MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-sum Structured version   Visualization version   GIF version

Definition df-sum 15723
Description: Define the sum of a series with an index set of integers 𝐴. The variable 𝑘 is normally a free variable in 𝐵, i.e., 𝐵 can be thought of as 𝐵(𝑘). This definition is the result of a collection of discussions over the most general definition for a sum that does not need the index set to have a specified ordering. This definition is in two parts, one for finite sums and one for subsets of the upper integers. When summing over a subset of the upper integers, we extend the index set to the upper integers by adding zero outside the domain, and then sum the set in order, setting the result to the limit of the partial sums, if it exists. This means that conditionally convergent sums can be evaluated meaningfully. For finite sums, we are explicitly order-independent, by picking any bijection to a 1-based finite sequence and summing in the induced order. These two methods of summation produce the same result on their common region of definition (i.e., finite sets of integers) by summo 15753. Examples: Σ𝑘 ∈ {1, 2, 4}𝑘 means 1 + 2 + 4 = 7, and Σ𝑘 ∈ ℕ(1 / (2↑𝑘)) = 1 means 1/2 + 1/4 + 1/8 + ... = 1 (geoihalfsum 15918). (Contributed by NM, 11-Dec-2005.) (Revised by Mario Carneiro, 13-Jun-2019.)
Assertion
Ref Expression
df-sum Σ𝑘𝐴 𝐵 = (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚))))
Distinct variable groups:   𝑓,𝑘,𝑚,𝑛,𝑥   𝐴,𝑓,𝑚,𝑛,𝑥   𝐵,𝑓,𝑚,𝑛,𝑥
Allowed substitution hints:   𝐴(𝑘)   𝐵(𝑘)

Detailed syntax breakdown of Definition df-sum
StepHypRef Expression
1 cA . . 3 class 𝐴
2 cB . . 3 class 𝐵
3 vk . . 3 setvar 𝑘
41, 2, 3csu 15722 . 2 class Σ𝑘𝐴 𝐵
5 vm . . . . . . . . 9 setvar 𝑚
65cv 1539 . . . . . . . 8 class 𝑚
7 cuz 12878 . . . . . . . 8 class
86, 7cfv 6561 . . . . . . 7 class (ℤ𝑚)
91, 8wss 3951 . . . . . 6 wff 𝐴 ⊆ (ℤ𝑚)
10 caddc 11158 . . . . . . . 8 class +
11 vn . . . . . . . . 9 setvar 𝑛
12 cz 12613 . . . . . . . . 9 class
1311cv 1539 . . . . . . . . . . 11 class 𝑛
1413, 1wcel 2108 . . . . . . . . . 10 wff 𝑛𝐴
153, 13, 2csb 3899 . . . . . . . . . 10 class 𝑛 / 𝑘𝐵
16 cc0 11155 . . . . . . . . . 10 class 0
1714, 15, 16cif 4525 . . . . . . . . 9 class if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0)
1811, 12, 17cmpt 5225 . . . . . . . 8 class (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))
1910, 18, 6cseq 14042 . . . . . . 7 class seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0)))
20 vx . . . . . . . 8 setvar 𝑥
2120cv 1539 . . . . . . 7 class 𝑥
22 cli 15520 . . . . . . 7 class
2319, 21, 22wbr 5143 . . . . . 6 wff seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥
249, 23wa 395 . . . . 5 wff (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥)
2524, 5, 12wrex 3070 . . . 4 wff 𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥)
26 c1 11156 . . . . . . . . 9 class 1
27 cfz 13547 . . . . . . . . 9 class ...
2826, 6, 27co 7431 . . . . . . . 8 class (1...𝑚)
29 vf . . . . . . . . 9 setvar 𝑓
3029cv 1539 . . . . . . . 8 class 𝑓
3128, 1, 30wf1o 6560 . . . . . . 7 wff 𝑓:(1...𝑚)–1-1-onto𝐴
32 cn 12266 . . . . . . . . . . 11 class
3313, 30cfv 6561 . . . . . . . . . . . 12 class (𝑓𝑛)
343, 33, 2csb 3899 . . . . . . . . . . 11 class (𝑓𝑛) / 𝑘𝐵
3511, 32, 34cmpt 5225 . . . . . . . . . 10 class (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵)
3610, 35, 26cseq 14042 . . . . . . . . 9 class seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))
376, 36cfv 6561 . . . . . . . 8 class (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚)
3821, 37wceq 1540 . . . . . . 7 wff 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚)
3931, 38wa 395 . . . . . 6 wff (𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚))
4039, 29wex 1779 . . . . 5 wff 𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚))
4140, 5, 32wrex 3070 . . . 4 wff 𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚))
4225, 41wo 848 . . 3 wff (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚)))
4342, 20cio 6512 . 2 class (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚))))
444, 43wceq 1540 1 wff Σ𝑘𝐴 𝐵 = (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚))))
Colors of variables: wff setvar class
This definition is referenced by:  sumex  15724  sumeq1  15725  nfsum1  15726  nfsum  15727  sumeq2w  15728  sumeq2ii  15729  cbvsum  15731  cbvsumv  15732  sumeq2sdv  15739  zsum  15754  fsum  15756  sumeq2si  36203  cbvsumdavw  36280  cbvsumdavw2  36296
  Copyright terms: Public domain W3C validator