MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isufil Structured version   Visualization version   GIF version

Theorem isufil 23790
Description: The property of being an ultrafilter. (Contributed by Jeff Hankins, 30-Nov-2009.) (Revised by Mario Carneiro, 29-Jul-2015.)
Assertion
Ref Expression
isufil (𝐹 ∈ (UFil‘𝑋) ↔ (𝐹 ∈ (Fil‘𝑋) ∧ ∀𝑥 ∈ 𝒫 𝑋(𝑥𝐹 ∨ (𝑋𝑥) ∈ 𝐹)))
Distinct variable groups:   𝑥,𝐹   𝑥,𝑋

Proof of Theorem isufil
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ufil 23788 . 2 UFil = (𝑦 ∈ V ↦ {𝑧 ∈ (Fil‘𝑦) ∣ ∀𝑥 ∈ 𝒫 𝑦(𝑥𝑧 ∨ (𝑦𝑥) ∈ 𝑧)})
2 pweq 4577 . . . 4 (𝑦 = 𝑋 → 𝒫 𝑦 = 𝒫 𝑋)
32adantr 480 . . 3 ((𝑦 = 𝑋𝑧 = 𝐹) → 𝒫 𝑦 = 𝒫 𝑋)
4 eleq2 2817 . . . . 5 (𝑧 = 𝐹 → (𝑥𝑧𝑥𝐹))
54adantl 481 . . . 4 ((𝑦 = 𝑋𝑧 = 𝐹) → (𝑥𝑧𝑥𝐹))
6 difeq1 4082 . . . . 5 (𝑦 = 𝑋 → (𝑦𝑥) = (𝑋𝑥))
7 eleq12 2818 . . . . 5 (((𝑦𝑥) = (𝑋𝑥) ∧ 𝑧 = 𝐹) → ((𝑦𝑥) ∈ 𝑧 ↔ (𝑋𝑥) ∈ 𝐹))
86, 7sylan 580 . . . 4 ((𝑦 = 𝑋𝑧 = 𝐹) → ((𝑦𝑥) ∈ 𝑧 ↔ (𝑋𝑥) ∈ 𝐹))
95, 8orbi12d 918 . . 3 ((𝑦 = 𝑋𝑧 = 𝐹) → ((𝑥𝑧 ∨ (𝑦𝑥) ∈ 𝑧) ↔ (𝑥𝐹 ∨ (𝑋𝑥) ∈ 𝐹)))
103, 9raleqbidv 3319 . 2 ((𝑦 = 𝑋𝑧 = 𝐹) → (∀𝑥 ∈ 𝒫 𝑦(𝑥𝑧 ∨ (𝑦𝑥) ∈ 𝑧) ↔ ∀𝑥 ∈ 𝒫 𝑋(𝑥𝐹 ∨ (𝑋𝑥) ∈ 𝐹)))
11 fveq2 6858 . 2 (𝑦 = 𝑋 → (Fil‘𝑦) = (Fil‘𝑋))
12 fvex 6871 . 2 (Fil‘𝑦) ∈ V
13 elfvdm 6895 . 2 (𝐹 ∈ (Fil‘𝑋) → 𝑋 ∈ dom Fil)
141, 10, 11, 12, 13elmptrab2 23715 1 (𝐹 ∈ (UFil‘𝑋) ↔ (𝐹 ∈ (Fil‘𝑋) ∧ ∀𝑥 ∈ 𝒫 𝑋(𝑥𝐹 ∨ (𝑋𝑥) ∈ 𝐹)))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  wral 3044  cdif 3911  𝒫 cpw 4563  dom cdm 5638  cfv 6511  Filcfil 23732  UFilcufil 23786
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fv 6519  df-ufil 23788
This theorem is referenced by:  ufilfil  23791  ufilss  23792  isufil2  23795  trufil  23797  fixufil  23809  fin1aufil  23819
  Copyright terms: Public domain W3C validator