MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tsmsval2 Structured version   Visualization version   GIF version

Theorem tsmsval2 24017
Description: Definition of the topological group sum(s) of a collection 𝐹(𝑥) of values in the group with index set 𝐴. (Contributed by Mario Carneiro, 2-Sep-2015.)
Hypotheses
Ref Expression
tsmsval.b 𝐵 = (Base‘𝐺)
tsmsval.j 𝐽 = (TopOpen‘𝐺)
tsmsval.s 𝑆 = (𝒫 𝐴 ∩ Fin)
tsmsval.l 𝐿 = ran (𝑧𝑆 ↦ {𝑦𝑆𝑧𝑦})
tsmsval.g (𝜑𝐺𝑉)
tsmsval2.f (𝜑𝐹𝑊)
tsmsval2.a (𝜑 → dom 𝐹 = 𝐴)
Assertion
Ref Expression
tsmsval2 (𝜑 → (𝐺 tsums 𝐹) = ((𝐽 fLimf (𝑆filGen𝐿))‘(𝑦𝑆 ↦ (𝐺 Σg (𝐹𝑦)))))
Distinct variable groups:   𝑦,𝑧,𝐹   𝑦,𝐺,𝑧   𝜑,𝑦,𝑧   𝑦,𝑆
Allowed substitution hints:   𝐴(𝑦,𝑧)   𝐵(𝑦,𝑧)   𝑆(𝑧)   𝐽(𝑦,𝑧)   𝐿(𝑦,𝑧)   𝑉(𝑦,𝑧)   𝑊(𝑦,𝑧)

Proof of Theorem tsmsval2
Dummy variables 𝑓 𝑠 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-tsms 24014 . . 3 tsums = (𝑤 ∈ V, 𝑓 ∈ V ↦ (𝒫 dom 𝑓 ∩ Fin) / 𝑠(((TopOpen‘𝑤) fLimf (𝑠filGenran (𝑧𝑠 ↦ {𝑦𝑠𝑧𝑦})))‘(𝑦𝑠 ↦ (𝑤 Σg (𝑓𝑦)))))
21a1i 11 . 2 (𝜑 → tsums = (𝑤 ∈ V, 𝑓 ∈ V ↦ (𝒫 dom 𝑓 ∩ Fin) / 𝑠(((TopOpen‘𝑤) fLimf (𝑠filGenran (𝑧𝑠 ↦ {𝑦𝑠𝑧𝑦})))‘(𝑦𝑠 ↦ (𝑤 Σg (𝑓𝑦))))))
3 vex 3451 . . . . . . 7 𝑓 ∈ V
43dmex 7885 . . . . . 6 dom 𝑓 ∈ V
54pwex 5335 . . . . 5 𝒫 dom 𝑓 ∈ V
65inex1 5272 . . . 4 (𝒫 dom 𝑓 ∩ Fin) ∈ V
76a1i 11 . . 3 ((𝜑 ∧ (𝑤 = 𝐺𝑓 = 𝐹)) → (𝒫 dom 𝑓 ∩ Fin) ∈ V)
8 simplrl 776 . . . . . . 7 (((𝜑 ∧ (𝑤 = 𝐺𝑓 = 𝐹)) ∧ 𝑠 = (𝒫 dom 𝑓 ∩ Fin)) → 𝑤 = 𝐺)
98fveq2d 6862 . . . . . 6 (((𝜑 ∧ (𝑤 = 𝐺𝑓 = 𝐹)) ∧ 𝑠 = (𝒫 dom 𝑓 ∩ Fin)) → (TopOpen‘𝑤) = (TopOpen‘𝐺))
10 tsmsval.j . . . . . 6 𝐽 = (TopOpen‘𝐺)
119, 10eqtr4di 2782 . . . . 5 (((𝜑 ∧ (𝑤 = 𝐺𝑓 = 𝐹)) ∧ 𝑠 = (𝒫 dom 𝑓 ∩ Fin)) → (TopOpen‘𝑤) = 𝐽)
