MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isufil Structured version   Visualization version   GIF version

Theorem isufil 23797
Description: The property of being an ultrafilter. (Contributed by Jeff Hankins, 30-Nov-2009.) (Revised by Mario Carneiro, 29-Jul-2015.)
Assertion
Ref Expression
isufil (𝐹 ∈ (UFil‘𝑋) ↔ (𝐹 ∈ (Fil‘𝑋) ∧ ∀𝑥 ∈ 𝒫 𝑋(𝑥𝐹 ∨ (𝑋𝑥) ∈ 𝐹)))
Distinct variable groups:   𝑥,𝐹   𝑥,𝑋

Proof of Theorem isufil
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ufil 23795 . 2 UFil = (𝑦 ∈ V ↦ {𝑧 ∈ (Fil‘𝑦) ∣ ∀𝑥 ∈ 𝒫 𝑦(𝑥𝑧 ∨ (𝑦𝑥) ∈ 𝑧)})
2 pweq 4580 . . . 4 (𝑦 = 𝑋 → 𝒫 𝑦 = 𝒫 𝑋)
32adantr 480 . . 3 ((𝑦 = 𝑋𝑧 = 𝐹) → 𝒫 𝑦 = 𝒫 𝑋)
4 eleq2 2818 . . . . 5 (𝑧 = 𝐹 → (𝑥𝑧𝑥𝐹))
54adantl 481 . . . 4 ((𝑦 = 𝑋𝑧 = 𝐹) → (𝑥𝑧𝑥𝐹))
6 difeq1 4085 . . . . 5 (𝑦 = 𝑋 → (𝑦𝑥) = (𝑋𝑥))
7 eleq12 2819 . . . . 5 (((𝑦𝑥) = (𝑋𝑥) ∧ 𝑧 = 𝐹) → ((𝑦𝑥) ∈ 𝑧 ↔ (𝑋𝑥) ∈ 𝐹))
86, 7sylan 580 . . . 4 ((𝑦 = 𝑋𝑧 = 𝐹) → ((𝑦𝑥) ∈ 𝑧 ↔ (𝑋𝑥) ∈ 𝐹))
95, 8orbi12d 918 . . 3 ((𝑦 = 𝑋𝑧 = 𝐹) → ((𝑥𝑧 ∨ (𝑦𝑥) ∈ 𝑧) ↔ (𝑥𝐹 ∨ (𝑋𝑥) ∈ 𝐹)))
103, 9raleqbidv 3321 . 2 ((𝑦 = 𝑋𝑧 = 𝐹) → (∀𝑥 ∈ 𝒫 𝑦(𝑥𝑧 ∨ (𝑦𝑥) ∈ 𝑧) ↔ ∀𝑥 ∈ 𝒫 𝑋(𝑥𝐹 ∨ (𝑋𝑥) ∈ 𝐹)))
11 fveq2 6861 . 2 (𝑦 = 𝑋 → (Fil‘𝑦) = (Fil‘𝑋))
12 fvex 6874 . 2 (Fil‘𝑦) ∈ V
13 elfvdm 6898 . 2 (𝐹 ∈ (Fil‘𝑋) → 𝑋 ∈ dom Fil)
141, 10, 11, 12, 13elmptrab2 23722 1 (𝐹 ∈ (UFil‘𝑋) ↔ (𝐹 ∈ (Fil‘𝑋) ∧ ∀𝑥 ∈ 𝒫 𝑋(𝑥𝐹 ∨ (𝑋𝑥) ∈ 𝐹)))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  wral 3045  cdif 3914  𝒫 cpw 4566  dom cdm 5641  cfv 6514  Filcfil 23739  UFilcufil 23793
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fv 6522  df-ufil 23795
This theorem is referenced by:  ufilfil  23798  ufilss  23799  isufil2  23802  trufil  23804  fixufil  23816  fin1aufil  23826
  Copyright terms: Public domain W3C validator