| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isufil | Structured version Visualization version GIF version | ||
| Description: The property of being an ultrafilter. (Contributed by Jeff Hankins, 30-Nov-2009.) (Revised by Mario Carneiro, 29-Jul-2015.) |
| Ref | Expression |
|---|---|
| isufil | ⊢ (𝐹 ∈ (UFil‘𝑋) ↔ (𝐹 ∈ (Fil‘𝑋) ∧ ∀𝑥 ∈ 𝒫 𝑋(𝑥 ∈ 𝐹 ∨ (𝑋 ∖ 𝑥) ∈ 𝐹))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ufil 23819 | . 2 ⊢ UFil = (𝑦 ∈ V ↦ {𝑧 ∈ (Fil‘𝑦) ∣ ∀𝑥 ∈ 𝒫 𝑦(𝑥 ∈ 𝑧 ∨ (𝑦 ∖ 𝑥) ∈ 𝑧)}) | |
| 2 | pweq 4565 | . . . 4 ⊢ (𝑦 = 𝑋 → 𝒫 𝑦 = 𝒫 𝑋) | |
| 3 | 2 | adantr 480 | . . 3 ⊢ ((𝑦 = 𝑋 ∧ 𝑧 = 𝐹) → 𝒫 𝑦 = 𝒫 𝑋) |
| 4 | eleq2 2822 | . . . . 5 ⊢ (𝑧 = 𝐹 → (𝑥 ∈ 𝑧 ↔ 𝑥 ∈ 𝐹)) | |
| 5 | 4 | adantl 481 | . . . 4 ⊢ ((𝑦 = 𝑋 ∧ 𝑧 = 𝐹) → (𝑥 ∈ 𝑧 ↔ 𝑥 ∈ 𝐹)) |
| 6 | difeq1 4068 | . . . . 5 ⊢ (𝑦 = 𝑋 → (𝑦 ∖ 𝑥) = (𝑋 ∖ 𝑥)) | |
| 7 | eleq12 2823 | . . . . 5 ⊢ (((𝑦 ∖ 𝑥) = (𝑋 ∖ 𝑥) ∧ 𝑧 = 𝐹) → ((𝑦 ∖ 𝑥) ∈ 𝑧 ↔ (𝑋 ∖ 𝑥) ∈ 𝐹)) | |
| 8 | 6, 7 | sylan 580 | . . . 4 ⊢ ((𝑦 = 𝑋 ∧ 𝑧 = 𝐹) → ((𝑦 ∖ 𝑥) ∈ 𝑧 ↔ (𝑋 ∖ 𝑥) ∈ 𝐹)) |
| 9 | 5, 8 | orbi12d 918 | . . 3 ⊢ ((𝑦 = 𝑋 ∧ 𝑧 = 𝐹) → ((𝑥 ∈ 𝑧 ∨ (𝑦 ∖ 𝑥) ∈ 𝑧) ↔ (𝑥 ∈ 𝐹 ∨ (𝑋 ∖ 𝑥) ∈ 𝐹))) |
| 10 | 3, 9 | raleqbidv 3313 | . 2 ⊢ ((𝑦 = 𝑋 ∧ 𝑧 = 𝐹) → (∀𝑥 ∈ 𝒫 𝑦(𝑥 ∈ 𝑧 ∨ (𝑦 ∖ 𝑥) ∈ 𝑧) ↔ ∀𝑥 ∈ 𝒫 𝑋(𝑥 ∈ 𝐹 ∨ (𝑋 ∖ 𝑥) ∈ 𝐹))) |
| 11 | fveq2 6830 | . 2 ⊢ (𝑦 = 𝑋 → (Fil‘𝑦) = (Fil‘𝑋)) | |
| 12 | fvex 6843 | . 2 ⊢ (Fil‘𝑦) ∈ V | |
| 13 | elfvdm 6864 | . 2 ⊢ (𝐹 ∈ (Fil‘𝑋) → 𝑋 ∈ dom Fil) | |
| 14 | 1, 10, 11, 12, 13 | elmptrab2 23746 | 1 ⊢ (𝐹 ∈ (UFil‘𝑋) ↔ (𝐹 ∈ (Fil‘𝑋) ∧ ∀𝑥 ∈ 𝒫 𝑋(𝑥 ∈ 𝐹 ∨ (𝑋 ∖ 𝑥) ∈ 𝐹))) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1541 ∈ wcel 2113 ∀wral 3048 ∖ cdif 3895 𝒫 cpw 4551 dom cdm 5621 ‘cfv 6488 Filcfil 23763 UFilcufil 23817 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6444 df-fun 6490 df-fv 6496 df-ufil 23819 |
| This theorem is referenced by: ufilfil 23822 ufilss 23823 isufil2 23826 trufil 23828 fixufil 23840 fin1aufil 23850 |
| Copyright terms: Public domain | W3C validator |