12 id 22 . . . . . . 7 (𝑠 = (𝒫 dom 𝑓 ∩ Fin) → 𝑠 = (𝒫 dom 𝑓 ∩ Fin))
13 simprr 772 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑤 = 𝐺𝑓 = 𝐹)) → 𝑓 = 𝐹)
1413dmeqd 5869 . . . . . . . . . . 11 ((𝜑 ∧ (𝑤 = 𝐺𝑓 = 𝐹)) → dom 𝑓 = dom 𝐹)
15 tsmsval2.a . . . . . . . . . . . 12 (𝜑 → dom 𝐹 = 𝐴)
1615adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑤 = 𝐺𝑓 = 𝐹)) → dom 𝐹 = 𝐴)
1714, 16eqtrd 2764 . . . . . . . . . 10 ((𝜑 ∧ (𝑤 = 𝐺𝑓 = 𝐹)) → dom 𝑓 = 𝐴)
1817pweqd 4580 . . . . . . . . 9 ((𝜑 ∧ (𝑤 = 𝐺𝑓 = 𝐹)) → 𝒫 dom 𝑓 = 𝒫 𝐴)
1918ineq1d 4182 . . . . . . . 8 ((𝜑 ∧ (𝑤 = 𝐺𝑓 = 𝐹)) → (𝒫 dom 𝑓 ∩ Fin) = (𝒫 𝐴 ∩ Fin))
20 tsmsval.s . . . . . . . 8 𝑆 = (𝒫 𝐴 ∩ Fin)
2119, 20eqtr4di 2782 . . . . . . 7 ((𝜑 ∧ (𝑤 = 𝐺𝑓 = 𝐹)) → (𝒫 dom 𝑓 ∩ Fin) = 𝑆)
2212, 21sylan9eqr 2786 . . . . . 6 (((𝜑 ∧ (𝑤 = 𝐺𝑓 = 𝐹)) ∧ 𝑠 = (𝒫 dom 𝑓 ∩ Fin)) → 𝑠 = 𝑆)
2322rabeqdv 3421 . . . . . . . . 9 (((𝜑 ∧ (𝑤 = 𝐺𝑓 = 𝐹)) ∧ 𝑠 = (𝒫 dom 𝑓 ∩ Fin)) → {𝑦𝑠𝑧𝑦} = {𝑦𝑆𝑧𝑦})
2422, 23mpteq12dv 5194 . . . . . . . 8 (((𝜑 ∧ (𝑤 = 𝐺𝑓 = 𝐹)) ∧ 𝑠 = (𝒫 dom 𝑓 ∩ Fin)) → (𝑧𝑠 ↦ {𝑦𝑠𝑧𝑦}) = (𝑧𝑆 ↦ {𝑦𝑆𝑧𝑦}))
2524rneqd 5902 . . . . . . 7 (((𝜑 ∧ (𝑤 = 𝐺𝑓 = 𝐹)) ∧ 𝑠 = (𝒫 dom 𝑓 ∩ Fin)) → ran (𝑧𝑠 ↦ {𝑦𝑠𝑧𝑦}) = ran (𝑧𝑆 ↦ {𝑦𝑆𝑧𝑦}))
26 tsmsval.l . . . . . . 7 𝐿 = ran (𝑧𝑆 ↦ {𝑦𝑆𝑧𝑦})
2725, 26eqtr4di 2782 . . . . . 6 (((𝜑 ∧ (𝑤 = 𝐺𝑓 = 𝐹)) ∧ 𝑠 = (𝒫 dom 𝑓 ∩ Fin)) → ran (𝑧𝑠 ↦ {𝑦𝑠𝑧𝑦}) = 𝐿)
2822, 27oveq12d 7405 . . . . 5 (((𝜑 ∧ (𝑤 = 𝐺𝑓 = 𝐹)) ∧ 𝑠 = (𝒫 dom 𝑓 ∩ Fin)) → (𝑠filGenran (𝑧𝑠 ↦ {𝑦𝑠𝑧𝑦})) = (𝑆filGen𝐿))
2911, 28oveq12d 7405 . . . 4 (((𝜑 ∧ (𝑤 = 𝐺𝑓 = 𝐹)) ∧ 𝑠 = (𝒫 dom 𝑓 ∩ Fin)) → ((TopOpen‘𝑤) fLimf (𝑠filGenran (𝑧𝑠 ↦ {𝑦𝑠𝑧𝑦}))) = (𝐽 fLimf (𝑆filGen𝐿)))
