MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tsmsval2 Structured version   Visualization version   GIF version

Theorem tsmsval2 23309
Description: Definition of the topological group sum(s) of a collection 𝐹(𝑥) of values in the group with index set 𝐴. (Contributed by Mario Carneiro, 2-Sep-2015.)
Hypotheses
Ref Expression
tsmsval.b 𝐵 = (Base‘𝐺)
tsmsval.j 𝐽 = (TopOpen‘𝐺)
tsmsval.s 𝑆 = (𝒫 𝐴 ∩ Fin)
tsmsval.l 𝐿 = ran (𝑧𝑆 ↦ {𝑦𝑆𝑧𝑦})
tsmsval.g (𝜑𝐺𝑉)
tsmsval2.f (𝜑𝐹𝑊)
tsmsval2.a (𝜑 → dom 𝐹 = 𝐴)
Assertion
Ref Expression
tsmsval2 (𝜑 → (𝐺 tsums 𝐹) = ((𝐽 fLimf (𝑆filGen𝐿))‘(𝑦𝑆 ↦ (𝐺 Σg (𝐹𝑦)))))
Distinct variable groups:   𝑦,𝑧,𝐹   𝑦,𝐺,𝑧   𝜑,𝑦,𝑧   𝑦,𝑆
Allowed substitution hints:   𝐴(𝑦,𝑧)   𝐵(𝑦,𝑧)   𝑆(𝑧)   𝐽(𝑦,𝑧)   𝐿(𝑦,𝑧)   𝑉(𝑦,𝑧)   𝑊(𝑦,𝑧)

Proof of Theorem tsmsval2
Dummy variables 𝑓 𝑠 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-tsms 23306 . . 3 tsums = (𝑤 ∈ V, 𝑓 ∈ V ↦ (𝒫 dom 𝑓 ∩ Fin) / 𝑠(((TopOpen‘𝑤) fLimf (𝑠filGenran (𝑧𝑠 ↦ {𝑦𝑠𝑧𝑦})))‘(𝑦𝑠 ↦ (𝑤 Σg (𝑓𝑦)))))
21a1i 11 . 2 (𝜑 → tsums = (𝑤 ∈ V, 𝑓 ∈ V ↦ (𝒫 dom 𝑓 ∩ Fin) / 𝑠(((TopOpen‘𝑤) fLimf (𝑠filGenran (𝑧𝑠 ↦ {𝑦𝑠𝑧𝑦})))‘(𝑦𝑠 ↦ (𝑤 Σg (𝑓𝑦))))))
3 vex 3438 . . . . . . 7 𝑓 ∈ V
43dmex 7778 . . . . . 6 dom 𝑓 ∈ V
54pwex 5306 . . . . 5 𝒫 dom 𝑓 ∈ V
65inex1 5244 . . . 4 (𝒫 dom 𝑓 ∩ Fin) ∈ V
76a1i 11 . . 3 ((𝜑 ∧ (𝑤 = 𝐺𝑓 = 𝐹)) → (𝒫 dom 𝑓 ∩ Fin) ∈ V)
8 simplrl 773 . . . . . . 7 (((𝜑 ∧ (𝑤 = 𝐺𝑓 = 𝐹)) ∧ 𝑠 = (𝒫 dom 𝑓 ∩ Fin)) → 𝑤 = 𝐺)
98fveq2d 6796 . . . . . 6 (((𝜑 ∧ (𝑤 = 𝐺𝑓 = 𝐹)) ∧ 𝑠 = (𝒫 dom 𝑓 ∩ Fin)) → (TopOpen‘𝑤) = (TopOpen‘𝐺))
10 tsmsval.j . . . . . 6 𝐽 = (TopOpen‘𝐺)
119, 10eqtr4di 2791 . . . . 5 (((𝜑 ∧ (𝑤 = 𝐺𝑓 = 𝐹)) ∧ 𝑠 = (𝒫 dom 𝑓 ∩ Fin)) → (TopOpen‘𝑤) = 𝐽)
12 id 22 . . . . . . 7 (𝑠 = (𝒫 dom 𝑓 ∩ Fin) → 𝑠 = (𝒫 dom 𝑓 ∩ Fin))
13 simprr 769 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑤 = 𝐺𝑓 = 𝐹)) → 𝑓 = 𝐹)
