MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  istvc Structured version   Visualization version   GIF version

Theorem istvc 24221
Description: A topological vector space is a topological module over a topological division ring. (Contributed by Mario Carneiro, 5-Oct-2015.)
Hypothesis
Ref Expression
tlmtrg.f 𝐹 = (Scalar‘𝑊)
Assertion
Ref Expression
istvc (𝑊 ∈ TopVec ↔ (𝑊 ∈ TopMod ∧ 𝐹 ∈ TopDRing))

Proof of Theorem istvc
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6920 . . . 4 (𝑥 = 𝑊 → (Scalar‘𝑥) = (Scalar‘𝑊))
2 tlmtrg.f . . . 4 𝐹 = (Scalar‘𝑊)
31, 2eqtr4di 2798 . . 3 (𝑥 = 𝑊 → (Scalar‘𝑥) = 𝐹)
43eleq1d 2829 . 2 (𝑥 = 𝑊 → ((Scalar‘𝑥) ∈ TopDRing ↔ 𝐹 ∈ TopDRing))
5 df-tvc 24192 . 2 TopVec = {𝑥 ∈ TopMod ∣ (Scalar‘𝑥) ∈ TopDRing}
64, 5elrab2 3711 1 (𝑊 ∈ TopVec ↔ (𝑊 ∈ TopMod ∧ 𝐹 ∈ TopDRing))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1537  wcel 2108  cfv 6573  Scalarcsca 17314  TopDRingctdrg 24186  TopModctlm 24187  TopVecctvc 24188
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-iota 6525  df-fv 6581  df-tvc 24192
This theorem is referenced by:  tvctdrg  24222  tvctlm  24226  nvctvc  24742
  Copyright terms: Public domain W3C validator