠ {𝑦𝑆𝑧𝑦})
4241neneqd 2938 . . . . . . . 8 ((𝐴 ∈ V ∧ 𝑧𝑆) → ¬ ∅ = {𝑦𝑆𝑧𝑦})
4342nrexdv 3136 . . . . . . 7 (𝐴 ∈ V → ¬ ∃𝑧𝑆 ∅ = {𝑦𝑆𝑧𝑦})
44 0ex 5282 . . . . . . . 8 ∅ ∈ V
4514elrnmpt 5943 . . . . . . . 8 (∅ ∈ V → (∅ ∈ ran 𝐹 ↔ ∃𝑧𝑆 ∅ = {𝑦𝑆𝑧𝑦}))
4644, 45ax-mp 5 . . . . . . 7 (∅ ∈ ran 𝐹 ↔ ∃𝑧𝑆 ∅ = {𝑦𝑆𝑧𝑦})
4743, 46sylnibr 329 . . . . . 6 (𝐴 ∈ V → ¬ ∅ ∈ ran 𝐹)
48 df-nel 3038 . . . . . 6 (∅ ∉ ran 𝐹 ↔ ¬ ∅ ∈ ran 𝐹)
4947, 48sylibr 234 . . . . 5 (𝐴 ∈ V → ∅ ∉ ran 𝐹)
50 elfpw 9371 . . . . . . . . . . . . . . . . . 18 (𝑢 ∈ (𝒫 𝐴 ∩ Fin) ↔ (𝑢𝐴𝑢 ∈ Fin))
5150simplbi 497 . . . . . . . . . . . . . . . . 17 (𝑢 ∈ (𝒫 𝐴 ∩ Fin) → 𝑢𝐴)
5251, 5eleq2s 2853 . . . . . . . . . . . . . . . 16 (𝑢𝑆𝑢𝐴)
53 elfpw 9371 . . . . . . . . . . . . . . . . . 18 (𝑣 ∈ (𝒫 𝐴 ∩ Fin) ↔ (𝑣𝐴𝑣 ∈ Fin))
5453simplbi 497 . . . . . . . . . . . . . . . . 17 (𝑣 ∈ (𝒫 𝐴 ∩ Fin) → 𝑣𝐴)
5554, 5eleq2s 2853 . . . . . . . . . . . . . . . 16 (𝑣𝑆𝑣𝐴)
5652, 55anim12i 613 . . . . . . . . . . . . . . 15 ((𝑢𝑆𝑣𝑆) → (𝑢𝐴𝑣𝐴))
57 unss 4170 . . . . . . . . . . . . . . 15 ((𝑢𝐴𝑣𝐴) ↔ (𝑢𝑣) ⊆ 𝐴)
5856, 57sylib 218 . . . . . . . . . . . . . 14 ((𝑢𝑆𝑣𝑆) → (𝑢𝑣) ⊆ 𝐴)
59 elinel2 4182 . . . . . . . . . . . . . . . 16 (𝑢 ∈ (𝒫 𝐴 ∩ Fin) → 𝑢 ∈ Fin)
6059, 5eleq2s 2853 . . . . . . . . . . . . . . 15 (𝑢𝑆𝑢 ∈ Fin)
61 elinel2 4182 . . . . . . . . . . . . . . . 16 (𝑣 ∈ (𝒫 𝐴 ∩ Fin) → 𝑣 ∈ Fin)
6261, 5eleq2s 2853 . . . . . . . . . . . . . . 15 (𝑣𝑆𝑣 ∈ Fin)
63 unfi 9190 . . . . . . . . . . . . . . 15 ((𝑢 ∈ Fin ∧ 𝑣 ∈ Fin) → (𝑢𝑣) ∈ Fin)
6460, 62, 63syl2an 596 . . . . . . . . . . . . . 14 ((𝑢𝑆𝑣𝑆) → (𝑢𝑣) ∈ Fin)
