MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-sum Structured version   Visualization version   GIF version

Definition df-sum 15591
Description: Define the sum of a series with an index set of integers 𝐴. The variable 𝑘 is normally a free variable in 𝐵, i.e., 𝐵 can be thought of as 𝐵(𝑘). This definition is the result of a collection of discussions over the most general definition for a sum that does not need the index set to have a specified ordering. This definition is in two parts, one for finite sums and one for subsets of the upper integers. When summing over a subset of the upper integers, we extend the index set to the upper integers by adding zero outside the domain, and then sum the set in order, setting the result to the limit of the partial sums, if it exists. This means that conditionally convergent sums can be evaluated meaningfully. For finite sums, we are explicitly order-independent, by picking any bijection to a 1-based finite sequence and summing in the induced order. These two methods of summation produce the same result on their common region of definition (i.e., finite sets of integers) by summo 15621. Examples: Σ𝑘 ∈ {1, 2, 4}𝑘 means 1 + 2 + 4 = 7, and Σ𝑘 ∈ ℕ(1 / (2↑𝑘)) = 1 means 1/2 + 1/4 + 1/8 + ... = 1 (geoihalfsum 15786). (Contributed by NM, 11-Dec-2005.) (Revised by Mario Carneiro, 13-Jun-2019.)
Assertion
Ref Expression
df-sum Σ𝑘𝐴 𝐵 = (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚))))
Distinct variable groups:   𝑓,𝑘,𝑚,𝑛,𝑥   𝐴,𝑓,𝑚,𝑛,𝑥   𝐵,𝑓,𝑚,𝑛,𝑥
Allowed substitution hints:   𝐴(𝑘)   𝐵(𝑘)

Detailed syntax breakdown of Definition df-sum
StepHypRef Expression
1 cA . . 3 class 𝐴
2 cB . . 3 class 𝐵
3 vk . . 3 setvar 𝑘
41, 2, 3csu 15590 . 2 class Σ𝑘𝐴 𝐵
5 vm . . . . . . . . 9 setvar 𝑚
65cv 1540 . . . . . . . 8 class 𝑚
7 cuz 12729 . . . . . . . 8 class
86, 7cfv 6481 . . . . . . 7 class (ℤ𝑚)
91, 8wss 3902 . . . . . 6 wff 𝐴 ⊆ (ℤ𝑚)
10 caddc 11006 . . . . . . . 8 class +
11 vn . . . . . . . . 9 setvar 𝑛
12 cz 12465 . . . . . . . . 9 class
1311cv 1540 . . . . . . . . . . 11 class 𝑛
1413, 1wcel 2111 . . . . . . . . . 10 wff 𝑛𝐴
153, 13, 2csb 3850 . . . . . . . . . 10 class 𝑛 / 𝑘𝐵
16 cc0 11003 . . . . . . . . . 10 class 0
1714, 15, 16cif 4475 . . . . . . . . 9 class if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0)
1811, 12, 17cmpt 5172 . . . . . . . 8 class (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))
1910, 18, 6cseq 13905 . . . . . . 7 class seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0)))
20 vx . . . . . . . 8 setvar 𝑥
2120cv 1540 . . . . . . 7 class 𝑥
22 cli 15388 . . . . . . 7 class
2319, 21, 22wbr 5091 . . . . . 6 wff seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥
249, 23wa 395 . . . . 5 wff (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥)
2524, 5, 12wrex 3056 . . . 4 wff 𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥)
26 c1 11004 . . . . . . . . 9 class 1
27 cfz 13404 . . . . . . . . 9 class ...
2826, 6, 27co 7346 . . . . . . . 8 class (1...𝑚)
29 vf . . . . . . . . 9 setvar 𝑓
3029cv 1540 . . . . . . . 8 class 𝑓
3128, 1, 30wf1o 6480 . . . . . . 7 wff 𝑓:(1...𝑚)–1-1-onto𝐴
32 cn 12122 . . . . . . . . . . 11 class
3313, 30cfv 6481 . . . . . . . . . . . 12 class (𝑓𝑛)
343, 33, 2csb 3850 . . . . . . . . . . 11 class (𝑓𝑛) / 𝑘𝐵
3511, 32, 34cmpt 5172 . . . . . . . . . 10 class (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵)
3610, 35, 26cseq 13905 . . . . . . . . 9 class seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))
376, 36cfv 6481 . . . . . . . 8 class (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚)
3821, 37wceq 1541 . . . . . . 7 wff 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚)
3931, 38wa 395 . . . . . 6 wff (𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚))
4039, 29wex 1780 . . . . 5 wff 𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚))
4140, 5, 32wrex 3056 . . . 4 wff 𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚))
4225, 41wo 847 . . 3 wff (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚)))
4342, 20cio 6435 . 2 class (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚))))
444, 43wceq 1541 1 wff Σ𝑘𝐴 𝐵 = (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚))))
Colors of variables: wff setvar class
This definition is referenced by:  sumex  15592  sumeq1  15593  nfsum1  15594  nfsum  15595  sumeq2w  15596  sumeq2ii  15597  cbvsum  15599  cbvsumv  15600  sumeq2sdv  15607  zsum  15622  fsum  15624  sumeq2si  36235  cbvsumdavw  36312  cbvsumdavw2  36328
  Copyright terms: Public domain W3C validator