![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > istvc | Structured version Visualization version GIF version |
Description: A topological vector space is a topological module over a topological division ring. (Contributed by Mario Carneiro, 5-Oct-2015.) |
Ref | Expression |
---|---|
tlmtrg.f | ⊢ 𝐹 = (Scalar‘𝑊) |
Ref | Expression |
---|---|
istvc | ⊢ (𝑊 ∈ TopVec ↔ (𝑊 ∈ TopMod ∧ 𝐹 ∈ TopDRing)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6920 | . . . 4 ⊢ (𝑥 = 𝑊 → (Scalar‘𝑥) = (Scalar‘𝑊)) | |
2 | tlmtrg.f | . . . 4 ⊢ 𝐹 = (Scalar‘𝑊) | |
3 | 1, 2 | eqtr4di 2798 | . . 3 ⊢ (𝑥 = 𝑊 → (Scalar‘𝑥) = 𝐹) |
4 | 3 | eleq1d 2829 | . 2 ⊢ (𝑥 = 𝑊 → ((Scalar‘𝑥) ∈ TopDRing ↔ 𝐹 ∈ TopDRing)) |
5 | df-tvc 24192 | . 2 ⊢ TopVec = {𝑥 ∈ TopMod ∣ (Scalar‘𝑥) ∈ TopDRing} | |
6 | 4, 5 | elrab2 3711 | 1 ⊢ (𝑊 ∈ TopVec ↔ (𝑊 ∈ TopMod ∧ 𝐹 ∈ TopDRing)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ‘cfv 6573 Scalarcsca 17314 TopDRingctdrg 24186 TopModctlm 24187 TopVecctvc 24188 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-iota 6525 df-fv 6581 df-tvc 24192 |
This theorem is referenced by: tvctdrg 24222 tvctlm 24226 nvctvc 24742 |
Copyright terms: Public domain | W3C validator |