| Step | Hyp | Ref
| Expression |
| 1 | | df-tsms 24070 |
. . 3
⊢ tsums =
(𝑤 ∈ V, 𝑓 ∈ V ↦
⦋(𝒫 dom 𝑓 ∩ Fin) / 𝑠⦌(((TopOpen‘𝑤) fLimf (𝑠filGenran (𝑧 ∈ 𝑠 ↦ {𝑦 ∈ 𝑠 ∣ 𝑧 ⊆ 𝑦})))‘(𝑦 ∈ 𝑠 ↦ (𝑤 Σg (𝑓 ↾ 𝑦))))) |
| 2 | 1 | a1i 11 |
. 2
⊢ (𝜑 → tsums = (𝑤 ∈ V, 𝑓 ∈ V ↦ ⦋(𝒫
dom 𝑓 ∩ Fin) / 𝑠⦌(((TopOpen‘𝑤) fLimf (𝑠filGenran (𝑧 ∈ 𝑠 ↦ {𝑦 ∈ 𝑠 ∣ 𝑧 ⊆ 𝑦})))‘(𝑦 ∈ 𝑠 ↦ (𝑤 Σg (𝑓 ↾ 𝑦)))))) |
| 3 | | vex 3468 |
. . . . . . 7
⊢ 𝑓 ∈ V |
| 4 | 3 | dmex 7910 |
. . . . . 6
⊢ dom 𝑓 ∈ V |
| 5 | 4 | pwex 5355 |
. . . . 5
⊢ 𝒫
dom 𝑓 ∈
V |
| 6 | 5 | inex1 5292 |
. . . 4
⊢
(𝒫 dom 𝑓
∩ Fin) ∈ V |
| 7 | 6 | a1i 11 |
. . 3
⊢ ((𝜑 ∧ (𝑤 = 𝐺 ∧ 𝑓 = 𝐹)) → (𝒫 dom 𝑓 ∩ Fin) ∈ V) |
| 8 | | simplrl 776 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑤 = 𝐺 ∧ 𝑓 = 𝐹)) ∧ 𝑠 = (𝒫 dom 𝑓 ∩ Fin)) → 𝑤 = 𝐺) |
| 9 | 8 | fveq2d 6885 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑤 = 𝐺 ∧ 𝑓 = 𝐹)) ∧ 𝑠 = (𝒫 dom 𝑓 ∩ Fin)) → (TopOpen‘𝑤) = (TopOpen‘𝐺)) |
| 10 | | tsmsval.j |
. . . . . 6
⊢ 𝐽 = (TopOpen‘𝐺) |
| 11 | 9, 10 | eqtr4di 2789 |
. . . . 5
⊢ (((𝜑 ∧ (𝑤 = 𝐺 ∧ 𝑓 = 𝐹)) ∧ 𝑠 = (𝒫 dom 𝑓 ∩ Fin)) → (TopOpen‘𝑤) = 𝐽) |
| 12 | | id 22 |
. . . . . . 7
⊢ (𝑠 = (𝒫 dom 𝑓 ∩ Fin) → 𝑠 = (𝒫 dom 𝑓 ∩ Fin)) |
| 13 | | simprr 772 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑤 = 𝐺 ∧ 𝑓 = 𝐹)) → 𝑓 = 𝐹) |
| 14 | 13 | dmeqd 5890 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑤 = 𝐺 ∧ 𝑓 = 𝐹)) → dom 𝑓 = dom 𝐹) |
| 15 | | tsmsval2.a |
. . . . . . . . . . . 12
⊢ (𝜑 → dom 𝐹 = 𝐴) |
| 16 | 15 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑤 = 𝐺 ∧ 𝑓 = 𝐹)) → dom 𝐹 = 𝐴) |
| 17 | 14, 16 | eqtrd 2771 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑤 = 𝐺 ∧ 𝑓 = 𝐹)) → dom 𝑓 = 𝐴) |
