Detailed syntax breakdown of Definition df-ulm
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | culm 26419 | . 2
class
⇝𝑢 | 
| 2 |  | vs | . . 3
setvar 𝑠 | 
| 3 |  | cvv 3480 | . . 3
class
V | 
| 4 |  | vn | . . . . . . . . 9
setvar 𝑛 | 
| 5 | 4 | cv 1539 | . . . . . . . 8
class 𝑛 | 
| 6 |  | cuz 12878 | . . . . . . . 8
class
ℤ≥ | 
| 7 | 5, 6 | cfv 6561 | . . . . . . 7
class
(ℤ≥‘𝑛) | 
| 8 |  | cc 11153 | . . . . . . . 8
class
ℂ | 
| 9 | 2 | cv 1539 | . . . . . . . 8
class 𝑠 | 
| 10 |  | cmap 8866 | . . . . . . . 8
class 
↑m | 
| 11 | 8, 9, 10 | co 7431 | . . . . . . 7
class (ℂ
↑m 𝑠) | 
| 12 |  | vf | . . . . . . . 8
setvar 𝑓 | 
| 13 | 12 | cv 1539 | . . . . . . 7
class 𝑓 | 
| 14 | 7, 11, 13 | wf 6557 | . . . . . 6
wff 𝑓:(ℤ≥‘𝑛)⟶(ℂ
↑m 𝑠) | 
| 15 |  | vy | . . . . . . . 8
setvar 𝑦 | 
| 16 | 15 | cv 1539 | . . . . . . 7
class 𝑦 | 
| 17 | 9, 8, 16 | wf 6557 | . . . . . 6
wff 𝑦:𝑠⟶ℂ | 
| 18 |  | vz | . . . . . . . . . . . . . . 15
setvar 𝑧 | 
| 19 | 18 | cv 1539 | . . . . . . . . . . . . . 14
class 𝑧 | 
| 20 |  | vk | . . . . . . . . . . . . . . . 16
setvar 𝑘 | 
| 21 | 20 | cv 1539 | . . . . . . . . . . . . . . 15
class 𝑘 | 
| 22 | 21, 13 | cfv 6561 | . . . . . . . . . . . . . 14
class (𝑓‘𝑘) | 
| 23 | 19, 22 | cfv 6561 | . . . . . . . . . . . . 13
class ((𝑓‘𝑘)‘𝑧) | 
| 24 | 19, 16 | cfv 6561 | . . . . . . . . . . . . 13
class (𝑦‘𝑧) | 
| 25 |  | cmin 11492 | . . . . . . . . . . . . 13
class 
− | 
| 26 | 23, 24, 25 | co 7431 | . . . . . . . . . . . 12
class (((𝑓‘𝑘)‘𝑧) − (𝑦‘𝑧)) | 
| 27 |  | cabs 15273 | . . . . . . . . . . . 12
class
abs | 
| 28 | 26, 27 | cfv 6561 | . . . . . . . . . . 11
class
(abs‘(((𝑓‘𝑘)‘𝑧) − (𝑦‘𝑧))) | 
| 29 |  | vx | . . . . . . . . . . . 12
setvar 𝑥 | 
| 30 | 29 | cv 1539 | . . . . . . . . . . 11
class 𝑥 | 
| 31 |  | clt 11295 | . . . . . . . . . . 11
class 
< | 
