Step | Hyp | Ref
| Expression |
1 | | df-txp 34815 |
. . 3
⊢ (𝐴 ⊗ 𝐵) = ((◡(1st ↾ (V × V))
∘ 𝐴) ∩ (◡(2nd ↾ (V × V))
∘ 𝐵)) |
2 | 1 | breqi 5154 |
. 2
⊢ (𝑋(𝐴 ⊗ 𝐵)⟨𝑌, 𝑍⟩ ↔ 𝑋((◡(1st ↾ (V × V))
∘ 𝐴) ∩ (◡(2nd ↾ (V × V))
∘ 𝐵))⟨𝑌, 𝑍⟩) |
3 | | brin 5200 |
. 2
⊢ (𝑋((◡(1st ↾ (V × V))
∘ 𝐴) ∩ (◡(2nd ↾ (V × V))
∘ 𝐵))⟨𝑌, 𝑍⟩ ↔ (𝑋(◡(1st ↾ (V × V))
∘ 𝐴)⟨𝑌, 𝑍⟩ ∧ 𝑋(◡(2nd ↾ (V × V))
∘ 𝐵)⟨𝑌, 𝑍⟩)) |
4 | | brtxp.1 |
. . . . 5
⊢ 𝑋 ∈ V |
5 | | opex 5464 |
. . . . 5
⊢
⟨𝑌, 𝑍⟩ ∈ V |
6 | 4, 5 | brco 5869 |
. . . 4
⊢ (𝑋(◡(1st ↾ (V × V))
∘ 𝐴)⟨𝑌, 𝑍⟩ ↔ ∃𝑦(𝑋𝐴𝑦 ∧ 𝑦◡(1st ↾ (V ×
V))⟨𝑌, 𝑍⟩)) |
7 | | vex 3479 |
. . . . . . . 8
⊢ 𝑦 ∈ V |
8 | 7, 5 | brcnv 5881 |
. . . . . . 7
⊢ (𝑦◡(1st ↾ (V ×
V))⟨𝑌, 𝑍⟩ ↔ ⟨𝑌, 𝑍⟩(1st ↾ (V ×
V))𝑦) |
9 | | brtxp.2 |
. . . . . . . . 9
⊢ 𝑌 ∈ V |
10 | | brtxp.3 |
. . . . . . . . 9
⊢ 𝑍 ∈ V |
11 | 9, 10 | opelvv 5715 |
. . . . . . . 8
⊢
⟨𝑌, 𝑍⟩ ∈ (V ×
V) |
12 | 7 | brresi 5989 |
. . . . . . . 8
⊢
(⟨𝑌, 𝑍⟩(1st ↾ (V
× V))𝑦 ↔
(⟨𝑌, 𝑍⟩ ∈ (V × V) ∧
⟨𝑌, 𝑍⟩1st 𝑦)) |
13 | 11, 12 | mpbiran 708 |
. . . . . . 7
⊢
(⟨𝑌, 𝑍⟩(1st ↾ (V
× V))𝑦 ↔
⟨𝑌, 𝑍⟩1st 𝑦) |
14 | 9, 10 | br1steq 34731 |
. . . . . . 7
⊢
(⟨𝑌, 𝑍⟩1st 𝑦 ↔ 𝑦 = 𝑌) |
15 | 8, 13, 14 | 3bitri 297 |
. . . . . 6
⊢ (𝑦◡(1st ↾ (V ×
V))⟨𝑌, 𝑍⟩ ↔ 𝑦 = 𝑌) |
16 | 15 | anbi1ci 627 |
. . . . 5
⊢ ((𝑋𝐴𝑦 ∧ 𝑦◡(1st ↾ (V ×
V))⟨𝑌, 𝑍⟩) ↔ (𝑦 = 𝑌 ∧ 𝑋𝐴𝑦)) |
17 | 16 | exbii 1851 |
. . . 4
⊢
(∃𝑦(𝑋𝐴𝑦 ∧ 𝑦◡(1st ↾ (V ×
V))⟨𝑌, 𝑍⟩) ↔ ∃𝑦(𝑦 = 𝑌 ∧ 𝑋𝐴𝑦)) |
