MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  istvc Structured version   Visualization version   GIF version

Theorem istvc 24083
Description: A topological vector space is a topological module over a topological division ring. (Contributed by Mario Carneiro, 5-Oct-2015.)
Hypothesis
Ref Expression
tlmtrg.f 𝐹 = (Scalar‘𝑊)
Assertion
Ref Expression
istvc (𝑊 ∈ TopVec ↔ (𝑊 ∈ TopMod ∧ 𝐹 ∈ TopDRing))

Proof of Theorem istvc
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6891 . . . 4 (𝑥 = 𝑊 → (Scalar‘𝑥) = (Scalar‘𝑊))
2 tlmtrg.f . . . 4 𝐹 = (Scalar‘𝑊)
31, 2eqtr4di 2785 . . 3 (𝑥 = 𝑊 → (Scalar‘𝑥) = 𝐹)
43eleq1d 2813 . 2 (𝑥 = 𝑊 → ((Scalar‘𝑥) ∈ TopDRing ↔ 𝐹 ∈ TopDRing))
5 df-tvc 24054 . 2 TopVec = {𝑥 ∈ TopMod ∣ (Scalar‘𝑥) ∈ TopDRing}
64, 5elrab2 3683 1 (𝑊 ∈ TopVec ↔ (𝑊 ∈ TopMod ∧ 𝐹 ∈ TopDRing))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395   = wceq 1534  wcel 2099  cfv 6542  Scalarcsca 17227  TopDRingctdrg 24048  TopModctlm 24049  TopVecctvc 24050
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-ext 2698
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-sb 2061  df-clab 2705  df-cleq 2719  df-clel 2805  df-rab 3428  df-v 3471  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4319  df-if 4525  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-br 5143  df-iota 6494  df-fv 6550  df-tvc 24054
This theorem is referenced by:  tvctdrg  24084  tvctlm  24088  nvctvc  24604
  Copyright terms: Public domain W3C validator