MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ulmrel Structured version   Visualization version   GIF version

Theorem ulmrel 26439
Description: The uniform limit relation is a relation. (Contributed by Mario Carneiro, 26-Feb-2015.)
Assertion
Ref Expression
ulmrel Rel (⇝𝑢𝑆)

Proof of Theorem ulmrel
Dummy variables 𝑓 𝑗 𝑘 𝑛 𝑠 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ulm 26438 . 2 𝑢 = (𝑠 ∈ V ↦ {⟨𝑓, 𝑦⟩ ∣ ∃𝑛 ∈ ℤ (𝑓:(ℤ𝑛)⟶(ℂ ↑m 𝑠) ∧ 𝑦:𝑠⟶ℂ ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑠 (abs‘(((𝑓𝑘)‘𝑧) − (𝑦𝑧))) < 𝑥)})
21relmptopab 7700 1 Rel (⇝𝑢𝑆)
Colors of variables: wff setvar class
Syntax hints:  w3a 1087  wral 3067  wrex 3076  Vcvv 3488   class class class wbr 5166  Rel wrel 5705  wf 6569  cfv 6573  (class class class)co 7448  m cmap 8884  cc 11182   < clt 11324  cmin 11520  cz 12639  cuz 12903  +crp 13057  abscabs 15283  𝑢culm 26437
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fv 6581  df-ulm 26438
This theorem is referenced by:  ulmval  26441  ulmdm  26454  ulmcau  26456  ulmdvlem3  26463
  Copyright terms: Public domain W3C validator