Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brtxp Structured version   Visualization version   GIF version

Theorem brtxp 34109
Description: Characterize a ternary relation over a tail Cartesian product. Together with txpss3v 34107, this completely defines membership in a tail cross. (Contributed by Scott Fenton, 31-Mar-2012.) (Proof shortened by Peter Mazsa, 2-Oct-2022.)
Hypotheses
Ref Expression
brtxp.1 𝑋 ∈ V
brtxp.2 𝑌 ∈ V
brtxp.3 𝑍 ∈ V
Assertion
Ref Expression
brtxp (𝑋(𝐴𝐵)⟨𝑌, 𝑍⟩ ↔ (𝑋𝐴𝑌𝑋𝐵𝑍))

Proof of Theorem brtxp
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-txp 34083 . . 3 (𝐴𝐵) = (((1st ↾ (V × V)) ∘ 𝐴) ∩ ((2nd ↾ (V × V)) ∘ 𝐵))
21breqi 5076 . 2 (𝑋(𝐴𝐵)⟨𝑌, 𝑍⟩ ↔ 𝑋(((1st ↾ (V × V)) ∘ 𝐴) ∩ ((2nd ↾ (V × V)) ∘ 𝐵))⟨𝑌, 𝑍⟩)
3 brin 5122 . 2 (𝑋(((1st ↾ (V × V)) ∘ 𝐴) ∩ ((2nd ↾ (V × V)) ∘ 𝐵))⟨𝑌, 𝑍⟩ ↔ (𝑋((1st ↾ (V × V)) ∘ 𝐴)⟨𝑌, 𝑍⟩ ∧ 𝑋((2nd ↾ (V × V)) ∘ 𝐵)⟨𝑌, 𝑍⟩))
4 brtxp.1 . . . . 5 𝑋 ∈ V
5 opex 5373 . . . . 5 𝑌, 𝑍⟩ ∈ V
64, 5brco 5768 . . . 4 (𝑋((1st ↾ (V × V)) ∘ 𝐴)⟨𝑌, 𝑍⟩ ↔ ∃𝑦(𝑋𝐴𝑦𝑦(1st ↾ (V × V))⟨𝑌, 𝑍⟩))
7 vex 3426 . . . . . . . 8 𝑦 ∈ V
87, 5brcnv 5780 . . . . . . 7 (𝑦(1st ↾ (V × V))⟨𝑌, 𝑍⟩ ↔ ⟨𝑌, 𝑍⟩(1st ↾ (V × V))𝑦)
9 brtxp.2 . . . . . . . . 9 𝑌 ∈ V
10 brtxp.3 . . . . . . . . 9 𝑍 ∈ V
119, 10opelvv 5619 . . . . . . . 8 𝑌, 𝑍⟩ ∈ (V × V)
127brresi 5889 . . . . . . . 8 (⟨𝑌, 𝑍⟩(1st ↾ (V × V))𝑦 ↔ (⟨𝑌, 𝑍⟩ ∈ (V × V) ∧ ⟨𝑌, 𝑍⟩1st 𝑦))
1311, 12mpbiran 705 . . . . . . 7 (⟨𝑌, 𝑍⟩(1st ↾ (V × V))𝑦 ↔ ⟨𝑌, 𝑍⟩1st 𝑦)
149, 10br1steq 33651 . . . . . . 7 (⟨𝑌, 𝑍⟩1st 𝑦𝑦 = 𝑌)
158, 13, 143bitri 296 . . . . . 6 (𝑦(1st ↾ (V × V))⟨𝑌, 𝑍⟩ ↔ 𝑦 = 𝑌)
1615anbi1ci 625 . . . . 5 ((𝑋𝐴𝑦𝑦(1st ↾ (V × V))⟨𝑌, 𝑍⟩) ↔ (𝑦 = 𝑌𝑋𝐴𝑦))
1716exbii 1851 . . . 4 (∃𝑦(𝑋𝐴𝑦𝑦(1st ↾ (V × V))⟨𝑌, 𝑍⟩) ↔ ∃𝑦(𝑦 = 𝑌𝑋𝐴𝑦))