30 simplrr 777 . . . . . . 7 (((𝜑 ∧ (𝑤 = 𝐺𝑓 = 𝐹)) ∧ 𝑠 = (𝒫 dom 𝑓 ∩ Fin)) → 𝑓 = 𝐹)
3130reseq1d 5949 . . . . . 6 (((𝜑 ∧ (𝑤 = 𝐺𝑓 = 𝐹)) ∧ 𝑠 = (𝒫 dom 𝑓 ∩ Fin)) → (𝑓𝑦) = (𝐹𝑦))
328, 31oveq12d 7405 . . . . 5 (((𝜑 ∧ (𝑤 = 𝐺𝑓 = 𝐹)) ∧ 𝑠 = (𝒫 dom 𝑓 ∩ Fin)) → (𝑤 Σg (𝑓𝑦)) = (𝐺 Σg (𝐹𝑦)))
3322, 32mpteq12dv 5194 . . . 4 (((𝜑 ∧ (𝑤 = 𝐺𝑓 = 𝐹)) ∧ 𝑠 = (𝒫 dom 𝑓 ∩ Fin)) → (𝑦𝑠 ↦ (𝑤 Σg (𝑓𝑦))) = (𝑦𝑆 ↦ (𝐺 Σg (𝐹𝑦))))
3429, 33fveq12d 6865 . . 3 (((𝜑 ∧ (𝑤 = 𝐺𝑓 = 𝐹)) ∧ 𝑠 = (𝒫 dom 𝑓 ∩ Fin)) → (((TopOpen‘𝑤) fLimf (𝑠filGenran (𝑧𝑠 ↦ {𝑦𝑠𝑧𝑦})))‘(𝑦𝑠 ↦ (𝑤 Σg (𝑓𝑦)))) = ((𝐽 fLimf (𝑆filGen𝐿))‘(𝑦𝑆 ↦ (𝐺 Σg (𝐹𝑦)))))
357, 34csbied 3898 . 2 ((𝜑 ∧ (𝑤 = 𝐺𝑓 = 𝐹)) → (𝒫 dom 𝑓 ∩ Fin) / 𝑠(((TopOpen‘𝑤) fLimf (𝑠filGenran (𝑧𝑠 ↦ {𝑦𝑠𝑧𝑦})))‘(𝑦𝑠 ↦ (𝑤 Σg (𝑓𝑦)))) = ((𝐽 fLimf (𝑆filGen𝐿))‘(𝑦𝑆 ↦ (𝐺 Σg (𝐹𝑦)))))
36 tsmsval.g . . 3 (𝜑𝐺𝑉)
3736elexd 3471 . 2 (𝜑𝐺 ∈ V)
38 tsmsval2.f . . 3 (𝜑𝐹𝑊)
3938elexd 3471 . 2 (𝜑𝐹 ∈ V)
40 fvexd 6873 . 2 (𝜑 → ((𝐽 fLimf (𝑆filGen𝐿))‘(𝑦𝑆 ↦ (𝐺 Σg (𝐹𝑦)))) ∈ V)
412, 35, 37, 39, 40ovmpod 7541 1 (𝜑 → (𝐺 tsums 𝐹) = ((𝐽 fLimf (𝑆filGen𝐿))‘(𝑦𝑆 ↦ (𝐺 Σg (𝐹𝑦)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {crab 3405  Vcvv 3447  csb 3862  cin 3913  wss 3914  𝒫 cpw 4563  cmpt 5188  dom cdm 5638  ran crn 5639  cres 5640  cfv 6511  (class class class)co 7387  cmpo 7389  Fincfn 8918  Basecbs 17179  TopOpenctopn 17384   Σg cgsu 17403  filGencfg 21253   fLimf cflf 23822   tsums ctsu 24013
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-iota 6464  df-fun 6513  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-tsms 24014
This theorem is referenced by:  tsmsval  24018  tsmspropd  24019
  Copyright terms: Public domain W3C validator