| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ulmrel | Structured version Visualization version GIF version | ||
| Description: The uniform limit relation is a relation. (Contributed by Mario Carneiro, 26-Feb-2015.) |
| Ref | Expression |
|---|---|
| ulmrel | ⊢ Rel (⇝𝑢‘𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ulm 26311 | . 2 ⊢ ⇝𝑢 = (𝑠 ∈ V ↦ {〈𝑓, 𝑦〉 ∣ ∃𝑛 ∈ ℤ (𝑓:(ℤ≥‘𝑛)⟶(ℂ ↑m 𝑠) ∧ 𝑦:𝑠⟶ℂ ∧ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ (ℤ≥‘𝑛)∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑧 ∈ 𝑠 (abs‘(((𝑓‘𝑘)‘𝑧) − (𝑦‘𝑧))) < 𝑥)}) | |
| 2 | 1 | relmptopab 7596 | 1 ⊢ Rel (⇝𝑢‘𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ w3a 1086 ∀wral 3047 ∃wrex 3056 Vcvv 3436 class class class wbr 5091 Rel wrel 5621 ⟶wf 6477 ‘cfv 6481 (class class class)co 7346 ↑m cmap 8750 ℂcc 11001 < clt 11143 − cmin 11341 ℤcz 12465 ℤ≥cuz 12729 ℝ+crp 12887 abscabs 15138 ⇝𝑢culm 26310 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fv 6489 df-ulm 26311 |
| This theorem is referenced by: ulmval 26314 ulmdm 26327 ulmcau 26329 ulmdvlem3 26336 |
| Copyright terms: Public domain | W3C validator |