Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brtxp Structured version   Visualization version   GIF version

Theorem brtxp 35322
Description: Characterize a ternary relation over a tail Cartesian product. Together with txpss3v 35320, this completely defines membership in a tail cross. (Contributed by Scott Fenton, 31-Mar-2012.) (Proof shortened by Peter Mazsa, 2-Oct-2022.)
Hypotheses
Ref Expression
brtxp.1 𝑋 ∈ V
brtxp.2 𝑌 ∈ V
brtxp.3 𝑍 ∈ V
Assertion
Ref Expression
brtxp (𝑋(𝐴𝐵)⟨𝑌, 𝑍⟩ ↔ (𝑋𝐴𝑌𝑋𝐵𝑍))

Proof of Theorem brtxp
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-txp 35296 . . 3 (𝐴𝐵) = (((1st ↾ (V × V)) ∘ 𝐴) ∩ ((2nd ↾ (V × V)) ∘ 𝐵))
21breqi 5154 . 2 (𝑋(𝐴𝐵)⟨𝑌, 𝑍⟩ ↔ 𝑋(((1st ↾ (V × V)) ∘ 𝐴) ∩ ((2nd ↾ (V × V)) ∘ 𝐵))⟨𝑌, 𝑍⟩)
3 brin 5200 . 2 (𝑋(((1st ↾ (V × V)) ∘ 𝐴) ∩ ((2nd ↾ (V × V)) ∘ 𝐵))⟨𝑌, 𝑍⟩ ↔ (𝑋((1st ↾ (V × V)) ∘ 𝐴)⟨𝑌, 𝑍⟩ ∧ 𝑋((2nd ↾ (V × V)) ∘ 𝐵)⟨𝑌, 𝑍⟩))
4 brtxp.1 . . . . 5 𝑋 ∈ V
5 opex 5464 . . . . 5 𝑌, 𝑍⟩ ∈ V
64, 5brco 5870 . . . 4 (𝑋((1st ↾ (V × V)) ∘ 𝐴)⟨𝑌, 𝑍⟩ ↔ ∃𝑦(𝑋𝐴𝑦𝑦(1st ↾ (V × V))⟨𝑌, 𝑍⟩))
7 vex 3477 . . . . . . . 8 𝑦 ∈ V
87, 5brcnv 5882 . . . . . . 7 (𝑦(1st ↾ (V × V))⟨𝑌, 𝑍⟩ ↔ ⟨𝑌, 𝑍⟩(1st ↾ (V × V))𝑦)
9 brtxp.2 . . . . . . . . 9 𝑌 ∈ V
10 brtxp.3 . . . . . . . . 9 𝑍 ∈ V
119, 10opelvv 5716 . . . . . . . 8 𝑌, 𝑍⟩ ∈ (V × V)
127brresi 5990 . . . . . . . 8 (⟨𝑌, 𝑍⟩(1st ↾ (V × V))𝑦 ↔ (⟨𝑌, 𝑍⟩ ∈ (V × V) ∧ ⟨𝑌, 𝑍⟩1st 𝑦))
1311, 12mpbiran 706 . . . . . . 7 (⟨𝑌, 𝑍⟩(1st ↾ (V × V))𝑦 ↔ ⟨𝑌, 𝑍⟩1st 𝑦)
149, 10br1steq 35212 . . . . . . 7 (⟨𝑌, 𝑍⟩1st 𝑦𝑦 = 𝑌)
158, 13, 143bitri 297 . . . . . 6 (𝑦(1st ↾ (V × V))⟨𝑌, 𝑍⟩ ↔ 𝑦 = 𝑌)
1615anbi1ci 625 . . . . 5 ((𝑋𝐴𝑦𝑦(1st ↾ (V × V))⟨𝑌, 𝑍⟩) ↔ (𝑦 = 𝑌𝑋𝐴𝑦))
1716exbii 1849 . . . 4 (∃𝑦(𝑋𝐴𝑦𝑦(1st ↾ (V × V))⟨𝑌, 𝑍⟩) ↔ ∃𝑦(𝑦 = 𝑌𝑋𝐴𝑦))
