Detailed syntax breakdown of Definition df-ulm
Step | Hyp | Ref
| Expression |
1 | | culm 25544 |
. 2
class
⇝𝑢 |
2 | | vs |
. . 3
setvar 𝑠 |
3 | | cvv 3433 |
. . 3
class
V |
4 | | vn |
. . . . . . . . 9
setvar 𝑛 |
5 | 4 | cv 1538 |
. . . . . . . 8
class 𝑛 |
6 | | cuz 12591 |
. . . . . . . 8
class
ℤ≥ |
7 | 5, 6 | cfv 6437 |
. . . . . . 7
class
(ℤ≥‘𝑛) |
8 | | cc 10878 |
. . . . . . . 8
class
ℂ |
9 | 2 | cv 1538 |
. . . . . . . 8
class 𝑠 |
10 | | cmap 8624 |
. . . . . . . 8
class
↑m |
11 | 8, 9, 10 | co 7284 |
. . . . . . 7
class (ℂ
↑m 𝑠) |
12 | | vf |
. . . . . . . 8
setvar 𝑓 |
13 | 12 | cv 1538 |
. . . . . . 7
class 𝑓 |
14 | 7, 11, 13 | wf 6433 |
. . . . . 6
wff 𝑓:(ℤ≥‘𝑛)⟶(ℂ
↑m 𝑠) |
15 | | vy |
. . . . . . . 8
setvar 𝑦 |
16 | 15 | cv 1538 |
. . . . . . 7
class 𝑦 |
17 | 9, 8, 16 | wf 6433 |
. . . . . 6
wff 𝑦:𝑠⟶ℂ |
18 | | vz |
. . . . . . . . . . . . . . 15
setvar 𝑧 |
19 | 18 | cv 1538 |
. . . . . . . . . . . . . 14
class 𝑧 |
20 | | vk |
. . . . . . . . . . . . . . . 16
setvar 𝑘 |
21 | 20 | cv 1538 |
. . . . . . . . . . . . . . 15
class 𝑘 |
22 | 21, 13 | cfv 6437 |
. . . . . . . . . . . . . 14
class (𝑓‘𝑘) |
23 | 19, 22 | cfv 6437 |
. . . . . . . . . . . . 13
class ((𝑓‘𝑘)‘𝑧) |
24 | 19, 16 | cfv 6437 |
. . . . . . . . . . . . 13
class (𝑦‘𝑧) |
25 | | cmin 11214 |
. . . . . . . . . . . . 13
class
− |
26 | 23, 24, 25 | co 7284 |
. . . . . . . . . . . 12
class (((𝑓‘𝑘)‘𝑧) − (𝑦‘𝑧)) |
27 | | cabs 14954 |
. . . . . . . . . . . 12
class
abs |
28 | 26, 27 | cfv 6437 |
. . . . . . . . . . 11
class
(abs‘(((𝑓‘𝑘)‘𝑧) − (𝑦‘𝑧))) |
29 | | vx |
. . . . . . . . . . . 12
setvar 𝑥 |
30 | 29 | cv 1538 |
. . . . . . . . . . 11
class 𝑥 |
31 | | clt 11018 |
. . . . . . . . . . 11
class
< |
32 | 28, 30, 31 | wbr 5075 |
. . . . . . . . . 10
wff
