Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ulmrel | Structured version Visualization version GIF version |
Description: The uniform limit relation is a relation. (Contributed by Mario Carneiro, 26-Feb-2015.) |
Ref | Expression |
---|---|
ulmrel | ⊢ Rel (⇝𝑢‘𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ulm 25634 | . 2 ⊢ ⇝𝑢 = (𝑠 ∈ V ↦ {〈𝑓, 𝑦〉 ∣ ∃𝑛 ∈ ℤ (𝑓:(ℤ≥‘𝑛)⟶(ℂ ↑m 𝑠) ∧ 𝑦:𝑠⟶ℂ ∧ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ (ℤ≥‘𝑛)∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑧 ∈ 𝑠 (abs‘(((𝑓‘𝑘)‘𝑧) − (𝑦‘𝑧))) < 𝑥)}) | |
2 | 1 | relmptopab 7573 | 1 ⊢ Rel (⇝𝑢‘𝑆) |
Colors of variables: wff setvar class |
Syntax hints: ∧ w3a 1086 ∀wral 3061 ∃wrex 3070 Vcvv 3441 class class class wbr 5089 Rel wrel 5619 ⟶wf 6469 ‘cfv 6473 (class class class)co 7329 ↑m cmap 8678 ℂcc 10962 < clt 11102 − cmin 11298 ℤcz 12412 ℤ≥cuz 12675 ℝ+crp 12823 abscabs 15036 ⇝𝑢culm 25633 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5240 ax-nul 5247 ax-pr 5369 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ral 3062 df-rex 3071 df-rab 3404 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4269 df-if 4473 df-sn 4573 df-pr 4575 df-op 4579 df-uni 4852 df-br 5090 df-opab 5152 df-mpt 5173 df-id 5512 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6425 df-fun 6475 df-fv 6481 df-ulm 25634 |
This theorem is referenced by: ulmval 25637 ulmdm 25650 ulmcau 25652 ulmdvlem3 25659 |
Copyright terms: Public domain | W3C validator |