Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brtxp Structured version   Visualization version   GIF version

Theorem brtxp 33341
Description: Characterize a ternary relation over a tail Cartesian product. Together with txpss3v 33339, this completely defines membership in a tail cross. (Contributed by Scott Fenton, 31-Mar-2012.) (Proof shortened by Peter Mazsa, 2-Oct-2022.)
Hypotheses
Ref Expression
brtxp.1 𝑋 ∈ V
brtxp.2 𝑌 ∈ V
brtxp.3 𝑍 ∈ V
Assertion
Ref Expression
brtxp (𝑋(𝐴𝐵)⟨𝑌, 𝑍⟩ ↔ (𝑋𝐴𝑌𝑋𝐵𝑍))

Proof of Theorem brtxp
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-txp 33315 . . 3 (𝐴𝐵) = (((1st ↾ (V × V)) ∘ 𝐴) ∩ ((2nd ↾ (V × V)) ∘ 𝐵))
21breqi 5072 . 2 (𝑋(𝐴𝐵)⟨𝑌, 𝑍⟩ ↔ 𝑋(((1st ↾ (V × V)) ∘ 𝐴) ∩ ((2nd ↾ (V × V)) ∘ 𝐵))⟨𝑌, 𝑍⟩)
3 brin 5118 . 2 (𝑋(((1st ↾ (V × V)) ∘ 𝐴) ∩ ((2nd ↾ (V × V)) ∘ 𝐵))⟨𝑌, 𝑍⟩ ↔ (𝑋((1st ↾ (V × V)) ∘ 𝐴)⟨𝑌, 𝑍⟩ ∧ 𝑋((2nd ↾ (V × V)) ∘ 𝐵)⟨𝑌, 𝑍⟩))
4 brtxp.1 . . . . 5 𝑋 ∈ V
5 opex 5356 . . . . 5 𝑌, 𝑍⟩ ∈ V
64, 5brco 5741 . . . 4 (𝑋((1st ↾ (V × V)) ∘ 𝐴)⟨𝑌, 𝑍⟩ ↔ ∃𝑦(𝑋𝐴𝑦𝑦(1st ↾ (V × V))⟨𝑌, 𝑍⟩))
7 vex 3497 . . . . . . . 8 𝑦 ∈ V
87, 5brcnv 5753 . . . . . . 7 (𝑦(1st ↾ (V × V))⟨𝑌, 𝑍⟩ ↔ ⟨𝑌, 𝑍⟩(1st ↾ (V × V))𝑦)
9 brtxp.2 . . . . . . . . 9 𝑌 ∈ V
10 brtxp.3 . . . . . . . . 9 𝑍 ∈ V
119, 10opelvv 5594 . . . . . . . 8 𝑌, 𝑍⟩ ∈ (V × V)
127brresi 5862 . . . . . . . 8 (⟨𝑌, 𝑍⟩(1st ↾ (V × V))𝑦 ↔ (⟨𝑌, 𝑍⟩ ∈ (V × V) ∧ ⟨𝑌, 𝑍⟩1st 𝑦))
1311, 12mpbiran 707 . . . . . . 7 (⟨𝑌, 𝑍⟩(1st ↾ (V × V))𝑦 ↔ ⟨𝑌, 𝑍⟩1st 𝑦)
149, 10br1steq 33014 . . . . . . 7 (⟨𝑌, 𝑍⟩1st 𝑦𝑦 = 𝑌)
158, 13, 143bitri 299 . . . . . 6 (𝑦(1st ↾ (V × V))⟨𝑌, 𝑍⟩ ↔ 𝑦 = 𝑌)
1615anbi1ci 627 . . . . 5 ((𝑋𝐴𝑦𝑦(1st ↾ (V × V))⟨𝑌, 𝑍⟩) ↔ (𝑦 = 𝑌𝑋𝐴𝑦))
1716exbii 1848 . . . 4 (∃𝑦(𝑋𝐴𝑦𝑦(1st ↾ (V × V))⟨𝑌, 𝑍⟩) ↔ ∃𝑦(𝑦 = 𝑌𝑋𝐴𝑦))
18 breq2 5070 . . . . 5 (𝑦 = 𝑌 → (𝑋𝐴𝑦𝑋𝐴𝑌))
