Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > txpss3v | Structured version Visualization version GIF version |
Description: A tail Cartesian product is a subset of the class of ordered triples. (Contributed by Scott Fenton, 31-Mar-2012.) |
Ref | Expression |
---|---|
txpss3v | ⊢ (𝐴 ⊗ 𝐵) ⊆ (V × (V × V)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-txp 34135 | . 2 ⊢ (𝐴 ⊗ 𝐵) = ((◡(1st ↾ (V × V)) ∘ 𝐴) ∩ (◡(2nd ↾ (V × V)) ∘ 𝐵)) | |
2 | inss1 4167 | . . 3 ⊢ ((◡(1st ↾ (V × V)) ∘ 𝐴) ∩ (◡(2nd ↾ (V × V)) ∘ 𝐵)) ⊆ (◡(1st ↾ (V × V)) ∘ 𝐴) | |
3 | relco 6145 | . . . 4 ⊢ Rel (◡(1st ↾ (V × V)) ∘ 𝐴) | |
4 | vex 3434 | . . . . . . . . 9 ⊢ 𝑧 ∈ V | |
5 | vex 3434 | . . . . . . . . 9 ⊢ 𝑦 ∈ V | |
6 | 4, 5 | brcnv 5788 | . . . . . . . 8 ⊢ (𝑧◡(1st ↾ (V × V))𝑦 ↔ 𝑦(1st ↾ (V × V))𝑧) |
7 | 4 | brresi 5897 | . . . . . . . . 9 ⊢ (𝑦(1st ↾ (V × V))𝑧 ↔ (𝑦 ∈ (V × V) ∧ 𝑦1st 𝑧)) |
8 | 7 | simplbi 497 | . . . . . . . 8 ⊢ (𝑦(1st ↾ (V × V))𝑧 → 𝑦 ∈ (V × V)) |
9 | 6, 8 | sylbi 216 | . . . . . . 7 ⊢ (𝑧◡(1st ↾ (V × V))𝑦 → 𝑦 ∈ (V × V)) |
10 | 9 | adantl 481 | . . . . . 6 ⊢ ((𝑥𝐴𝑧 ∧ 𝑧◡(1st ↾ (V × V))𝑦) → 𝑦 ∈ (V × V)) |
11 | 10 | exlimiv 1936 | . . . . 5 ⊢ (∃𝑧(𝑥𝐴𝑧 ∧ 𝑧◡(1st ↾ (V × V))𝑦) → 𝑦 ∈ (V × V)) |
12 | vex 3434 | . . . . . 6 ⊢ 𝑥 ∈ V | |
13 | 12, 5 | opelco 5777 | . . . . 5 ⊢ (〈𝑥, 𝑦〉 ∈ (◡(1st ↾ (V × V)) ∘ 𝐴) ↔ ∃𝑧(𝑥𝐴𝑧 ∧ 𝑧◡(1st ↾ (V × V))𝑦)) |
14 | opelxp 5624 | . . . . . 6 ⊢ (〈𝑥, 𝑦〉 ∈ (V × (V × V)) ↔ (𝑥 ∈ V ∧ 𝑦 ∈ (V × V))) | |
15 | 12, 14 | mpbiran 705 | . . . . 5 ⊢ (〈𝑥, 𝑦〉 ∈ (V × (V × V)) ↔ 𝑦 ∈ (V × V)) |
16 | 11, 13, 15 | 3imtr4i 291 | . . . 4 ⊢ (〈𝑥, 𝑦〉 ∈ (◡(1st ↾ (V × V)) ∘ 𝐴) → 〈𝑥, 𝑦〉 ∈ (V × (V × V))) |
17 | 3, 16 | relssi 5694 | . . 3 ⊢ (◡(1st ↾ (V × V)) ∘ 𝐴) ⊆ (V × (V × V)) |
18 | 2, 17 | sstri 3934 | . 2 ⊢ ((◡(1st ↾ (V × V)) ∘ 𝐴) ∩ (◡(2nd ↾ (V × V)) ∘ 𝐵)) ⊆ (V × (V × V)) |
19 | 1, 18 | eqsstri 3959 | 1 ⊢ (𝐴 ⊗ 𝐵) ⊆ (V × (V × V)) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 ∃wex 1785 ∈ wcel 2109 Vcvv 3430 ∩ cin 3890 ⊆ wss 3891 〈cop 4572 class class class wbr 5078 × cxp 5586 ◡ccnv 5587 ↾ cres 5590 ∘ ccom 5592 1st c1st 7815 2nd c2nd 7816 ⊗ ctxp 34111 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pr 5355 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3432 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-sn 4567 df-pr 4569 df-op 4573 df-br 5079 df-opab 5141 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-res 5600 df-txp 34135 |
This theorem is referenced by: txprel 34160 brtxp2 34162 pprodss4v 34165 |
Copyright terms: Public domain | W3C validator |