18 breq2 5152 . . . . 5 (𝑦 = 𝑌 → (𝑋𝐴𝑦𝑋𝐴𝑌))
199, 18ceqsexv 3525 . . . 4 (∃𝑦(𝑦 = 𝑌𝑋𝐴𝑦) ↔ 𝑋𝐴𝑌)
206, 17, 193bitri 297 . . 3 (𝑋((1st ↾ (V × V)) ∘ 𝐴)⟨𝑌, 𝑍⟩ ↔ 𝑋𝐴𝑌)
214, 5brco 5870 . . . 4 (𝑋((2nd ↾ (V × V)) ∘ 𝐵)⟨𝑌, 𝑍⟩ ↔ ∃𝑧(𝑋𝐵𝑧𝑧(2nd ↾ (V × V))⟨𝑌, 𝑍⟩))
22 vex 3477 . . . . . . . 8 𝑧 ∈ V
2322, 5brcnv 5882 . . . . . . 7 (𝑧(2nd ↾ (V × V))⟨𝑌, 𝑍⟩ ↔ ⟨𝑌, 𝑍⟩(2nd ↾ (V × V))𝑧)
2422brresi 5990 . . . . . . . 8 (⟨𝑌, 𝑍⟩(2nd ↾ (V × V))𝑧 ↔ (⟨𝑌, 𝑍⟩ ∈ (V × V) ∧ ⟨𝑌, 𝑍⟩2nd 𝑧))
2511, 24mpbiran 706 . . . . . . 7 (⟨𝑌, 𝑍⟩(2nd ↾ (V × V))𝑧 ↔ ⟨𝑌, 𝑍⟩2nd 𝑧)
269, 10br2ndeq 35213 . . . . . . 7 (⟨𝑌, 𝑍⟩2nd 𝑧𝑧 = 𝑍)
2723, 25, 263bitri 297 . . . . . 6 (𝑧(2nd ↾ (V × V))⟨𝑌, 𝑍⟩ ↔ 𝑧 = 𝑍)
2827anbi1ci 625 . . . . 5 ((𝑋𝐵𝑧𝑧(2nd ↾ (V × V))⟨𝑌, 𝑍⟩) ↔ (𝑧 = 𝑍𝑋𝐵𝑧))
2928exbii 1849 . . . 4 (∃𝑧(𝑋𝐵𝑧𝑧(2nd ↾ (V × V))⟨𝑌, 𝑍⟩) ↔ ∃𝑧(𝑧 = 𝑍𝑋𝐵𝑧))
30 breq2 5152 . . . . 5 (𝑧 = 𝑍 → (𝑋𝐵𝑧𝑋𝐵𝑍))
3110, 30ceqsexv 3525 . . . 4 (∃𝑧(𝑧 = 𝑍𝑋𝐵𝑧) ↔ 𝑋𝐵𝑍)
3221, 29, 313bitri 297 . . 3 (𝑋((2nd ↾ (V × V)) ∘ 𝐵)⟨𝑌, 𝑍⟩ ↔ 𝑋𝐵𝑍)
3320, 32anbi12i 626 . 2 ((𝑋((1st ↾ (V × V)) ∘ 𝐴)⟨𝑌, 𝑍⟩ ∧ 𝑋((2nd ↾ (V × V)) ∘ 𝐵)⟨𝑌, 𝑍⟩) ↔ (𝑋𝐴𝑌𝑋𝐵𝑍))
342, 3, 333bitri 297 1 (𝑋(𝐴𝐵)⟨𝑌, 𝑍⟩ ↔ (𝑋𝐴𝑌𝑋𝐵𝑍))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395   = wceq 1540  wex 1780  wcel 2105  Vcvv 3473  cin 3947  cop 4634   class class class wbr 5148   × cxp 5674  ccnv 5675  cres 5678  ccom 5680  1st c1st 7977  2nd c2nd 7978  ctxp 35272
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pr 5427  ax-un 7729
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-fo 6549  df-fv 6551  df-1st 7979  df-2nd 7980  df-txp 35296
This theorem is referenced by:  brtxp2  35323  pprodss4v  35326  brpprod  35327  brsset  35331  brtxpsd  35336  elfuns  35357
  Copyright terms: Public domain W3C validator