Detailed syntax breakdown of Definition df-ufl
| Step | Hyp | Ref
| Expression |
| 1 | | cufl 23793 |
. 2
class
UFL |
| 2 | | vf |
. . . . . . 7
setvar 𝑓 |
| 3 | 2 | cv 1539 |
. . . . . 6
class 𝑓 |
| 4 | | vg |
. . . . . . 7
setvar 𝑔 |
| 5 | 4 | cv 1539 |
. . . . . 6
class 𝑔 |
| 6 | 3, 5 | wss 3922 |
. . . . 5
wff 𝑓 ⊆ 𝑔 |
| 7 | | vx |
. . . . . . 7
setvar 𝑥 |
| 8 | 7 | cv 1539 |
. . . . . 6
class 𝑥 |
| 9 | | cufil 23792 |
. . . . . 6
class
UFil |
| 10 | 8, 9 | cfv 6519 |
. . . . 5
class
(UFil‘𝑥) |
| 11 | 6, 4, 10 | wrex 3055 |
. . . 4
wff
∃𝑔 ∈
(UFil‘𝑥)𝑓 ⊆ 𝑔 |
| 12 | | cfil 23738 |
. . . . 5
class
Fil |
| 13 | 8, 12 | cfv 6519 |
. . . 4
class
(Fil‘𝑥) |
| 14 | 11, 2, 13 | wral 3046 |
. . 3
wff
∀𝑓 ∈
(Fil‘𝑥)∃𝑔 ∈ (UFil‘𝑥)𝑓 ⊆ 𝑔 |
| 15 | 14, 7 | cab 2708 |
. 2
class {𝑥 ∣ ∀𝑓 ∈ (Fil‘𝑥)∃𝑔 ∈ (UFil‘𝑥)𝑓 ⊆ 𝑔} |
| 16 | 1, 15 | wceq 1540 |
1
wff UFL =
{𝑥 ∣ ∀𝑓 ∈ (Fil‘𝑥)∃𝑔 ∈ (UFil‘𝑥)𝑓 ⊆ 𝑔} |