| 18 | 17 | pweqd 4597 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑤 = 𝐺 ∧ 𝑓 = 𝐹)) → 𝒫 dom 𝑓 = 𝒫 𝐴) |
| 19 | 18 | ineq1d 4199 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑤 = 𝐺 ∧ 𝑓 = 𝐹)) → (𝒫 dom 𝑓 ∩ Fin) = (𝒫 𝐴 ∩ Fin)) |
| 20 | | tsmsval.s |
. . . . . . . 8
⊢ 𝑆 = (𝒫 𝐴 ∩ Fin) |
| 21 | 19, 20 | eqtr4di 2789 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑤 = 𝐺 ∧ 𝑓 = 𝐹)) → (𝒫 dom 𝑓 ∩ Fin) = 𝑆) |
| 22 | 12, 21 | sylan9eqr 2793 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑤 = 𝐺 ∧ 𝑓 = 𝐹)) ∧ 𝑠 = (𝒫 dom 𝑓 ∩ Fin)) → 𝑠 = 𝑆) |
| 23 | 22 | rabeqdv 3436 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑤 = 𝐺 ∧ 𝑓 = 𝐹)) ∧ 𝑠 = (𝒫 dom 𝑓 ∩ Fin)) → {𝑦 ∈ 𝑠 ∣ 𝑧 ⊆ 𝑦} = {𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦}) |
| 24 | 22, 23 | mpteq12dv 5212 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑤 = 𝐺 ∧ 𝑓 = 𝐹)) ∧ 𝑠 = (𝒫 dom 𝑓 ∩ Fin)) → (𝑧 ∈ 𝑠 ↦ {𝑦 ∈ 𝑠 ∣ 𝑧 ⊆ 𝑦}) = (𝑧 ∈ 𝑆 ↦ {𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦})) |
| 25 | 24 | rneqd 5923 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑤 = 𝐺 ∧ 𝑓 = 𝐹)) ∧ 𝑠 = (𝒫 dom 𝑓 ∩ Fin)) → ran (𝑧 ∈ 𝑠 ↦ {𝑦 ∈ 𝑠 ∣ 𝑧 ⊆ 𝑦}) = ran (𝑧 ∈ 𝑆 ↦ {𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦})) |
| 26 | | tsmsval.l |
. . . . . . 7
⊢ 𝐿 = ran (𝑧 ∈ 𝑆 ↦ {𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦}) |
| 27 | 25, 26 | eqtr4di 2789 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑤 = 𝐺 ∧ 𝑓 = 𝐹)) ∧ 𝑠 = (𝒫 dom 𝑓 ∩ Fin)) → ran (𝑧 ∈ 𝑠 ↦ {𝑦 ∈ 𝑠 ∣ 𝑧 ⊆ 𝑦}) = 𝐿) |
| 28 | 22, 27 | oveq12d 7428 |
. . . . 5