1413dmeqd 5818 . . . . . . . . . . 11 ((𝜑 ∧ (𝑤 = 𝐺𝑓 = 𝐹)) → dom 𝑓 = dom 𝐹)
15 tsmsval2.a . . . . . . . . . . . 12 (𝜑 → dom 𝐹 = 𝐴)
1615adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑤 = 𝐺𝑓 = 𝐹)) → dom 𝐹 = 𝐴)
1714, 16eqtrd 2773 . . . . . . . . . 10 ((𝜑 ∧ (𝑤 = 𝐺𝑓 = 𝐹)) → dom 𝑓 = 𝐴)
1817pweqd 4555 . . . . . . . . 9 ((𝜑 ∧ (𝑤 = 𝐺𝑓 = 𝐹)) → 𝒫 dom 𝑓 = 𝒫 𝐴)
1918ineq1d 4148 . . . . . . . 8 ((𝜑 ∧ (𝑤 = 𝐺𝑓 = 𝐹)) → (𝒫 dom 𝑓 ∩ Fin) = (𝒫 𝐴 ∩ Fin))
20 tsmsval.s . . . . . . . 8 𝑆 = (𝒫 𝐴 ∩ Fin)
2119, 20eqtr4di 2791 . . . . . . 7 ((𝜑 ∧ (𝑤 = 𝐺𝑓 = 𝐹)) → (𝒫 dom 𝑓 ∩ Fin) = 𝑆)
2212, 21sylan9eqr 2795 . . . . . 6 (((𝜑 ∧ (𝑤 = 𝐺𝑓 = 𝐹)) ∧ 𝑠 = (𝒫 dom 𝑓 ∩ Fin)) → 𝑠 = 𝑆)
2322rabeqdv 3421 . . . . . . . . 9 (((𝜑 ∧ (𝑤 = 𝐺𝑓 = 𝐹)) ∧ 𝑠 = (𝒫 dom 𝑓 ∩ Fin)) → {𝑦𝑠𝑧𝑦} = {𝑦𝑆𝑧𝑦})
2422, 23mpteq12dv 5168 . . . . . . . 8 (((𝜑 ∧ (𝑤 = 𝐺𝑓 = 𝐹)) ∧ 𝑠 = (𝒫 dom 𝑓 ∩ Fin)) → (𝑧𝑠 ↦ {𝑦𝑠𝑧𝑦}) = (𝑧𝑆 ↦ {𝑦𝑆𝑧𝑦}))
2524rneqd 5850 . . . . . . 7 (((𝜑 ∧ (𝑤 = 𝐺𝑓 = 𝐹)) ∧ 𝑠 = (𝒫 dom 𝑓 ∩ Fin)) → ran (𝑧𝑠 ↦ {𝑦𝑠𝑧𝑦}) = ran (𝑧𝑆 ↦ {𝑦𝑆𝑧𝑦}))
26 tsmsval.l . . . . . . 7 𝐿 = ran (𝑧𝑆 ↦ {𝑦𝑆𝑧𝑦})
2725, 26eqtr4di 2791 . . . . . 6 (((𝜑 ∧ (𝑤 = 𝐺𝑓 = 𝐹)) ∧ 𝑠 = (𝒫 dom 𝑓 ∩ Fin)) → ran (𝑧𝑠 ↦ {𝑦𝑠𝑧𝑦}) = 𝐿)
2822, 27oveq12d 7313 . . . . 5 (((𝜑 ∧ (𝑤 = 𝐺𝑓 = 𝐹)) ∧ 𝑠 = (𝒫 dom 𝑓 ∩ Fin)) → (𝑠filGenran (𝑧𝑠 ↦ {𝑦𝑠𝑧𝑦})) = (𝑆filGen𝐿))
2911, 28oveq12d 7313 . . . 4 (((𝜑 ∧ (𝑤 = 𝐺𝑓 = 𝐹)) ∧ 𝑠 = (𝒫 dom 𝑓 ∩ Fin)) → ((TopOpen‘𝑤) fLimf (𝑠filGenran (𝑧𝑠 ↦ {𝑦𝑠𝑧𝑦}))) = (𝐽 fLimf (𝑆filGen𝐿)))
30 simplrr 774 . . . . . . 7 (((𝜑 ∧ (𝑤 = 𝐺𝑓 = 𝐹)) ∧ 𝑠 = (𝒫 dom 𝑓 ∩ Fin)) → 𝑓 = 𝐹)
3130reseq1d 5893 . . . . . 6 (((𝜑 ∧ (𝑤 = 𝐺𝑓 = 𝐹)) ∧ 𝑠 = (𝒫 dom 𝑓 ∩ Fin)) → (𝑓𝑦) = (𝐹𝑦))
328, 31oveq12d 7313 . . . . 5 (((𝜑 ∧ (𝑤 = 𝐺𝑓 = 𝐹)) ∧ 𝑠 = (𝒫 dom 𝑓 ∩ Fin)) → (𝑤 Σg (𝑓𝑦)) = (𝐺 Σg (𝐹𝑦)))
3322, 32mpteq12dv 5168 . . . 4 (((𝜑 ∧ (𝑤 = 𝐺𝑓 = 𝐹)) ∧ 𝑠 = (𝒫 dom 𝑓 ∩ Fin)) → (𝑦𝑠 ↦ (𝑤 Σg (𝑓𝑦))) = (𝑦𝑆 ↦ (𝐺 Σg (𝐹𝑦))))
