MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  istvc Structured version   Visualization version   GIF version

Theorem istvc 22936
Description: A topological vector space is a topological module over a topological division ring. (Contributed by Mario Carneiro, 5-Oct-2015.)
Hypothesis
Ref Expression
tlmtrg.f 𝐹 = (Scalar‘𝑊)
Assertion
Ref Expression
istvc (𝑊 ∈ TopVec ↔ (𝑊 ∈ TopMod ∧ 𝐹 ∈ TopDRing))

Proof of Theorem istvc
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6668 . . . 4 (𝑥 = 𝑊 → (Scalar‘𝑥) = (Scalar‘𝑊))
2 tlmtrg.f . . . 4 𝐹 = (Scalar‘𝑊)
31, 2eqtr4di 2791 . . 3 (𝑥 = 𝑊 → (Scalar‘𝑥) = 𝐹)
43eleq1d 2817 . 2 (𝑥 = 𝑊 → ((Scalar‘𝑥) ∈ TopDRing ↔ 𝐹 ∈ TopDRing))
5 df-tvc 22907 . 2 TopVec = {𝑥 ∈ TopMod ∣ (Scalar‘𝑥) ∈ TopDRing}
64, 5elrab2 3588 1 (𝑊 ∈ TopVec ↔ (𝑊 ∈ TopMod ∧ 𝐹 ∈ TopDRing))
Colors of variables: wff setvar class
Syntax hints:  wb 209  wa 399   = wceq 1542  wcel 2113  cfv 6333  Scalarcsca 16664  TopDRingctdrg 22901  TopModctlm 22902  TopVecctvc 22903
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1916  ax-6 1974  ax-7 2019  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2161  ax-12 2178  ax-ext 2710
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3an 1090  df-tru 1545  df-ex 1787  df-nf 1791  df-sb 2074  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-rab 3062  df-v 3399  df-un 3846  df-in 3848  df-ss 3858  df-sn 4514  df-pr 4516  df-op 4520  df-uni 4794  df-br 5028  df-iota 6291  df-fv 6341  df-tvc 22907
This theorem is referenced by:  tvctdrg  22937  tvctlm  22941  nvctvc  23446
  Copyright terms: Public domain W3C validator