65 elfpw 9371 . . . . . . . . . . . . . 14 ((𝑢𝑣) ∈ (𝒫 𝐴 ∩ Fin) ↔ ((𝑢𝑣) ⊆ 𝐴 ∧ (𝑢𝑣) ∈ Fin))
6658, 64, 65sylanbrc 583 . . . . . . . . . . . . 13 ((𝑢𝑆𝑣𝑆) → (𝑢𝑣) ∈ (𝒫 𝐴 ∩ Fin))
6766adantl 481 . . . . . . . . . . . 12 ((𝐴 ∈ V ∧ (𝑢𝑆𝑣𝑆)) → (𝑢𝑣) ∈ (𝒫 𝐴 ∩ Fin))
6867, 5eleqtrrdi 2846 . . . . . . . . . . 11 ((𝐴 ∈ V ∧ (𝑢𝑆𝑣𝑆)) → (𝑢𝑣) ∈ 𝑆)
69 eqidd 2737 . . . . . . . . . . 11 ((𝐴 ∈ V ∧ (𝑢𝑆𝑣𝑆)) → {𝑦𝑆 ∣ (𝑢𝑣) ⊆ 𝑦} = {𝑦𝑆 ∣ (𝑢𝑣) ⊆ 𝑦})
70 sseq1 3989 . . . . . . . . . . . . 13 (𝑎 = (𝑢𝑣) → (𝑎𝑦 ↔ (𝑢𝑣) ⊆ 𝑦))
7170rabbidv 3428 . . . . . . . . . . . 12 (𝑎 = (𝑢𝑣) → {𝑦𝑆𝑎𝑦} = {𝑦𝑆 ∣ (𝑢𝑣) ⊆ 𝑦})
7271rspceeqv 3629 . . . . . . . . . . 11 (((𝑢𝑣) ∈ 𝑆 ∧ {𝑦𝑆 ∣ (𝑢𝑣) ⊆ 𝑦} = {𝑦𝑆 ∣ (𝑢𝑣) ⊆ 𝑦}) → ∃𝑎𝑆 {𝑦𝑆 ∣ (𝑢𝑣) ⊆ 𝑦} = {𝑦𝑆𝑎𝑦})
7368, 69, 72syl2anc 584 . . . . . . . . . 10 ((𝐴 ∈ V ∧ (𝑢𝑆𝑣𝑆)) → ∃𝑎𝑆 {𝑦𝑆 ∣ (𝑢𝑣) ⊆ 𝑦} = {𝑦𝑆𝑎𝑦})
749adantr 480 . . . . . . . . . . . 12 ((𝐴 ∈ V ∧ (𝑢𝑆𝑣𝑆)) → 𝑆 ∈ V)
75 rabexg 5312 . . . . . . . . . . . 12 (𝑆 ∈ V → {𝑦𝑆 ∣ (𝑢𝑣) ⊆ 𝑦} ∈ V)
7674, 75syl 17 . . . . . . . . . . 11 ((𝐴 ∈ V ∧ (𝑢𝑆𝑣𝑆)) → {𝑦𝑆 ∣ (𝑢𝑣) ⊆ 𝑦} ∈ V)
77 sseq1 3989 . . . . . . . . . . . . . . 15 (𝑧 = 𝑎 → (𝑧𝑦𝑎𝑦))
7877rabbidv 3428 . . . . . . . . . . . . . 14 (𝑧 = 𝑎 → {𝑦𝑆𝑧𝑦} = {𝑦𝑆𝑎𝑦})
7978cbvmptv 5230 . . . . . . . . . . . . 13 (𝑧𝑆 ↦ {𝑦𝑆𝑧𝑦}) = (𝑎𝑆 ↦ {𝑦𝑆𝑎𝑦})
8014, 79eqtri 2759 . . . . . . . . . . . 12 𝐹 = (𝑎𝑆 ↦ {𝑦𝑆𝑎𝑦})
8180elrnmpt 5943 . . . . . . . . . . 11 ({𝑦𝑆 ∣ (𝑢𝑣) ⊆ 𝑦} ∈ V → ({𝑦𝑆 ∣ (𝑢𝑣) ⊆ 𝑦} ∈ ran 𝐹 ↔ ∃𝑎𝑆 {𝑦𝑆 ∣ (𝑢𝑣) ⊆ 𝑦} = {𝑦𝑆𝑎𝑦}))
8276, 81syl 17 . . . . . . . . . 10 ((𝐴 ∈ V ∧ (𝑢𝑆𝑣𝑆)) → ({𝑦𝑆 ∣ (𝑢𝑣) ⊆ 𝑦} ∈ ran 𝐹 ↔ ∃𝑎𝑆 {𝑦𝑆 ∣ (𝑢𝑣) ⊆ 𝑦} = {𝑦𝑆𝑎𝑦}))
