MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isufil Structured version   Visualization version   GIF version

Theorem isufil 23821
Description: The property of being an ultrafilter. (Contributed by Jeff Hankins, 30-Nov-2009.) (Revised by Mario Carneiro, 29-Jul-2015.)
Assertion
Ref Expression
isufil (𝐹 ∈ (UFil‘𝑋) ↔ (𝐹 ∈ (Fil‘𝑋) ∧ ∀𝑥 ∈ 𝒫 𝑋(𝑥𝐹 ∨ (𝑋𝑥) ∈ 𝐹)))
Distinct variable groups:   𝑥,𝐹   𝑥,𝑋

Proof of Theorem isufil
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ufil 23819 . 2 UFil = (𝑦 ∈ V ↦ {𝑧 ∈ (Fil‘𝑦) ∣ ∀𝑥 ∈ 𝒫 𝑦(𝑥𝑧 ∨ (𝑦𝑥) ∈ 𝑧)})
2 pweq 4565 . . . 4 (𝑦 = 𝑋 → 𝒫 𝑦 = 𝒫 𝑋)
32adantr 480 . . 3 ((𝑦 = 𝑋𝑧 = 𝐹) → 𝒫 𝑦 = 𝒫 𝑋)
4 eleq2 2822 . . . . 5 (𝑧 = 𝐹 → (𝑥𝑧𝑥𝐹))
54adantl 481 . . . 4 ((𝑦 = 𝑋𝑧 = 𝐹) → (𝑥𝑧𝑥𝐹))
6 difeq1 4068 . . . . 5 (𝑦 = 𝑋 → (𝑦𝑥) = (𝑋𝑥))
7 eleq12 2823 . . . . 5 (((𝑦𝑥) = (𝑋𝑥) ∧ 𝑧 = 𝐹) → ((𝑦𝑥) ∈ 𝑧 ↔ (𝑋𝑥) ∈ 𝐹))
86, 7sylan 580 . . . 4 ((𝑦 = 𝑋𝑧 = 𝐹) → ((𝑦𝑥) ∈ 𝑧 ↔ (𝑋𝑥) ∈ 𝐹))
95, 8orbi12d 918 . . 3 ((𝑦 = 𝑋𝑧 = 𝐹) → ((𝑥𝑧 ∨ (𝑦𝑥) ∈ 𝑧) ↔ (𝑥𝐹 ∨ (𝑋𝑥) ∈ 𝐹)))
103, 9raleqbidv 3313 . 2 ((𝑦 = 𝑋𝑧 = 𝐹) → (∀𝑥 ∈ 𝒫 𝑦(𝑥𝑧 ∨ (𝑦𝑥) ∈ 𝑧) ↔ ∀𝑥 ∈ 𝒫 𝑋(𝑥𝐹 ∨ (𝑋𝑥) ∈ 𝐹)))
11 fveq2 6830 . 2 (𝑦 = 𝑋 → (Fil‘𝑦) = (Fil‘𝑋))
12 fvex 6843 . 2 (Fil‘𝑦) ∈ V
13 elfvdm 6864 . 2 (𝐹 ∈ (Fil‘𝑋) → 𝑋 ∈ dom Fil)
141, 10, 11, 12, 13elmptrab2 23746 1 (𝐹 ∈ (UFil‘𝑋) ↔ (𝐹 ∈ (Fil‘𝑋) ∧ ∀𝑥 ∈ 𝒫 𝑋(𝑥𝐹 ∨ (𝑋𝑥) ∈ 𝐹)))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wo 847   = wceq 1541  wcel 2113  wral 3048  cdif 3895  𝒫 cpw 4551  dom cdm 5621  cfv 6488  Filcfil 23763  UFilcufil 23817
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6444  df-fun 6490  df-fv 6496  df-ufil 23819
This theorem is referenced by:  ufilfil  23822  ufilss  23823  isufil2  23826  trufil  23828  fixufil  23840  fin1aufil  23850
  Copyright terms: Public domain W3C validator