![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > istvc | Structured version Visualization version GIF version |
Description: A topological vector space is a topological module over a topological division ring. (Contributed by Mario Carneiro, 5-Oct-2015.) |
Ref | Expression |
---|---|
tlmtrg.f | ⊢ 𝐹 = (Scalar‘𝑊) |
Ref | Expression |
---|---|
istvc | ⊢ (𝑊 ∈ TopVec ↔ (𝑊 ∈ TopMod ∧ 𝐹 ∈ TopDRing)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6891 | . . . 4 ⊢ (𝑥 = 𝑊 → (Scalar‘𝑥) = (Scalar‘𝑊)) | |
2 | tlmtrg.f | . . . 4 ⊢ 𝐹 = (Scalar‘𝑊) | |
3 | 1, 2 | eqtr4di 2785 | . . 3 ⊢ (𝑥 = 𝑊 → (Scalar‘𝑥) = 𝐹) |
4 | 3 | eleq1d 2813 | . 2 ⊢ (𝑥 = 𝑊 → ((Scalar‘𝑥) ∈ TopDRing ↔ 𝐹 ∈ TopDRing)) |
5 | df-tvc 24054 | . 2 ⊢ TopVec = {𝑥 ∈ TopMod ∣ (Scalar‘𝑥) ∈ TopDRing} | |
6 | 4, 5 | elrab2 3683 | 1 ⊢ (𝑊 ∈ TopVec ↔ (𝑊 ∈ TopMod ∧ 𝐹 ∈ TopDRing)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 = wceq 1534 ∈ wcel 2099 ‘cfv 6542 Scalarcsca 17227 TopDRingctdrg 24048 TopModctlm 24049 TopVecctvc 24050 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2698 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-sb 2061 df-clab 2705 df-cleq 2719 df-clel 2805 df-rab 3428 df-v 3471 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-br 5143 df-iota 6494 df-fv 6550 df-tvc 24054 |
This theorem is referenced by: tvctdrg 24084 tvctlm 24088 nvctvc 24604 |
Copyright terms: Public domain | W3C validator |