3429, 33fveq12d 6799 . . 3 (((𝜑 ∧ (𝑤 = 𝐺𝑓 = 𝐹)) ∧ 𝑠 = (𝒫 dom 𝑓 ∩ Fin)) → (((TopOpen‘𝑤) fLimf (𝑠filGenran (𝑧𝑠 ↦ {𝑦𝑠𝑧𝑦})))‘(𝑦𝑠 ↦ (𝑤 Σg (𝑓𝑦)))) = ((𝐽 fLimf (𝑆filGen𝐿))‘(𝑦𝑆 ↦ (𝐺 Σg (𝐹𝑦)))))
357, 34csbied 3872 . 2 ((𝜑 ∧ (𝑤 = 𝐺𝑓 = 𝐹)) → (𝒫 dom 𝑓 ∩ Fin) / 𝑠(((TopOpen‘𝑤) fLimf (𝑠filGenran (𝑧𝑠 ↦ {𝑦𝑠𝑧𝑦})))‘(𝑦𝑠 ↦ (𝑤 Σg (𝑓𝑦)))) = ((𝐽 fLimf (𝑆filGen𝐿))‘(𝑦𝑆 ↦ (𝐺 Σg (𝐹𝑦)))))
36 tsmsval.g . . 3 (𝜑𝐺𝑉)
3736elexd 3454 . 2 (𝜑𝐺 ∈ V)
38 tsmsval2.f . . 3 (𝜑𝐹𝑊)
3938elexd 3454 . 2 (𝜑𝐹 ∈ V)
40 fvexd 6807 . 2 (𝜑 → ((𝐽 fLimf (𝑆filGen𝐿))‘(𝑦𝑆 ↦ (𝐺 Σg (𝐹𝑦)))) ∈ V)
412, 35, 37, 39, 40ovmpod 7445 1 (𝜑 → (𝐺 tsums 𝐹) = ((𝐽 fLimf (𝑆filGen𝐿))‘(𝑦𝑆 ↦ (𝐺 Σg (𝐹𝑦)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2101  {crab 3221  Vcvv 3434  csb 3834  cin 3888  wss 3889  𝒫 cpw 4536  cmpt 5160  dom cdm 5591  ran crn 5592  cres 5593  cfv 6447  (class class class)co 7295  cmpo 7297  Fincfn 8753  Basecbs 16940  TopOpenctopn 17160   Σg cgsu 17179  filGencfg 20614   fLimf cflf 23114   tsums ctsu 23305
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2103  ax-9 2111  ax-10 2132  ax-11 2149  ax-12 2166  ax-ext 2704  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7608
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2063  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2884  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3224  df-v 3436  df-sbc 3719  df-csb 3835  df-dif 3892  df-un 3894  df-in 3896  df-ss 3906  df-nul 4260  df-if 4463  df-pw 4538  df-sn 4565  df-pr 4567  df-op 4571  df-uni 4842  df-br 5078  df-opab 5140  df-mpt 5161  df-id 5491  df-xp 5597  df-rel 5598  df-cnv 5599  df-co 5600  df-dm 5601  df-rn 5602  df-res 5603  df-iota 6399  df-fun 6449  df-fv 6455  df-ov 7298  df-oprab 7299  df-mpo 7300  df-tsms 23306
This theorem is referenced by:  tsmsval  23310  tsmspropd  23311
  Copyright terms: Public domain W3C validator