Step | Hyp | Ref
| Expression |
1 | | df-tsms 23267 |
. . 3
⊢ tsums =
(𝑤 ∈ V, 𝑓 ∈ V ↦
⦋(𝒫 dom 𝑓 ∩ Fin) / 𝑠⦌(((TopOpen‘𝑤) fLimf (𝑠filGenran (𝑧 ∈ 𝑠 ↦ {𝑦 ∈ 𝑠 ∣ 𝑧 ⊆ 𝑦})))‘(𝑦 ∈ 𝑠 ↦ (𝑤 Σg (𝑓 ↾ 𝑦))))) |
2 | 1 | a1i 11 |
. 2
⊢ (𝜑 → tsums = (𝑤 ∈ V, 𝑓 ∈ V ↦ ⦋(𝒫
dom 𝑓 ∩ Fin) / 𝑠⦌(((TopOpen‘𝑤) fLimf (𝑠filGenran (𝑧 ∈ 𝑠 ↦ {𝑦 ∈ 𝑠 ∣ 𝑧 ⊆ 𝑦})))‘(𝑦 ∈ 𝑠 ↦ (𝑤 Σg (𝑓 ↾ 𝑦)))))) |
3 | | vex 3435 |
. . . . . . 7
⊢ 𝑓 ∈ V |
4 | 3 | dmex 7750 |
. . . . . 6
⊢ dom 𝑓 ∈ V |
5 | 4 | pwex 5303 |
. . . . 5
⊢ 𝒫
dom 𝑓 ∈
V |
6 | 5 | inex1 5241 |
. . . 4
⊢
(𝒫 dom 𝑓
∩ Fin) ∈ V |
7 | 6 | a1i 11 |
. . 3
⊢ ((𝜑 ∧ (𝑤 = 𝐺 ∧ 𝑓 = 𝐹)) → (𝒫 dom 𝑓 ∩ Fin) ∈ V) |
8 | | simplrl 774 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑤 = 𝐺 ∧ 𝑓 = 𝐹)) ∧ 𝑠 = (𝒫 dom 𝑓 ∩ Fin)) → 𝑤 = 𝐺) |
9 | 8 | fveq2d 6772 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑤 = 𝐺 ∧ 𝑓 = 𝐹)) ∧ 𝑠 = (𝒫 dom 𝑓 ∩ Fin)) → (TopOpen‘𝑤) = (TopOpen‘𝐺)) |
10 | | tsmsval.j |
. . . . . 6
⊢ 𝐽 = (TopOpen‘𝐺) |
11 | 9, 10 | eqtr4di 2796 |
. . . . 5
⊢ (((𝜑 ∧ (𝑤 = 𝐺 ∧ 𝑓 = 𝐹)) ∧ 𝑠 = (𝒫 dom 𝑓 ∩ Fin)) → (TopOpen‘𝑤) = 𝐽) |
12 | | id 22 |
. . . . . . 7
⊢ (𝑠 = (𝒫 dom 𝑓 ∩ Fin) → 𝑠 = (𝒫 dom 𝑓 ∩ Fin)) |
13 | | simprr 770 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑤 = 𝐺 ∧ 𝑓 = 𝐹)) → 𝑓 = 𝐹) |
14 | 13 | dmeqd 5809 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑤 = 𝐺 ∧ 𝑓 = 𝐹)) → dom 𝑓 = dom 𝐹) |
15 | | tsmsval2.a |
. . . . . . . . . . . 12
⊢ (𝜑 → dom 𝐹 = 𝐴) |
16 | 15 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑤 = 𝐺 ∧ 𝑓 = 𝐹)) → dom 𝐹 = 𝐴) |
17 | 14, 16 | eqtrd 2778 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑤 = 𝐺 ∧ 𝑓 = 𝐹)) → dom 𝑓 = 𝐴) |
