MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  istvc Structured version   Visualization version   GIF version

Theorem istvc 24086
Description: A topological vector space is a topological module over a topological division ring. (Contributed by Mario Carneiro, 5-Oct-2015.)
Hypothesis
Ref Expression
tlmtrg.f 𝐹 = (Scalar‘𝑊)
Assertion
Ref Expression
istvc (𝑊 ∈ TopVec ↔ (𝑊 ∈ TopMod ∧ 𝐹 ∈ TopDRing))

Proof of Theorem istvc
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6861 . . . 4 (𝑥 = 𝑊 → (Scalar‘𝑥) = (Scalar‘𝑊))
2 tlmtrg.f . . . 4 𝐹 = (Scalar‘𝑊)
31, 2eqtr4di 2783 . . 3 (𝑥 = 𝑊 → (Scalar‘𝑥) = 𝐹)
43eleq1d 2814 . 2 (𝑥 = 𝑊 → ((Scalar‘𝑥) ∈ TopDRing ↔ 𝐹 ∈ TopDRing))
5 df-tvc 24057 . 2 TopVec = {𝑥 ∈ TopMod ∣ (Scalar‘𝑥) ∈ TopDRing}
64, 5elrab2 3665 1 (𝑊 ∈ TopVec ↔ (𝑊 ∈ TopMod ∧ 𝐹 ∈ TopDRing))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wcel 2109  cfv 6514  Scalarcsca 17230  TopDRingctdrg 24051  TopModctlm 24052  TopVecctvc 24053
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-iota 6467  df-fv 6522  df-tvc 24057
This theorem is referenced by:  tvctdrg  24087  tvctlm  24091  nvctvc  24595
  Copyright terms: Public domain W3C validator