18 | | breq2 5152 |
. . . . 5
⊢ (𝑦 = 𝑌 → (𝑋𝐴𝑦 ↔ 𝑋𝐴𝑌)) |
19 | 9, 18 | ceqsexv 3526 |
. . . 4
⊢
(∃𝑦(𝑦 = 𝑌 ∧ 𝑋𝐴𝑦) ↔ 𝑋𝐴𝑌) |
20 | 6, 17, 19 | 3bitri 297 |
. . 3
⊢ (𝑋(◡(1st ↾ (V × V))
∘ 𝐴)⟨𝑌, 𝑍⟩ ↔ 𝑋𝐴𝑌) |
21 | 4, 5 | brco 5869 |
. . . 4
⊢ (𝑋(◡(2nd ↾ (V × V))
∘ 𝐵)⟨𝑌, 𝑍⟩ ↔ ∃𝑧(𝑋𝐵𝑧 ∧ 𝑧◡(2nd ↾ (V ×
V))⟨𝑌, 𝑍⟩)) |
22 | | vex 3479 |
. . . . . . . 8
⊢ 𝑧 ∈ V |
23 | 22, 5 | brcnv 5881 |
. . . . . . 7
⊢ (𝑧◡(2nd ↾ (V ×
V))⟨𝑌, 𝑍⟩ ↔ ⟨𝑌, 𝑍⟩(2nd ↾ (V ×
V))𝑧) |
24 | 22 | brresi 5989 |
. . . . . . . 8
⊢
(⟨𝑌, 𝑍⟩(2nd ↾ (V
× V))𝑧 ↔
(⟨𝑌, 𝑍⟩ ∈ (V × V) ∧
⟨𝑌, 𝑍⟩2nd 𝑧)) |
25 | 11, 24 | mpbiran 708 |
. . . . . . 7
⊢
(⟨𝑌, 𝑍⟩(2nd ↾ (V
× V))𝑧 ↔
⟨𝑌, 𝑍⟩2nd 𝑧) |
26 | 9, 10 | br2ndeq 34732 |
. . . . . . 7
⊢
(⟨𝑌, 𝑍⟩2nd 𝑧 ↔ 𝑧 = 𝑍) |
27 | 23, 25, 26 | 3bitri 297 |
. . . . . 6
⊢ (𝑧◡(2nd ↾ (V ×
V))⟨𝑌, 𝑍⟩ ↔ 𝑧 = 𝑍) |
28 | 27 | anbi1ci 627 |
. . . . 5
⊢ ((𝑋𝐵𝑧 ∧ 𝑧◡(2nd ↾ (V ×
V))⟨𝑌, 𝑍⟩) ↔ (𝑧 = 𝑍 ∧ 𝑋𝐵𝑧)) |
29 | 28 | exbii 1851 |
. . . 4
⊢
(∃𝑧(𝑋𝐵𝑧 ∧ 𝑧◡(2nd ↾ (V ×
V))⟨𝑌, 𝑍⟩) ↔ ∃𝑧(𝑧 = 𝑍 ∧ 𝑋𝐵𝑧)) |
30 | | breq2 5152 |
. . . . 5
⊢ (𝑧 = 𝑍 → (𝑋𝐵𝑧 ↔ 𝑋𝐵𝑍)) |
31 | 10, 30 | ceqsexv 3526 |
. . . 4
⊢
(∃𝑧(𝑧 = 𝑍 ∧ 𝑋𝐵𝑧) ↔ 𝑋𝐵𝑍) |
32 | 21, 29, 31 | 3bitri 297 |
. . 3
⊢ (𝑋(◡(2nd ↾ (V × V))
∘ 𝐵)⟨𝑌, 𝑍⟩ ↔ 𝑋𝐵𝑍) |
33 | 20, 32 | anbi12i 628 |
. 2
⊢ ((𝑋(◡(1st ↾ (V × V))
∘ 𝐴)⟨𝑌, 𝑍⟩ ∧ 𝑋(◡(2nd ↾ (V × V))
∘ 𝐵)⟨𝑌, 𝑍⟩) ↔ (𝑋𝐴𝑌 ∧ 𝑋𝐵𝑍)) |
34 | 2, 3, 33 | 3bitri 297 |
1
⊢ (𝑋(𝐴 ⊗ 𝐵)⟨𝑌, 𝑍⟩ ↔ (𝑋𝐴𝑌 ∧ 𝑋𝐵𝑍)) |