8373, 82mpbird 257 . . . . . . . . 9 ((𝐴 ∈ V ∧ (𝑢𝑆𝑣𝑆)) → {𝑦𝑆 ∣ (𝑢𝑣) ⊆ 𝑦} ∈ ran 𝐹)
84 pwidg 4600 . . . . . . . . . 10 ({𝑦𝑆 ∣ (𝑢𝑣) ⊆ 𝑦} ∈ V → {𝑦𝑆 ∣ (𝑢𝑣) ⊆ 𝑦} ∈ 𝒫 {𝑦𝑆 ∣ (𝑢𝑣) ⊆ 𝑦})
8576, 84syl 17 . . . . . . . . 9 ((𝐴 ∈ V ∧ (𝑢𝑆𝑣𝑆)) → {𝑦𝑆 ∣ (𝑢𝑣) ⊆ 𝑦} ∈ 𝒫 {𝑦𝑆 ∣ (𝑢𝑣) ⊆ 𝑦})
86 inelcm 4445 . . . . . . . . 9 (({𝑦𝑆 ∣ (𝑢𝑣) ⊆ 𝑦} ∈ ran 𝐹 ∧ {𝑦𝑆 ∣ (𝑢𝑣) ⊆ 𝑦} ∈ 𝒫 {𝑦𝑆 ∣ (𝑢𝑣) ⊆ 𝑦}) → (ran 𝐹 ∩ 𝒫 {𝑦𝑆 ∣ (𝑢𝑣) ⊆ 𝑦}) ≠ ∅)
8783, 85, 86syl2anc 584 . . . . . . . 8 ((𝐴 ∈ V ∧ (𝑢𝑆𝑣𝑆)) → (ran 𝐹 ∩ 𝒫 {𝑦𝑆 ∣ (𝑢𝑣) ⊆ 𝑦}) ≠ ∅)
8887ralrimivva 3188 . . . . . . 7 (𝐴 ∈ V → ∀𝑢𝑆𝑣𝑆 (ran 𝐹 ∩ 𝒫 {𝑦𝑆 ∣ (𝑢𝑣) ⊆ 𝑦}) ≠ ∅)
89 rabexg 5312 . . . . . . . . . 10 (𝑆 ∈ V → {𝑦𝑆𝑢𝑦} ∈ V)
909, 89syl 17 . . . . . . . . 9 (𝐴 ∈ V → {𝑦𝑆𝑢𝑦} ∈ V)
9190ralrimivw 3137 . . . . . . . 8 (𝐴 ∈ V → ∀𝑢𝑆 {𝑦𝑆𝑢𝑦} ∈ V)
92 sseq1 3989 . . . . . . . . . . . 12 (𝑧 = 𝑢 → (𝑧𝑦𝑢𝑦))
9392rabbidv 3428 . . . . . . . . . . 11 (𝑧 = 𝑢 → {𝑦𝑆𝑧𝑦} = {𝑦𝑆𝑢𝑦})
9493cbvmptv 5230 . . . . . . . . . 10 (𝑧𝑆 ↦ {𝑦𝑆𝑧𝑦}) = (𝑢𝑆 ↦ {𝑦𝑆𝑢𝑦})
9514, 94eqtri 2759 . . . . . . . . 9 𝐹 = (𝑢𝑆 ↦ {𝑦𝑆𝑢𝑦})
96 ineq1 4193 . . . . . . . . . . . . . 14 (𝑎 = {𝑦𝑆𝑢𝑦} → (𝑎 ∩ {𝑦𝑆𝑣𝑦}) = ({𝑦𝑆𝑢𝑦} ∩ {𝑦𝑆𝑣𝑦}))
97 inrab 4296 . . . . . . . . . . . . . . 15 ({𝑦𝑆𝑢𝑦} ∩ {𝑦𝑆𝑣𝑦}) = {𝑦𝑆 ∣ (𝑢𝑦𝑣𝑦)}
98 unss 4170 . . . . . . . . . . . . . . . 16 ((𝑢𝑦𝑣𝑦) ↔ (𝑢𝑣) ⊆ 𝑦)
9998rabbii 3426 . . . . . . . . . . . . . . 15 {𝑦𝑆 ∣ (𝑢𝑦𝑣𝑦)} = {𝑦𝑆 ∣ (𝑢𝑣) ⊆ 𝑦}
10097, 99eqtri 2759 . . . . . . . . . . . . . 14 ({𝑦𝑆𝑢𝑦} ∩ {𝑦𝑆𝑣𝑦}) = {𝑦𝑆 ∣ (𝑢𝑣) ⊆ 𝑦}
10196, 100eqtrdi 2787 . . . . . . . . . . . . 13 (𝑎 = {𝑦𝑆𝑢𝑦} → (𝑎 ∩ {𝑦𝑆𝑣𝑦}) = {𝑦𝑆 ∣ (𝑢𝑣) ⊆ 𝑦})
