Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > istvc | Structured version Visualization version GIF version |
Description: A topological vector space is a topological module over a topological division ring. (Contributed by Mario Carneiro, 5-Oct-2015.) |
Ref | Expression |
---|---|
tlmtrg.f | ⊢ 𝐹 = (Scalar‘𝑊) |
Ref | Expression |
---|---|
istvc | ⊢ (𝑊 ∈ TopVec ↔ (𝑊 ∈ TopMod ∧ 𝐹 ∈ TopDRing)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6668 | . . . 4 ⊢ (𝑥 = 𝑊 → (Scalar‘𝑥) = (Scalar‘𝑊)) | |
2 | tlmtrg.f | . . . 4 ⊢ 𝐹 = (Scalar‘𝑊) | |
3 | 1, 2 | eqtr4di 2791 | . . 3 ⊢ (𝑥 = 𝑊 → (Scalar‘𝑥) = 𝐹) |
4 | 3 | eleq1d 2817 | . 2 ⊢ (𝑥 = 𝑊 → ((Scalar‘𝑥) ∈ TopDRing ↔ 𝐹 ∈ TopDRing)) |
5 | df-tvc 22907 | . 2 ⊢ TopVec = {𝑥 ∈ TopMod ∣ (Scalar‘𝑥) ∈ TopDRing} | |
6 | 4, 5 | elrab2 3588 | 1 ⊢ (𝑊 ∈ TopVec ↔ (𝑊 ∈ TopMod ∧ 𝐹 ∈ TopDRing)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 209 ∧ wa 399 = wceq 1542 ∈ wcel 2113 ‘cfv 6333 Scalarcsca 16664 TopDRingctdrg 22901 TopModctlm 22902 TopVecctvc 22903 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1916 ax-6 1974 ax-7 2019 ax-8 2115 ax-9 2123 ax-10 2144 ax-11 2161 ax-12 2178 ax-ext 2710 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3an 1090 df-tru 1545 df-ex 1787 df-nf 1791 df-sb 2074 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-rab 3062 df-v 3399 df-un 3846 df-in 3848 df-ss 3858 df-sn 4514 df-pr 4516 df-op 4520 df-uni 4794 df-br 5028 df-iota 6291 df-fv 6341 df-tvc 22907 |
This theorem is referenced by: tvctdrg 22937 tvctlm 22941 nvctvc 23446 |
Copyright terms: Public domain | W3C validator |