199, 18ceqsexv 3541 . . . 4 (∃𝑦(𝑦 = 𝑌𝑋𝐴𝑦) ↔ 𝑋𝐴𝑌)
206, 17, 193bitri 299 . . 3 (𝑋((1st ↾ (V × V)) ∘ 𝐴)⟨𝑌, 𝑍⟩ ↔ 𝑋𝐴𝑌)
214, 5brco 5741 . . . 4 (𝑋((2nd ↾ (V × V)) ∘ 𝐵)⟨𝑌, 𝑍⟩ ↔ ∃𝑧(𝑋𝐵𝑧𝑧(2nd ↾ (V × V))⟨𝑌, 𝑍⟩))
22 vex 3497 . . . . . . . 8 𝑧 ∈ V
2322, 5brcnv 5753 . . . . . . 7 (𝑧(2nd ↾ (V × V))⟨𝑌, 𝑍⟩ ↔ ⟨𝑌, 𝑍⟩(2nd ↾ (V × V))𝑧)
2422brresi 5862 . . . . . . . 8 (⟨𝑌, 𝑍⟩(2nd ↾ (V × V))𝑧 ↔ (⟨𝑌, 𝑍⟩ ∈ (V × V) ∧ ⟨𝑌, 𝑍⟩2nd 𝑧))
2511, 24mpbiran 707 . . . . . . 7 (⟨𝑌, 𝑍⟩(2nd ↾ (V × V))𝑧 ↔ ⟨𝑌, 𝑍⟩2nd 𝑧)
269, 10br2ndeq 33015 . . . . . . 7 (⟨𝑌, 𝑍⟩2nd 𝑧𝑧 = 𝑍)
2723, 25, 263bitri 299 . . . . . 6 (𝑧(2nd ↾ (V × V))⟨𝑌, 𝑍⟩ ↔ 𝑧 = 𝑍)
2827anbi1ci 627 . . . . 5 ((𝑋𝐵𝑧𝑧(2nd ↾ (V × V))⟨𝑌, 𝑍⟩) ↔ (𝑧 = 𝑍𝑋𝐵𝑧))
2928exbii 1848 . . . 4 (∃𝑧(𝑋𝐵𝑧𝑧(2nd ↾ (V × V))⟨𝑌, 𝑍⟩) ↔ ∃𝑧(𝑧 = 𝑍𝑋𝐵𝑧))
30 breq2 5070 . . . . 5 (𝑧 = 𝑍 → (𝑋𝐵𝑧𝑋𝐵𝑍))
3110, 30ceqsexv 3541 . . . 4 (∃𝑧(𝑧 = 𝑍𝑋𝐵𝑧) ↔ 𝑋𝐵𝑍)
3221, 29, 313bitri 299 . . 3 (𝑋((2nd ↾ (V × V)) ∘ 𝐵)⟨𝑌, 𝑍⟩ ↔ 𝑋𝐵𝑍)
3320, 32anbi12i 628 . 2 ((𝑋((1st ↾ (V × V)) ∘ 𝐴)⟨𝑌, 𝑍⟩ ∧ 𝑋((2nd ↾ (V × V)) ∘ 𝐵)⟨𝑌, 𝑍⟩) ↔ (𝑋𝐴𝑌𝑋𝐵𝑍))
342, 3, 333bitri 299 1 (𝑋(𝐴𝐵)⟨𝑌, 𝑍⟩ ↔ (𝑋𝐴𝑌𝑋𝐵𝑍))
Colors of variables: wff setvar class
Syntax hints:  wb 208  wa 398   = wceq 1537  wex 1780  wcel 2114  Vcvv 3494  cin 3935  cop 4573   class class class wbr 5066   × cxp 5553  ccnv 5554  cres 5557  ccom 5559  1st c1st 7687  2nd c2nd 7688  ctxp 33291
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3773  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-br 5067  df-opab 5129  df-mpt 5147  df-id 5460  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-fo 6361  df-fv 6363  df-1st 7689  df-2nd 7690  df-txp 33315
This theorem is referenced by:  brtxp2  33342  pprodss4v  33345  brpprod  33346  brsset  33350  brtxpsd  33355  elfuns  33376
  Copyright terms: Public domain W3C validator