![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > istvc | Structured version Visualization version GIF version |
Description: A topological vector space is a topological module over a topological division ring. (Contributed by Mario Carneiro, 5-Oct-2015.) |
Ref | Expression |
---|---|
tlmtrg.f | β’ πΉ = (Scalarβπ) |
Ref | Expression |
---|---|
istvc | β’ (π β TopVec β (π β TopMod β§ πΉ β TopDRing)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6892 | . . . 4 β’ (π₯ = π β (Scalarβπ₯) = (Scalarβπ)) | |
2 | tlmtrg.f | . . . 4 β’ πΉ = (Scalarβπ) | |
3 | 1, 2 | eqtr4di 2791 | . . 3 β’ (π₯ = π β (Scalarβπ₯) = πΉ) |
4 | 3 | eleq1d 2819 | . 2 β’ (π₯ = π β ((Scalarβπ₯) β TopDRing β πΉ β TopDRing)) |
5 | df-tvc 23667 | . 2 β’ TopVec = {π₯ β TopMod β£ (Scalarβπ₯) β TopDRing} | |
6 | 4, 5 | elrab2 3687 | 1 β’ (π β TopVec β (π β TopMod β§ πΉ β TopDRing)) |
Colors of variables: wff setvar class |
Syntax hints: β wb 205 β§ wa 397 = wceq 1542 β wcel 2107 βcfv 6544 Scalarcsca 17200 TopDRingctdrg 23661 TopModctlm 23662 TopVecctvc 23663 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-iota 6496 df-fv 6552 df-tvc 23667 |
This theorem is referenced by: tvctdrg 23697 tvctlm 23701 nvctvc 24217 |
Copyright terms: Public domain | W3C validator |