18 | 17 | pweqd 4554 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑤 = 𝐺 ∧ 𝑓 = 𝐹)) → 𝒫 dom 𝑓 = 𝒫 𝐴) |
19 | 18 | ineq1d 4147 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑤 = 𝐺 ∧ 𝑓 = 𝐹)) → (𝒫 dom 𝑓 ∩ Fin) = (𝒫 𝐴 ∩ Fin)) |
20 | | tsmsval.s |
. . . . . . . 8
⊢ 𝑆 = (𝒫 𝐴 ∩ Fin) |
21 | 19, 20 | eqtr4di 2796 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑤 = 𝐺 ∧ 𝑓 = 𝐹)) → (𝒫 dom 𝑓 ∩ Fin) = 𝑆) |
22 | 12, 21 | sylan9eqr 2800 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑤 = 𝐺 ∧ 𝑓 = 𝐹)) ∧ 𝑠 = (𝒫 dom 𝑓 ∩ Fin)) → 𝑠 = 𝑆) |
23 | 22 | rabeqdv 3418 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑤 = 𝐺 ∧ 𝑓 = 𝐹)) ∧ 𝑠 = (𝒫 dom 𝑓 ∩ Fin)) → {𝑦 ∈ 𝑠 ∣ 𝑧 ⊆ 𝑦} = {𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦}) |
24 | 22, 23 | mpteq12dv 5166 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑤 = 𝐺 ∧ 𝑓 = 𝐹)) ∧ 𝑠 = (𝒫 dom 𝑓 ∩ Fin)) → (𝑧 ∈ 𝑠 ↦ {𝑦 ∈ 𝑠 ∣ 𝑧 ⊆ 𝑦}) = (𝑧 ∈ 𝑆 ↦ {𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦})) |
25 | 24 | rneqd 5842 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑤 = 𝐺 ∧ 𝑓 = 𝐹)) ∧ 𝑠 = (𝒫 dom 𝑓 ∩ Fin)) → ran (𝑧 ∈ 𝑠 ↦ {𝑦 ∈ 𝑠 ∣ 𝑧 ⊆ 𝑦}) = ran (𝑧 ∈ 𝑆 ↦ {𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦})) |
26 | | tsmsval.l |
. . . . . . 7
⊢ 𝐿 = ran (𝑧 ∈ 𝑆 ↦ {𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦}) |
27 | 25, 26 | eqtr4di 2796 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑤 = 𝐺 ∧ 𝑓 = 𝐹)) ∧ 𝑠 = (𝒫 dom 𝑓 ∩ Fin)) → ran (𝑧 ∈ 𝑠 ↦ {𝑦 ∈ 𝑠 ∣ 𝑧 ⊆ 𝑦}) = 𝐿) |
28 | 22, 27 | oveq12d 7287 |
. . . . 5