18 breq2 5074 . . . . 5 (𝑦 = 𝑌 → (𝑋𝐴𝑦𝑋𝐴𝑌))
199, 18ceqsexv 3469 . . . 4 (∃𝑦(𝑦 = 𝑌𝑋𝐴𝑦) ↔ 𝑋𝐴𝑌)
206, 17, 193bitri 296 . . 3 (𝑋((1st ↾ (V × V)) ∘ 𝐴)⟨𝑌, 𝑍⟩ ↔ 𝑋𝐴𝑌)
214, 5brco 5768 . . . 4 (𝑋((2nd ↾ (V × V)) ∘ 𝐵)⟨𝑌, 𝑍⟩ ↔ ∃𝑧(𝑋𝐵𝑧𝑧(2nd ↾ (V × V))⟨𝑌, 𝑍⟩))
22 vex 3426 . . . . . . . 8 𝑧 ∈ V
2322, 5brcnv 5780 . . . . . . 7 (𝑧(2nd ↾ (V × V))⟨𝑌, 𝑍⟩ ↔ ⟨𝑌, 𝑍⟩(2nd ↾ (V × V))𝑧)
2422brresi 5889 . . . . . . . 8 (⟨𝑌, 𝑍⟩(2nd ↾ (V × V))𝑧 ↔ (⟨𝑌, 𝑍⟩ ∈ (V × V) ∧ ⟨𝑌, 𝑍⟩2nd 𝑧))
2511, 24mpbiran 705 . . . . . . 7 (⟨𝑌, 𝑍⟩(2nd ↾ (V × V))𝑧 ↔ ⟨𝑌, 𝑍⟩2nd 𝑧)
269, 10br2ndeq 33652 . . . . . . 7 (⟨𝑌, 𝑍⟩2nd 𝑧𝑧 = 𝑍)
2723, 25, 263bitri 296 . . . . . 6 (𝑧(2nd ↾ (V × V))⟨𝑌, 𝑍⟩ ↔ 𝑧 = 𝑍)
2827anbi1ci 625 . . . . 5 ((𝑋𝐵𝑧𝑧(2nd ↾ (V × V))⟨𝑌, 𝑍⟩) ↔ (𝑧 = 𝑍𝑋𝐵𝑧))
2928exbii 1851 . . . 4 (∃𝑧(𝑋𝐵𝑧𝑧(2nd ↾ (V × V))⟨𝑌, 𝑍⟩) ↔ ∃𝑧(𝑧 = 𝑍𝑋𝐵𝑧))
30 breq2 5074 . . . . 5 (𝑧 = 𝑍 → (𝑋𝐵𝑧𝑋𝐵𝑍))
3110, 30ceqsexv 3469 . . . 4 (∃𝑧(𝑧 = 𝑍𝑋𝐵𝑧) ↔ 𝑋𝐵𝑍)
3221, 29, 313bitri 296 . . 3 (𝑋((2nd ↾ (V × V)) ∘ 𝐵)⟨𝑌, 𝑍⟩ ↔ 𝑋𝐵𝑍)
3320, 32anbi12i 626 . 2 ((𝑋((1st ↾ (V × V)) ∘ 𝐴)⟨𝑌, 𝑍⟩ ∧ 𝑋((2nd ↾ (V × V)) ∘ 𝐵)⟨𝑌, 𝑍⟩) ↔ (𝑋𝐴𝑌𝑋𝐵𝑍))
342, 3, 333bitri 296 1 (𝑋(𝐴𝐵)⟨𝑌, 𝑍⟩ ↔ (𝑋𝐴𝑌𝑋𝐵𝑍))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395   = wceq 1539  wex 1783  wcel 2108  Vcvv 3422  cin 3882  cop 4564   class class class wbr 5070   × cxp 5578  ccnv 5579  cres 5582  ccom 5584  1st c1st 7802  2nd c2nd 7803  ctxp 34059
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-fo 6424  df-fv 6426  df-1st 7804  df-2nd 7805  df-txp 34083
This theorem is referenced by:  brtxp2  34110  pprodss4v  34113  brpprod  34114  brsset  34118  brtxpsd  34123  elfuns  34144
  Copyright terms: Public domain W3C validator