| 32 | 28, 30, 31 | wbr 5143 | . . . . . . . . . 10
wff
(abs‘(((𝑓‘𝑘)‘𝑧) − (𝑦‘𝑧))) < 𝑥 | 
| 33 | 32, 18, 9 | wral 3061 | . . . . . . . . 9
wff
∀𝑧 ∈
𝑠 (abs‘(((𝑓‘𝑘)‘𝑧) − (𝑦‘𝑧))) < 𝑥 | 
| 34 |  | vj | . . . . . . . . . . 11
setvar 𝑗 | 
| 35 | 34 | cv 1539 | . . . . . . . . . 10
class 𝑗 | 
| 36 | 35, 6 | cfv 6561 | . . . . . . . . 9
class
(ℤ≥‘𝑗) | 
| 37 | 33, 20, 36 | wral 3061 | . . . . . . . 8
wff
∀𝑘 ∈
(ℤ≥‘𝑗)∀𝑧 ∈ 𝑠 (abs‘(((𝑓‘𝑘)‘𝑧) − (𝑦‘𝑧))) < 𝑥 | 
| 38 | 37, 34, 7 | wrex 3070 | . . . . . . 7
wff
∃𝑗 ∈
(ℤ≥‘𝑛)∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑧 ∈ 𝑠 (abs‘(((𝑓‘𝑘)‘𝑧) − (𝑦‘𝑧))) < 𝑥 | 
| 39 |  | crp 13034 | . . . . . . 7
class
ℝ+ | 
| 40 | 38, 29, 39 | wral 3061 | . . . . . 6
wff
∀𝑥 ∈
ℝ+ ∃𝑗 ∈ (ℤ≥‘𝑛)∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑧 ∈ 𝑠 (abs‘(((𝑓‘𝑘)‘𝑧) − (𝑦‘𝑧))) < 𝑥 | 
| 41 | 14, 17, 40 | w3a 1087 | . . . . 5
wff (𝑓:(ℤ≥‘𝑛)⟶(ℂ
↑m 𝑠) ∧
𝑦:𝑠⟶ℂ ∧ ∀𝑥 ∈ ℝ+
∃𝑗 ∈
(ℤ≥‘𝑛)∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑧 ∈ 𝑠 (abs‘(((𝑓‘𝑘)‘𝑧) − (𝑦‘𝑧))) < 𝑥) | 
| 42 |  | cz 12613 | . . . . 5
class
ℤ | 
| 43 | 41, 4, 42 | wrex 3070 | . . . 4
wff
∃𝑛 ∈
ℤ (𝑓:(ℤ≥‘𝑛)⟶(ℂ
↑m 𝑠) ∧
𝑦:𝑠⟶ℂ ∧ ∀𝑥 ∈ ℝ+
∃𝑗 ∈
(ℤ≥‘𝑛)∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑧 ∈ 𝑠 (abs‘(((𝑓‘𝑘)‘𝑧) − (𝑦‘𝑧))) < 𝑥) | 
| 44 | 43, 12, 15 | copab 5205 | . . 3
class
{〈𝑓, 𝑦〉 ∣ ∃𝑛 ∈ ℤ (𝑓:(ℤ≥‘𝑛)⟶(ℂ
↑m 𝑠) ∧
𝑦:𝑠⟶ℂ ∧ ∀𝑥 ∈ ℝ+
∃𝑗 ∈
(ℤ≥‘𝑛)∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑧 ∈ 𝑠 (abs‘(((𝑓‘𝑘)‘𝑧) − (𝑦‘𝑧))) < 𝑥)} | 
| 45 | 2, 3, 44 | cmpt 5225 | . 2
class (𝑠 ∈ V ↦ {〈𝑓, 𝑦〉 ∣ ∃𝑛 ∈ ℤ (𝑓:(ℤ≥‘𝑛)⟶(ℂ
↑m 𝑠) ∧
𝑦:𝑠⟶ℂ ∧ ∀𝑥 ∈ ℝ+
∃𝑗 ∈
(ℤ≥‘𝑛)∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑧 ∈ 𝑠 (abs‘(((𝑓‘𝑘)‘𝑧) − (𝑦‘𝑧))) < 𝑥)}) | 
| 46 | 1, 45 | wceq 1540 | 1
wff
⇝𝑢 = (𝑠 ∈ V ↦ {〈𝑓, 𝑦〉 ∣ ∃𝑛 ∈ ℤ (𝑓:(ℤ≥‘𝑛)⟶(ℂ
↑m 𝑠) ∧
𝑦:𝑠⟶ℂ ∧ ∀𝑥 ∈ ℝ+
∃𝑗 ∈
(ℤ≥‘𝑛)∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑧 ∈ 𝑠 (abs‘(((𝑓‘𝑘)‘𝑧) − (𝑦‘𝑧))) < 𝑥)}) |