102101pweqd 4597 . . . . . . . . . . . 12 (𝑎 = {𝑦𝑆𝑢𝑦} → 𝒫 (𝑎 ∩ {𝑦𝑆𝑣𝑦}) = 𝒫 {𝑦𝑆 ∣ (𝑢𝑣) ⊆ 𝑦})
103102ineq2d 4200 . . . . . . . . . . 11 (𝑎 = {𝑦𝑆𝑢𝑦} → (ran 𝐹 ∩ 𝒫 (𝑎 ∩ {𝑦𝑆𝑣𝑦})) = (ran 𝐹 ∩ 𝒫 {𝑦𝑆 ∣ (𝑢𝑣) ⊆ 𝑦}))
104103neeq1d 2992 . . . . . . . . . 10 (𝑎 = {𝑦𝑆𝑢𝑦} → ((ran 𝐹 ∩ 𝒫 (𝑎 ∩ {𝑦𝑆𝑣𝑦})) ≠ ∅ ↔ (ran 𝐹 ∩ 𝒫 {𝑦𝑆 ∣ (𝑢𝑣) ⊆ 𝑦}) ≠ ∅))
105104ralbidv 3164 . . . . . . . . 9 (𝑎 = {𝑦𝑆𝑢𝑦} → (∀𝑣𝑆 (ran 𝐹 ∩ 𝒫 (𝑎 ∩ {𝑦𝑆𝑣𝑦})) ≠ ∅ ↔ ∀𝑣𝑆 (ran 𝐹 ∩ 𝒫 {𝑦𝑆 ∣ (𝑢𝑣) ⊆ 𝑦}) ≠ ∅))
10695, 105ralrnmptw 7089 . . . . . . . 8 (∀𝑢𝑆 {𝑦𝑆𝑢𝑦} ∈ V → (∀𝑎 ∈ ran 𝐹𝑣𝑆 (ran 𝐹 ∩ 𝒫 (𝑎 ∩ {𝑦𝑆𝑣𝑦})) ≠ ∅ ↔ ∀𝑢𝑆𝑣𝑆 (ran 𝐹 ∩ 𝒫 {𝑦𝑆 ∣ (𝑢𝑣) ⊆ 𝑦}) ≠ ∅))
10791, 106syl 17 . . . . . . 7 (𝐴 ∈ V → (∀𝑎 ∈ ran 𝐹𝑣𝑆 (ran 𝐹 ∩ 𝒫 (𝑎 ∩ {𝑦𝑆𝑣𝑦})) ≠ ∅ ↔ ∀𝑢𝑆𝑣𝑆 (ran 𝐹 ∩ 𝒫 {𝑦𝑆 ∣ (𝑢𝑣) ⊆ 𝑦}) ≠ ∅))
10888, 107mpbird 257 . . . . . 6 (𝐴 ∈ V → ∀𝑎 ∈ ran 𝐹𝑣𝑆 (ran 𝐹 ∩ 𝒫 (𝑎 ∩ {𝑦𝑆𝑣𝑦})) ≠ ∅)
109 rabexg 5312 . . . . . . . . . 10 (𝑆 ∈ V → {𝑦𝑆𝑣𝑦} ∈ V)
1109, 109syl 17 . . . . . . . . 9 (𝐴 ∈ V → {𝑦𝑆𝑣𝑦} ∈ V)
111110ralrimivw 3137 . . . . . . . 8 (𝐴 ∈ V → ∀𝑣𝑆 {𝑦𝑆𝑣𝑦} ∈ V)
112 sseq1 3989 . . . . . . . . . . . 12 (𝑧 = 𝑣 → (𝑧𝑦𝑣𝑦))
113112rabbidv 3428 . . . . . . . . . . 11 (𝑧 = 𝑣 → {𝑦𝑆𝑧𝑦} = {𝑦𝑆𝑣𝑦})
114113cbvmptv 5230 . . . . . . . . . 10 (𝑧𝑆 ↦ {𝑦𝑆𝑧𝑦}) = (𝑣𝑆 ↦ {𝑦𝑆𝑣𝑦})
11514, 114eqtri 2759 . . . . . . . . 9 𝐹 = (𝑣𝑆 ↦ {𝑦𝑆𝑣𝑦})
116 ineq2 4194 . . . . . . . . . . . 12 (𝑏 = {𝑦𝑆𝑣𝑦} → (𝑎𝑏) = (𝑎 ∩ {𝑦𝑆𝑣𝑦}))
117116pweqd 4597 . . . . . . . . . . 11 (𝑏 = {𝑦𝑆𝑣𝑦} → 𝒫 (𝑎𝑏) = 𝒫 (𝑎 ∩ {𝑦𝑆𝑣𝑦}))
118117ineq2d 4200 . . . . . . . . . 10 (𝑏 = {𝑦𝑆𝑣𝑦} → (ran 𝐹 ∩ 𝒫 (𝑎𝑏)) = (ran 𝐹 ∩ 𝒫 (𝑎 ∩ {𝑦𝑆𝑣𝑦})))
119118neeq1d 2992 . . . . . . . . 9 (𝑏 = {𝑦𝑆𝑣𝑦} → ((ran 𝐹 ∩ 𝒫 (𝑎𝑏)) ≠ ∅ ↔ (ran 𝐹 ∩ 𝒫 (𝑎 ∩ {𝑦𝑆𝑣𝑦})) ≠ ∅))
