Detailed syntax breakdown of Definition df-ufl
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | cufl 23908 | . 2
class
UFL | 
| 2 |  | vf | . . . . . . 7
setvar 𝑓 | 
| 3 | 2 | cv 1539 | . . . . . 6
class 𝑓 | 
| 4 |  | vg | . . . . . . 7
setvar 𝑔 | 
| 5 | 4 | cv 1539 | . . . . . 6
class 𝑔 | 
| 6 | 3, 5 | wss 3951 | . . . . 5
wff 𝑓 ⊆ 𝑔 | 
| 7 |  | vx | . . . . . . 7
setvar 𝑥 | 
| 8 | 7 | cv 1539 | . . . . . 6
class 𝑥 | 
| 9 |  | cufil 23907 | . . . . . 6
class
UFil | 
| 10 | 8, 9 | cfv 6561 | . . . . 5
class
(UFil‘𝑥) | 
| 11 | 6, 4, 10 | wrex 3070 | . . . 4
wff
∃𝑔 ∈
(UFil‘𝑥)𝑓 ⊆ 𝑔 | 
| 12 |  | cfil 23853 | . . . . 5
class
Fil | 
| 13 | 8, 12 | cfv 6561 | . . . 4
class
(Fil‘𝑥) | 
| 14 | 11, 2, 13 | wral 3061 | . . 3
wff
∀𝑓 ∈
(Fil‘𝑥)∃𝑔 ∈ (UFil‘𝑥)𝑓 ⊆ 𝑔 | 
| 15 | 14, 7 | cab 2714 | . 2
class {𝑥 ∣ ∀𝑓 ∈ (Fil‘𝑥)∃𝑔 ∈ (UFil‘𝑥)𝑓 ⊆ 𝑔} | 
| 16 | 1, 15 | wceq 1540 | 1
wff UFL =
{𝑥 ∣ ∀𝑓 ∈ (Fil‘𝑥)∃𝑔 ∈ (UFil‘𝑥)𝑓 ⊆ 𝑔} |