| Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > txpss3v | Structured version Visualization version GIF version | ||
| Description: A tail Cartesian product is a subset of the class of ordered triples. (Contributed by Scott Fenton, 31-Mar-2012.) |
| Ref | Expression |
|---|---|
| txpss3v | ⊢ (𝐴 ⊗ 𝐵) ⊆ (V × (V × V)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-txp 35836 | . 2 ⊢ (𝐴 ⊗ 𝐵) = ((◡(1st ↾ (V × V)) ∘ 𝐴) ∩ (◡(2nd ↾ (V × V)) ∘ 𝐵)) | |
| 2 | inss1 4196 | . . 3 ⊢ ((◡(1st ↾ (V × V)) ∘ 𝐴) ∩ (◡(2nd ↾ (V × V)) ∘ 𝐵)) ⊆ (◡(1st ↾ (V × V)) ∘ 𝐴) | |
| 3 | relco 6068 | . . . 4 ⊢ Rel (◡(1st ↾ (V × V)) ∘ 𝐴) | |
| 4 | vex 3448 | . . . . . . . . 9 ⊢ 𝑧 ∈ V | |
| 5 | vex 3448 | . . . . . . . . 9 ⊢ 𝑦 ∈ V | |
| 6 | 4, 5 | brcnv 5836 | . . . . . . . 8 ⊢ (𝑧◡(1st ↾ (V × V))𝑦 ↔ 𝑦(1st ↾ (V × V))𝑧) |
| 7 | 4 | brresi 5948 | . . . . . . . . 9 ⊢ (𝑦(1st ↾ (V × V))𝑧 ↔ (𝑦 ∈ (V × V) ∧ 𝑦1st 𝑧)) |
| 8 | 7 | simplbi 497 | . . . . . . . 8 ⊢ (𝑦(1st ↾ (V × V))𝑧 → 𝑦 ∈ (V × V)) |
| 9 | 6, 8 | sylbi 217 | . . . . . . 7 ⊢ (𝑧◡(1st ↾ (V × V))𝑦 → 𝑦 ∈ (V × V)) |
| 10 | 9 | adantl 481 | . . . . . 6 ⊢ ((𝑥𝐴𝑧 ∧ 𝑧◡(1st ↾ (V × V))𝑦) → 𝑦 ∈ (V × V)) |
| 11 | 10 | exlimiv 1930 | . . . . 5 ⊢ (∃𝑧(𝑥𝐴𝑧 ∧ 𝑧◡(1st ↾ (V × V))𝑦) → 𝑦 ∈ (V × V)) |
| 12 | vex 3448 | . . . . . 6 ⊢ 𝑥 ∈ V | |
| 13 | 12, 5 | opelco 5825 | . . . . 5 ⊢ (〈𝑥, 𝑦〉 ∈ (◡(1st ↾ (V × V)) ∘ 𝐴) ↔ ∃𝑧(𝑥𝐴𝑧 ∧ 𝑧◡(1st ↾ (V × V))𝑦)) |
| 14 | opelxp 5667 | . . . . . 6 ⊢ (〈𝑥, 𝑦〉 ∈ (V × (V × V)) ↔ (𝑥 ∈ V ∧ 𝑦 ∈ (V × V))) | |
| 15 | 12, 14 | mpbiran 709 | . . . . 5 ⊢ (〈𝑥, 𝑦〉 ∈ (V × (V × V)) ↔ 𝑦 ∈ (V × V)) |
| 16 | 11, 13, 15 | 3imtr4i 292 | . . . 4 ⊢ (〈𝑥, 𝑦〉 ∈ (◡(1st ↾ (V × V)) ∘ 𝐴) → 〈𝑥, 𝑦〉 ∈ (V × (V × V))) |
| 17 | 3, 16 | relssi 5741 | . . 3 ⊢ (◡(1st ↾ (V × V)) ∘ 𝐴) ⊆ (V × (V × V)) |
| 18 | 2, 17 | sstri 3953 | . 2 ⊢ ((◡(1st ↾ (V × V)) ∘ 𝐴) ∩ (◡(2nd ↾ (V × V)) ∘ 𝐵)) ⊆ (V × (V × V)) |
| 19 | 1, 18 | eqsstri 3990 | 1 ⊢ (𝐴 ⊗ 𝐵) ⊆ (V × (V × V)) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∃wex 1779 ∈ wcel 2109 Vcvv 3444 ∩ cin 3910 ⊆ wss 3911 〈cop 4591 class class class wbr 5102 × cxp 5629 ◡ccnv 5630 ↾ cres 5633 ∘ ccom 5635 1st c1st 7945 2nd c2nd 7946 ⊗ ctxp 35812 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-br 5103 df-opab 5165 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-res 5643 df-txp 35836 |
| This theorem is referenced by: txprel 35861 brtxp2 35863 pprodss4v 35866 |
| Copyright terms: Public domain | W3C validator |