120115, 119ralrnmptw 7089 . . . . . . . 8 (∀𝑣𝑆 {𝑦𝑆𝑣𝑦} ∈ V → (∀𝑏 ∈ ran 𝐹(ran 𝐹 ∩ 𝒫 (𝑎𝑏)) ≠ ∅ ↔ ∀𝑣𝑆 (ran 𝐹 ∩ 𝒫 (𝑎 ∩ {𝑦𝑆𝑣𝑦})) ≠ ∅))
121111, 120syl 17 . . . . . . 7 (𝐴 ∈ V → (∀𝑏 ∈ ran 𝐹(ran 𝐹 ∩ 𝒫 (𝑎𝑏)) ≠ ∅ ↔ ∀𝑣𝑆 (ran 𝐹 ∩ 𝒫 (𝑎 ∩ {𝑦𝑆𝑣𝑦})) ≠ ∅))
122121ralbidv 3164 . . . . . 6 (𝐴 ∈ V → (∀𝑎 ∈ ran 𝐹𝑏 ∈ ran 𝐹(ran 𝐹 ∩ 𝒫 (𝑎𝑏)) ≠ ∅ ↔ ∀𝑎 ∈ ran 𝐹𝑣𝑆 (ran 𝐹 ∩ 𝒫 (𝑎 ∩ {𝑦𝑆𝑣𝑦})) ≠ ∅))
123108, 122mpbird 257 . . . . 5 (𝐴 ∈ V → ∀𝑎 ∈ ran 𝐹𝑏 ∈ ran 𝐹(ran 𝐹 ∩ 𝒫 (𝑎𝑏)) ≠ ∅)
12433, 49, 1233jca 1128 . . . 4 (𝐴 ∈ V → (ran 𝐹 ≠ ∅ ∧ ∅ ∉ ran 𝐹 ∧ ∀𝑎 ∈ ran 𝐹𝑏 ∈ ran 𝐹(ran 𝐹 ∩ 𝒫 (𝑎𝑏)) ≠ ∅))
125 isfbas 23772 . . . . 5 (𝑆 ∈ V → (ran 𝐹 ∈ (fBas‘𝑆) ↔ (ran 𝐹 ⊆ 𝒫 𝑆 ∧ (ran 𝐹 ≠ ∅ ∧ ∅ ∉ ran 𝐹 ∧ ∀𝑎 ∈ ran 𝐹𝑏 ∈ ran 𝐹(ran 𝐹 ∩ 𝒫 (𝑎𝑏)) ≠ ∅))))
1269, 125syl 17 . . . 4 (𝐴 ∈ V → (ran 𝐹 ∈ (fBas‘𝑆) ↔ (ran 𝐹 ⊆ 𝒫 𝑆 ∧ (ran 𝐹 ≠ ∅ ∧ ∅ ∉ ran 𝐹 ∧ ∀𝑎 ∈ ran 𝐹𝑏 ∈ ran 𝐹(ran 𝐹 ∩ 𝒫 (𝑎𝑏)) ≠ ∅))))
12716, 124, 126mpbir2and 713 . . 3 (𝐴 ∈ V → ran 𝐹 ∈ (fBas‘𝑆))
1283, 127eqeltrid 2839 . 2 (𝐴 ∈ V → 𝐿 ∈ (fBas‘𝑆))
1291, 2, 1283syl 18 1 (𝜑𝐿 ∈ (fBas‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2933  wnel 3037  wral 3052  wrex 3061  {crab 3420  Vcvv 3464  cun 3929  cin 3930  wss 3931  c0 4313  𝒫 cpw 4580  cmpt 5206  ran crn 5660  cfv 6536  Fincfn 8964  fBascfbas 21308
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-om 7867  df-en 8965  df-fin 8968  df-fbas 21317
This theorem is referenced by:  eltsms  24076  haustsms  24079  tsmscls  24081  tsmsmhm  24089  tsmsadd  24090
  Copyright terms: Public domain W3C validator