![]() |
Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > txpss3v | Structured version Visualization version GIF version |
Description: A tail Cartesian product is a subset of the class of ordered triples. (Contributed by Scott Fenton, 31-Mar-2012.) |
Ref | Expression |
---|---|
txpss3v | ⊢ (𝐴 ⊗ 𝐵) ⊆ (V × (V × V)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-txp 32833 | . 2 ⊢ (𝐴 ⊗ 𝐵) = ((◡(1st ↾ (V × V)) ∘ 𝐴) ∩ (◡(2nd ↾ (V × V)) ∘ 𝐵)) | |
2 | inss1 4093 | . . 3 ⊢ ((◡(1st ↾ (V × V)) ∘ 𝐴) ∩ (◡(2nd ↾ (V × V)) ∘ 𝐵)) ⊆ (◡(1st ↾ (V × V)) ∘ 𝐴) | |
3 | relco 5936 | . . . 4 ⊢ Rel (◡(1st ↾ (V × V)) ∘ 𝐴) | |
4 | vex 3419 | . . . . . . . . 9 ⊢ 𝑧 ∈ V | |
5 | vex 3419 | . . . . . . . . 9 ⊢ 𝑦 ∈ V | |
6 | 4, 5 | brcnv 5603 | . . . . . . . 8 ⊢ (𝑧◡(1st ↾ (V × V))𝑦 ↔ 𝑦(1st ↾ (V × V))𝑧) |
7 | 4 | brresi 5704 | . . . . . . . . 9 ⊢ (𝑦(1st ↾ (V × V))𝑧 ↔ (𝑦 ∈ (V × V) ∧ 𝑦1st 𝑧)) |
8 | 7 | simplbi 490 | . . . . . . . 8 ⊢ (𝑦(1st ↾ (V × V))𝑧 → 𝑦 ∈ (V × V)) |
9 | 6, 8 | sylbi 209 | . . . . . . 7 ⊢ (𝑧◡(1st ↾ (V × V))𝑦 → 𝑦 ∈ (V × V)) |
10 | 9 | adantl 474 | . . . . . 6 ⊢ ((𝑥𝐴𝑧 ∧ 𝑧◡(1st ↾ (V × V))𝑦) → 𝑦 ∈ (V × V)) |
11 | 10 | exlimiv 1889 | . . . . 5 ⊢ (∃𝑧(𝑥𝐴𝑧 ∧ 𝑧◡(1st ↾ (V × V))𝑦) → 𝑦 ∈ (V × V)) |
12 | vex 3419 | . . . . . 6 ⊢ 𝑥 ∈ V | |
13 | 12, 5 | opelco 5592 | . . . . 5 ⊢ (〈𝑥, 𝑦〉 ∈ (◡(1st ↾ (V × V)) ∘ 𝐴) ↔ ∃𝑧(𝑥𝐴𝑧 ∧ 𝑧◡(1st ↾ (V × V))𝑦)) |
14 | opelxp 5443 | . . . . . 6 ⊢ (〈𝑥, 𝑦〉 ∈ (V × (V × V)) ↔ (𝑥 ∈ V ∧ 𝑦 ∈ (V × V))) | |
15 | 12, 14 | mpbiran 696 | . . . . 5 ⊢ (〈𝑥, 𝑦〉 ∈ (V × (V × V)) ↔ 𝑦 ∈ (V × V)) |
16 | 11, 13, 15 | 3imtr4i 284 | . . . 4 ⊢ (〈𝑥, 𝑦〉 ∈ (◡(1st ↾ (V × V)) ∘ 𝐴) → 〈𝑥, 𝑦〉 ∈ (V × (V × V))) |
17 | 3, 16 | relssi 5510 | . . 3 ⊢ (◡(1st ↾ (V × V)) ∘ 𝐴) ⊆ (V × (V × V)) |
18 | 2, 17 | sstri 3868 | . 2 ⊢ ((◡(1st ↾ (V × V)) ∘ 𝐴) ∩ (◡(2nd ↾ (V × V)) ∘ 𝐵)) ⊆ (V × (V × V)) |
19 | 1, 18 | eqsstri 3892 | 1 ⊢ (𝐴 ⊗ 𝐵) ⊆ (V × (V × V)) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 387 ∃wex 1742 ∈ wcel 2050 Vcvv 3416 ∩ cin 3829 ⊆ wss 3830 〈cop 4447 class class class wbr 4929 × cxp 5405 ◡ccnv 5406 ↾ cres 5409 ∘ ccom 5411 1st c1st 7499 2nd c2nd 7500 ⊗ ctxp 32809 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2751 ax-sep 5060 ax-nul 5067 ax-pr 5186 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2584 df-clab 2760 df-cleq 2772 df-clel 2847 df-nfc 2919 df-ral 3094 df-rex 3095 df-rab 3098 df-v 3418 df-dif 3833 df-un 3835 df-in 3837 df-ss 3844 df-nul 4180 df-if 4351 df-sn 4442 df-pr 4444 df-op 4448 df-br 4930 df-opab 4992 df-xp 5413 df-rel 5414 df-cnv 5415 df-co 5416 df-res 5419 df-txp 32833 |
This theorem is referenced by: txprel 32858 brtxp2 32860 pprodss4v 32863 |
Copyright terms: Public domain | W3C validator |