⊢ (((𝜑 ∧ (𝑤 = 𝐺 ∧ 𝑓 = 𝐹)) ∧ 𝑠 = (𝒫 dom 𝑓 ∩ Fin)) → (𝑠filGenran (𝑧 ∈ 𝑠 ↦ {𝑦 ∈ 𝑠 ∣ 𝑧 ⊆ 𝑦})) = (𝑆filGen𝐿)) |
| 29 | 11, 28 | oveq12d 7428 |
. . . 4
⊢ (((𝜑 ∧ (𝑤 = 𝐺 ∧ 𝑓 = 𝐹)) ∧ 𝑠 = (𝒫 dom 𝑓 ∩ Fin)) → ((TopOpen‘𝑤) fLimf (𝑠filGenran (𝑧 ∈ 𝑠 ↦ {𝑦 ∈ 𝑠 ∣ 𝑧 ⊆ 𝑦}))) = (𝐽 fLimf (𝑆filGen𝐿))) |
| 30 | | simplrr 777 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑤 = 𝐺 ∧ 𝑓 = 𝐹)) ∧ 𝑠 = (𝒫 dom 𝑓 ∩ Fin)) → 𝑓 = 𝐹) |
| 31 | 30 | reseq1d 5970 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑤 = 𝐺 ∧ 𝑓 = 𝐹)) ∧ 𝑠 = (𝒫 dom 𝑓 ∩ Fin)) → (𝑓 ↾ 𝑦) = (𝐹 ↾ 𝑦)) |
| 32 | 8, 31 | oveq12d 7428 |
. . . . 5
⊢ (((𝜑 ∧ (𝑤 = 𝐺 ∧ 𝑓 = 𝐹)) ∧ 𝑠 = (𝒫 dom 𝑓 ∩ Fin)) → (𝑤 Σg (𝑓 ↾ 𝑦)) = (𝐺 Σg (𝐹 ↾ 𝑦))) |
| 33 | 22, 32 | mpteq12dv 5212 |
. . . 4
⊢ (((𝜑 ∧ (𝑤 = 𝐺 ∧ 𝑓 = 𝐹)) ∧ 𝑠 = (𝒫 dom 𝑓 ∩ Fin)) → (𝑦 ∈ 𝑠 ↦ (𝑤 Σg (𝑓 ↾ 𝑦))) = (𝑦 ∈ 𝑆 ↦ (𝐺 Σg (𝐹 ↾ 𝑦)))) |
| 34 | 29, 33 | fveq12d 6888 |
. . 3
⊢ (((𝜑 ∧ (𝑤 = 𝐺 ∧ 𝑓 = 𝐹)) ∧ 𝑠 = (𝒫 dom 𝑓 ∩ Fin)) → (((TopOpen‘𝑤) fLimf (𝑠filGenran (𝑧 ∈ 𝑠 ↦ {𝑦 ∈ 𝑠 ∣ 𝑧 ⊆ 𝑦})))‘(𝑦 ∈ 𝑠 ↦ (𝑤 Σg (𝑓 ↾ 𝑦)))) = ((𝐽 fLimf (𝑆filGen𝐿))‘(𝑦 ∈ 𝑆 ↦ (𝐺 Σg (𝐹 ↾ 𝑦))))) |
| 35 | 7, 34 | csbied 3915 |
. 2
⊢ ((𝜑 ∧ (𝑤 = 𝐺 ∧ 𝑓 = 𝐹)) → ⦋(𝒫 dom
𝑓 ∩ Fin) / 𝑠⦌(((TopOpen‘𝑤) fLimf (𝑠filGenran (𝑧 ∈ 𝑠 ↦ {𝑦 ∈ 𝑠 ∣ 𝑧 ⊆ 𝑦})))‘(𝑦 ∈ 𝑠 ↦ (𝑤 Σg (𝑓 ↾ 𝑦)))) = ((𝐽 fLimf (𝑆filGen𝐿))‘(𝑦 ∈ 𝑆 ↦ (𝐺 Σg (𝐹 ↾ 𝑦))))) |
| 36 | | tsmsval.g |
. . 3
⊢ (𝜑 → 𝐺 ∈ 𝑉) |
| 37 | 36 | elexd 3488 |
. 2
⊢ (𝜑 → 𝐺 ∈ V) |
| 38 | | tsmsval2.f |
. . 3
⊢ (𝜑 → 𝐹 ∈ 𝑊) |
| 39 | 38 | elexd 3488 |
. 2
⊢ (𝜑 → 𝐹 ∈ V) |
| 40 | | fvexd 6896 |
. 2
⊢ (𝜑 → ((𝐽 fLimf (𝑆filGen𝐿))‘(𝑦 ∈ 𝑆 ↦ (𝐺 Σg (𝐹 ↾ 𝑦)))) ∈ V) |
| 41 | 2, 35, 37, 39, 40 | ovmpod 7564 |
1
⊢ (𝜑 → (𝐺 tsums 𝐹) = ((𝐽 fLimf (𝑆filGen𝐿))‘(𝑦 ∈ 𝑆 ↦ (𝐺 Σg (𝐹 ↾ 𝑦))))) |