| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > istvc | Structured version Visualization version GIF version | ||
| Description: A topological vector space is a topological module over a topological division ring. (Contributed by Mario Carneiro, 5-Oct-2015.) |
| Ref | Expression |
|---|---|
| tlmtrg.f | ⊢ 𝐹 = (Scalar‘𝑊) |
| Ref | Expression |
|---|---|
| istvc | ⊢ (𝑊 ∈ TopVec ↔ (𝑊 ∈ TopMod ∧ 𝐹 ∈ TopDRing)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 6876 | . . . 4 ⊢ (𝑥 = 𝑊 → (Scalar‘𝑥) = (Scalar‘𝑊)) | |
| 2 | tlmtrg.f | . . . 4 ⊢ 𝐹 = (Scalar‘𝑊) | |
| 3 | 1, 2 | eqtr4di 2788 | . . 3 ⊢ (𝑥 = 𝑊 → (Scalar‘𝑥) = 𝐹) |
| 4 | 3 | eleq1d 2819 | . 2 ⊢ (𝑥 = 𝑊 → ((Scalar‘𝑥) ∈ TopDRing ↔ 𝐹 ∈ TopDRing)) |
| 5 | df-tvc 24101 | . 2 ⊢ TopVec = {𝑥 ∈ TopMod ∣ (Scalar‘𝑥) ∈ TopDRing} | |
| 6 | 4, 5 | elrab2 3674 | 1 ⊢ (𝑊 ∈ TopVec ↔ (𝑊 ∈ TopMod ∧ 𝐹 ∈ TopDRing)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ‘cfv 6531 Scalarcsca 17274 TopDRingctdrg 24095 TopModctlm 24096 TopVecctvc 24097 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-iota 6484 df-fv 6539 df-tvc 24101 |
| This theorem is referenced by: tvctdrg 24131 tvctlm 24135 nvctvc 24639 |
| Copyright terms: Public domain | W3C validator |