Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > isufil | Structured version Visualization version GIF version |
Description: The property of being an ultrafilter. (Contributed by Jeff Hankins, 30-Nov-2009.) (Revised by Mario Carneiro, 29-Jul-2015.) |
Ref | Expression |
---|---|
isufil | ⊢ (𝐹 ∈ (UFil‘𝑋) ↔ (𝐹 ∈ (Fil‘𝑋) ∧ ∀𝑥 ∈ 𝒫 𝑋(𝑥 ∈ 𝐹 ∨ (𝑋 ∖ 𝑥) ∈ 𝐹))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ufil 22960 | . 2 ⊢ UFil = (𝑦 ∈ V ↦ {𝑧 ∈ (Fil‘𝑦) ∣ ∀𝑥 ∈ 𝒫 𝑦(𝑥 ∈ 𝑧 ∨ (𝑦 ∖ 𝑥) ∈ 𝑧)}) | |
2 | pweq 4546 | . . . 4 ⊢ (𝑦 = 𝑋 → 𝒫 𝑦 = 𝒫 𝑋) | |
3 | 2 | adantr 480 | . . 3 ⊢ ((𝑦 = 𝑋 ∧ 𝑧 = 𝐹) → 𝒫 𝑦 = 𝒫 𝑋) |
4 | eleq2 2827 | . . . . 5 ⊢ (𝑧 = 𝐹 → (𝑥 ∈ 𝑧 ↔ 𝑥 ∈ 𝐹)) | |
5 | 4 | adantl 481 | . . . 4 ⊢ ((𝑦 = 𝑋 ∧ 𝑧 = 𝐹) → (𝑥 ∈ 𝑧 ↔ 𝑥 ∈ 𝐹)) |
6 | difeq1 4046 | . . . . 5 ⊢ (𝑦 = 𝑋 → (𝑦 ∖ 𝑥) = (𝑋 ∖ 𝑥)) | |
7 | eleq12 2828 | . . . . 5 ⊢ (((𝑦 ∖ 𝑥) = (𝑋 ∖ 𝑥) ∧ 𝑧 = 𝐹) → ((𝑦 ∖ 𝑥) ∈ 𝑧 ↔ (𝑋 ∖ 𝑥) ∈ 𝐹)) | |
8 | 6, 7 | sylan 579 | . . . 4 ⊢ ((𝑦 = 𝑋 ∧ 𝑧 = 𝐹) → ((𝑦 ∖ 𝑥) ∈ 𝑧 ↔ (𝑋 ∖ 𝑥) ∈ 𝐹)) |
9 | 5, 8 | orbi12d 915 | . . 3 ⊢ ((𝑦 = 𝑋 ∧ 𝑧 = 𝐹) → ((𝑥 ∈ 𝑧 ∨ (𝑦 ∖ 𝑥) ∈ 𝑧) ↔ (𝑥 ∈ 𝐹 ∨ (𝑋 ∖ 𝑥) ∈ 𝐹))) |
10 | 3, 9 | raleqbidv 3327 | . 2 ⊢ ((𝑦 = 𝑋 ∧ 𝑧 = 𝐹) → (∀𝑥 ∈ 𝒫 𝑦(𝑥 ∈ 𝑧 ∨ (𝑦 ∖ 𝑥) ∈ 𝑧) ↔ ∀𝑥 ∈ 𝒫 𝑋(𝑥 ∈ 𝐹 ∨ (𝑋 ∖ 𝑥) ∈ 𝐹))) |
11 | fveq2 6756 | . 2 ⊢ (𝑦 = 𝑋 → (Fil‘𝑦) = (Fil‘𝑋)) | |
12 | fvex 6769 | . 2 ⊢ (Fil‘𝑦) ∈ V | |
13 | elfvdm 6788 | . 2 ⊢ (𝐹 ∈ (Fil‘𝑋) → 𝑋 ∈ dom Fil) | |
14 | 1, 10, 11, 12, 13 | elmptrab2 22887 | 1 ⊢ (𝐹 ∈ (UFil‘𝑋) ↔ (𝐹 ∈ (Fil‘𝑋) ∧ ∀𝑥 ∈ 𝒫 𝑋(𝑥 ∈ 𝐹 ∨ (𝑋 ∖ 𝑥) ∈ 𝐹))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 ∨ wo 843 = wceq 1539 ∈ wcel 2108 ∀wral 3063 ∖ cdif 3880 𝒫 cpw 4530 dom cdm 5580 ‘cfv 6418 Filcfil 22904 UFilcufil 22958 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fv 6426 df-ufil 22960 |
This theorem is referenced by: ufilfil 22963 ufilss 22964 isufil2 22967 trufil 22969 fixufil 22981 fin1aufil 22991 |
Copyright terms: Public domain | W3C validator |