⊢ (((𝜑 ∧ (𝑤 = 𝐺 ∧ 𝑓 = 𝐹)) ∧ 𝑠 = (𝒫 dom 𝑓 ∩ Fin)) → (𝑠filGenran (𝑧 ∈ 𝑠 ↦ {𝑦 ∈ 𝑠 ∣ 𝑧 ⊆ 𝑦})) = (𝑆filGen𝐿)) |
29 | 11, 28 | oveq12d 7287 |
. . . 4
⊢ (((𝜑 ∧ (𝑤 = 𝐺 ∧ 𝑓 = 𝐹)) ∧ 𝑠 = (𝒫 dom 𝑓 ∩ Fin)) → ((TopOpen‘𝑤) fLimf (𝑠filGenran (𝑧 ∈ 𝑠 ↦ {𝑦 ∈ 𝑠 ∣ 𝑧 ⊆ 𝑦}))) = (𝐽 fLimf (𝑆filGen𝐿))) |
30 | | simplrr 775 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑤 = 𝐺 ∧ 𝑓 = 𝐹)) ∧ 𝑠 = (𝒫 dom 𝑓 ∩ Fin)) → 𝑓 = 𝐹) |
31 | 30 | reseq1d 5885 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑤 = 𝐺 ∧ 𝑓 = 𝐹)) ∧ 𝑠 = (𝒫 dom 𝑓 ∩ Fin)) → (𝑓 ↾ 𝑦) = (𝐹 ↾ 𝑦)) |
32 | 8, 31 | oveq12d 7287 |
. . . . 5
⊢ (((𝜑 ∧ (𝑤 = 𝐺 ∧ 𝑓 = 𝐹)) ∧ 𝑠 = (𝒫 dom 𝑓 ∩ Fin)) → (𝑤 Σg (𝑓 ↾ 𝑦)) = (𝐺 Σg (𝐹 ↾ 𝑦))) |
33 | 22, 32 | mpteq12dv 5166 |
. . . 4
⊢ (((𝜑 ∧ (𝑤 = 𝐺 ∧ 𝑓 = 𝐹)) ∧ 𝑠 = (𝒫 dom 𝑓 ∩ Fin)) → (𝑦 ∈ 𝑠 ↦ (𝑤 Σg (𝑓 ↾ 𝑦))) = (𝑦 ∈ 𝑆 ↦ (𝐺 Σg (𝐹 ↾ 𝑦)))) |
34 | 29, 33 | fveq12d 6775 |
. . 3
⊢ (((𝜑 ∧ (𝑤 = 𝐺 ∧ 𝑓 = 𝐹)) ∧ 𝑠 = (𝒫 dom 𝑓 ∩ Fin)) → (((TopOpen‘𝑤) fLimf (𝑠filGenran (𝑧 ∈ 𝑠 ↦ {𝑦 ∈ 𝑠 ∣ 𝑧 ⊆ 𝑦})))‘(𝑦 ∈ 𝑠 ↦ (𝑤 Σg (𝑓 ↾ 𝑦)))) = ((𝐽 fLimf (𝑆filGen𝐿))‘(𝑦 ∈ 𝑆 ↦ (𝐺 Σg (𝐹 ↾ 𝑦))))) |
35 | 7, 34 | csbied 3871 |
. 2
⊢ ((𝜑 ∧ (𝑤 = 𝐺 ∧ 𝑓 = 𝐹)) → ⦋(𝒫 dom
𝑓 ∩ Fin) / 𝑠⦌(((TopOpen‘𝑤) fLimf (𝑠filGenran (𝑧 ∈ 𝑠 ↦ {𝑦 ∈ 𝑠 ∣ 𝑧 ⊆ 𝑦})))‘(𝑦 ∈ 𝑠 ↦ (𝑤 Σg (𝑓 ↾ 𝑦)))) = ((𝐽 fLimf (𝑆filGen𝐿))‘(𝑦 ∈ 𝑆 ↦ (𝐺 Σg (𝐹 ↾ 𝑦))))) |
36 | | tsmsval.g |
. . 3
⊢ (𝜑 → 𝐺 ∈ 𝑉) |
37 | 36 | elexd 3451 |
. 2
⊢ (𝜑 → 𝐺 ∈ V) |
38 | | tsmsval2.f |
. . 3
⊢ (𝜑 → 𝐹 ∈ 𝑊) |
39 | 38 | elexd 3451 |
. 2
⊢ (𝜑 → 𝐹 ∈ V) |
40 | | fvexd 6783 |
. 2
⊢ (𝜑 → ((𝐽 fLimf (𝑆filGen𝐿))‘(𝑦 ∈ 𝑆 ↦ (𝐺 Σg (𝐹 ↾ 𝑦)))) ∈ V) |
41 | 2, 35, 37, 39, 40 | ovmpod 7417 |
1
⊢ (𝜑 → (𝐺 tsums 𝐹) = ((𝐽 fLimf (𝑆filGen𝐿))‘(𝑦 ∈ 𝑆 ↦ (𝐺 Σg (𝐹 ↾ 𝑦))))) |