MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  istvc Structured version   Visualization version   GIF version

Theorem istvc 23696
Description: A topological vector space is a topological module over a topological division ring. (Contributed by Mario Carneiro, 5-Oct-2015.)
Hypothesis
Ref Expression
tlmtrg.f 𝐹 = (Scalarβ€˜π‘Š)
Assertion
Ref Expression
istvc (π‘Š ∈ TopVec ↔ (π‘Š ∈ TopMod ∧ 𝐹 ∈ TopDRing))

Proof of Theorem istvc
Dummy variable π‘₯ is distinct from all other variables.
StepHypRef Expression
1 fveq2 6892 . . . 4 (π‘₯ = π‘Š β†’ (Scalarβ€˜π‘₯) = (Scalarβ€˜π‘Š))
2 tlmtrg.f . . . 4 𝐹 = (Scalarβ€˜π‘Š)
31, 2eqtr4di 2791 . . 3 (π‘₯ = π‘Š β†’ (Scalarβ€˜π‘₯) = 𝐹)
43eleq1d 2819 . 2 (π‘₯ = π‘Š β†’ ((Scalarβ€˜π‘₯) ∈ TopDRing ↔ 𝐹 ∈ TopDRing))
5 df-tvc 23667 . 2 TopVec = {π‘₯ ∈ TopMod ∣ (Scalarβ€˜π‘₯) ∈ TopDRing}
64, 5elrab2 3687 1 (π‘Š ∈ TopVec ↔ (π‘Š ∈ TopMod ∧ 𝐹 ∈ TopDRing))
Colors of variables: wff setvar class
Syntax hints:   ↔ wb 205   ∧ wa 397   = wceq 1542   ∈ wcel 2107  β€˜cfv 6544  Scalarcsca 17200  TopDRingctdrg 23661  TopModctlm 23662  TopVecctvc 23663
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-iota 6496  df-fv 6552  df-tvc 23667
This theorem is referenced by:  tvctdrg  23697  tvctlm  23701  nvctvc  24217
  Copyright terms: Public domain W3C validator