(abs‘(((𝑓‘𝑘)‘𝑧) − (𝑦‘𝑧))) < 𝑥 |
33 | 32, 18, 9 | wral 3065 |
. . . . . . . . 9
wff
∀𝑧 ∈
𝑠 (abs‘(((𝑓‘𝑘)‘𝑧) − (𝑦‘𝑧))) < 𝑥 |
34 | | vj |
. . . . . . . . . . 11
setvar 𝑗 |
35 | 34 | cv 1538 |
. . . . . . . . . 10
class 𝑗 |
36 | 35, 6 | cfv 6437 |
. . . . . . . . 9
class
(ℤ≥‘𝑗) |
37 | 33, 20, 36 | wral 3065 |
. . . . . . . 8
wff
∀𝑘 ∈
(ℤ≥‘𝑗)∀𝑧 ∈ 𝑠 (abs‘(((𝑓‘𝑘)‘𝑧) − (𝑦‘𝑧))) < 𝑥 |
38 | 37, 34, 7 | wrex 3066 |
. . . . . . 7
wff
∃𝑗 ∈
(ℤ≥‘𝑛)∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑧 ∈ 𝑠 (abs‘(((𝑓‘𝑘)‘𝑧) − (𝑦‘𝑧))) < 𝑥 |
39 | | crp 12739 |
. . . . . . 7
class
ℝ+ |
40 | 38, 29, 39 | wral 3065 |
. . . . . 6
wff
∀𝑥 ∈
ℝ+ ∃𝑗 ∈ (ℤ≥‘𝑛)∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑧 ∈ 𝑠 (abs‘(((𝑓‘𝑘)‘𝑧) − (𝑦‘𝑧))) < 𝑥 |
41 | 14, 17, 40 | w3a 1086 |
. . . . 5
wff (𝑓:(ℤ≥‘𝑛)⟶(ℂ
↑m 𝑠) ∧
𝑦:𝑠⟶ℂ ∧ ∀𝑥 ∈ ℝ+
∃𝑗 ∈
(ℤ≥‘𝑛)∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑧 ∈ 𝑠 (abs‘(((𝑓‘𝑘)‘𝑧) − (𝑦‘𝑧))) < 𝑥) |
42 | | cz 12328 |
. . . . 5
class
ℤ |
43 | 41, 4, 42 | wrex 3066 |
. . . 4
wff
∃𝑛 ∈
ℤ (𝑓:(ℤ≥‘𝑛)⟶(ℂ
↑m 𝑠) ∧
𝑦:𝑠⟶ℂ ∧ ∀𝑥 ∈ ℝ+
∃𝑗 ∈
(ℤ≥‘𝑛)∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑧 ∈ 𝑠 (abs‘(((𝑓‘𝑘)‘𝑧) − (𝑦‘𝑧))) < 𝑥) |
44 | 43, 12, 15 | copab 5137 |
. . 3
class
{〈𝑓, 𝑦〉 ∣ ∃𝑛 ∈ ℤ (𝑓:(ℤ≥‘𝑛)⟶(ℂ
↑m 𝑠) ∧
𝑦:𝑠⟶ℂ ∧ ∀𝑥 ∈ ℝ+
∃𝑗 ∈
(ℤ≥‘𝑛)∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑧 ∈ 𝑠 (abs‘(((𝑓‘𝑘)‘𝑧) − (𝑦‘𝑧))) < 𝑥)} |
45 | 2, 3, 44 | cmpt 5158 |
. 2
class (𝑠 ∈ V ↦ {〈𝑓, 𝑦〉 ∣ ∃𝑛 ∈ ℤ (𝑓:(ℤ≥‘𝑛)⟶(ℂ
↑m 𝑠) ∧
𝑦:𝑠⟶ℂ ∧ ∀𝑥 ∈ ℝ+
∃𝑗 ∈
(ℤ≥‘𝑛)∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑧 ∈ 𝑠 (abs‘(((𝑓‘𝑘)‘𝑧) − (𝑦‘𝑧))) < 𝑥)}) |
46 | 1, 45 | wceq 1539 |
1
wff
⇝𝑢 = (𝑠 ∈ V ↦ {〈𝑓, 𝑦〉 ∣ ∃𝑛 ∈ ℤ (𝑓:(ℤ≥‘𝑛)⟶(ℂ
↑m 𝑠) ∧
𝑦:𝑠⟶ℂ ∧ ∀𝑥 ∈ ℝ+
∃𝑗 ∈
(ℤ≥‘𝑛)∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑧 ∈ 𝑠 (abs‘(((𝑓‘𝑘)‘𝑧) − (𝑦‘𝑧))) < 𝑥)}) |