| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isufil | Structured version Visualization version GIF version | ||
| Description: The property of being an ultrafilter. (Contributed by Jeff Hankins, 30-Nov-2009.) (Revised by Mario Carneiro, 29-Jul-2015.) |
| Ref | Expression |
|---|---|
| isufil | ⊢ (𝐹 ∈ (UFil‘𝑋) ↔ (𝐹 ∈ (Fil‘𝑋) ∧ ∀𝑥 ∈ 𝒫 𝑋(𝑥 ∈ 𝐹 ∨ (𝑋 ∖ 𝑥) ∈ 𝐹))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ufil 23909 | . 2 ⊢ UFil = (𝑦 ∈ V ↦ {𝑧 ∈ (Fil‘𝑦) ∣ ∀𝑥 ∈ 𝒫 𝑦(𝑥 ∈ 𝑧 ∨ (𝑦 ∖ 𝑥) ∈ 𝑧)}) | |
| 2 | pweq 4614 | . . . 4 ⊢ (𝑦 = 𝑋 → 𝒫 𝑦 = 𝒫 𝑋) | |
| 3 | 2 | adantr 480 | . . 3 ⊢ ((𝑦 = 𝑋 ∧ 𝑧 = 𝐹) → 𝒫 𝑦 = 𝒫 𝑋) |
| 4 | eleq2 2830 | . . . . 5 ⊢ (𝑧 = 𝐹 → (𝑥 ∈ 𝑧 ↔ 𝑥 ∈ 𝐹)) | |
| 5 | 4 | adantl 481 | . . . 4 ⊢ ((𝑦 = 𝑋 ∧ 𝑧 = 𝐹) → (𝑥 ∈ 𝑧 ↔ 𝑥 ∈ 𝐹)) |
| 6 | difeq1 4119 | . . . . 5 ⊢ (𝑦 = 𝑋 → (𝑦 ∖ 𝑥) = (𝑋 ∖ 𝑥)) | |
| 7 | eleq12 2831 | . . . . 5 ⊢ (((𝑦 ∖ 𝑥) = (𝑋 ∖ 𝑥) ∧ 𝑧 = 𝐹) → ((𝑦 ∖ 𝑥) ∈ 𝑧 ↔ (𝑋 ∖ 𝑥) ∈ 𝐹)) | |
| 8 | 6, 7 | sylan 580 | . . . 4 ⊢ ((𝑦 = 𝑋 ∧ 𝑧 = 𝐹) → ((𝑦 ∖ 𝑥) ∈ 𝑧 ↔ (𝑋 ∖ 𝑥) ∈ 𝐹)) |
| 9 | 5, 8 | orbi12d 919 | . . 3 ⊢ ((𝑦 = 𝑋 ∧ 𝑧 = 𝐹) → ((𝑥 ∈ 𝑧 ∨ (𝑦 ∖ 𝑥) ∈ 𝑧) ↔ (𝑥 ∈ 𝐹 ∨ (𝑋 ∖ 𝑥) ∈ 𝐹))) |
| 10 | 3, 9 | raleqbidv 3346 | . 2 ⊢ ((𝑦 = 𝑋 ∧ 𝑧 = 𝐹) → (∀𝑥 ∈ 𝒫 𝑦(𝑥 ∈ 𝑧 ∨ (𝑦 ∖ 𝑥) ∈ 𝑧) ↔ ∀𝑥 ∈ 𝒫 𝑋(𝑥 ∈ 𝐹 ∨ (𝑋 ∖ 𝑥) ∈ 𝐹))) |
| 11 | fveq2 6906 | . 2 ⊢ (𝑦 = 𝑋 → (Fil‘𝑦) = (Fil‘𝑋)) | |
| 12 | fvex 6919 | . 2 ⊢ (Fil‘𝑦) ∈ V | |
| 13 | elfvdm 6943 | . 2 ⊢ (𝐹 ∈ (Fil‘𝑋) → 𝑋 ∈ dom Fil) | |
| 14 | 1, 10, 11, 12, 13 | elmptrab2 23836 | 1 ⊢ (𝐹 ∈ (UFil‘𝑋) ↔ (𝐹 ∈ (Fil‘𝑋) ∧ ∀𝑥 ∈ 𝒫 𝑋(𝑥 ∈ 𝐹 ∨ (𝑋 ∖ 𝑥) ∈ 𝐹))) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∨ wo 848 = wceq 1540 ∈ wcel 2108 ∀wral 3061 ∖ cdif 3948 𝒫 cpw 4600 dom cdm 5685 ‘cfv 6561 Filcfil 23853 UFilcufil 23907 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pr 5432 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-iota 6514 df-fun 6563 df-fv 6569 df-ufil 23909 |
| This theorem is referenced by: ufilfil 23912 ufilss 23913 isufil2 23916 trufil 23918 fixufil 23930 fin1aufil 23940 |
| Copyright terms: Public domain | W3C validator |