Detailed syntax breakdown of Definition df-ufil
Step | Hyp | Ref
| Expression |
1 | | cufil 23050 |
. 2
class
UFil |
2 | | vg |
. . 3
setvar 𝑔 |
3 | | cvv 3432 |
. . 3
class
V |
4 | | vx |
. . . . . . 7
setvar 𝑥 |
5 | | vf |
. . . . . . 7
setvar 𝑓 |
6 | 4, 5 | wel 2107 |
. . . . . 6
wff 𝑥 ∈ 𝑓 |
7 | 2 | cv 1538 |
. . . . . . . 8
class 𝑔 |
8 | 4 | cv 1538 |
. . . . . . . 8
class 𝑥 |
9 | 7, 8 | cdif 3884 |
. . . . . . 7
class (𝑔 ∖ 𝑥) |
10 | 5 | cv 1538 |
. . . . . . 7
class 𝑓 |
11 | 9, 10 | wcel 2106 |
. . . . . 6
wff (𝑔 ∖ 𝑥) ∈ 𝑓 |
12 | 6, 11 | wo 844 |
. . . . 5
wff (𝑥 ∈ 𝑓 ∨ (𝑔 ∖ 𝑥) ∈ 𝑓) |
13 | 7 | cpw 4533 |
. . . . 5
class 𝒫
𝑔 |
14 | 12, 4, 13 | wral 3064 |
. . . 4
wff
∀𝑥 ∈
𝒫 𝑔(𝑥 ∈ 𝑓 ∨ (𝑔 ∖ 𝑥) ∈ 𝑓) |
15 | | cfil 22996 |
. . . . 5
class
Fil |
16 | 7, 15 | cfv 6433 |
. . . 4
class
(Fil‘𝑔) |
17 | 14, 5, 16 | crab 3068 |
. . 3
class {𝑓 ∈ (Fil‘𝑔) ∣ ∀𝑥 ∈ 𝒫 𝑔(𝑥 ∈ 𝑓 ∨ (𝑔 ∖ 𝑥) ∈ 𝑓)} |
18 | 2, 3, 17 | cmpt 5157 |
. 2
class (𝑔 ∈ V ↦ {𝑓 ∈ (Fil‘𝑔) ∣ ∀𝑥 ∈ 𝒫 𝑔(𝑥 ∈ 𝑓 ∨ (𝑔 ∖ 𝑥) ∈ 𝑓)}) |
19 | 1, 18 | wceq 1539 |
1
wff UFil =
(𝑔 ∈ V ↦ {𝑓 ∈ (Fil‘𝑔) ∣ ∀𝑥 ∈ 𝒫 𝑔(𝑥 ∈ 𝑓 ∨ (𝑔 ∖ 𝑥) ∈ 𝑓)}) |