MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ulmrel Structured version   Visualization version   GIF version

Theorem ulmrel 25890
Description: The uniform limit relation is a relation. (Contributed by Mario Carneiro, 26-Feb-2015.)
Assertion
Ref Expression
ulmrel Rel (β‡π‘’β€˜π‘†)

Proof of Theorem ulmrel
Dummy variables 𝑓 𝑗 π‘˜ 𝑛 𝑠 π‘₯ 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ulm 25889 . 2 ⇝𝑒 = (𝑠 ∈ V ↦ {βŸ¨π‘“, π‘¦βŸ© ∣ βˆƒπ‘› ∈ β„€ (𝑓:(β„€β‰₯β€˜π‘›)⟢(β„‚ ↑m 𝑠) ∧ 𝑦:π‘ βŸΆβ„‚ ∧ βˆ€π‘₯ ∈ ℝ+ βˆƒπ‘— ∈ (β„€β‰₯β€˜π‘›)βˆ€π‘˜ ∈ (β„€β‰₯β€˜π‘—)βˆ€π‘§ ∈ 𝑠 (absβ€˜(((π‘“β€˜π‘˜)β€˜π‘§) βˆ’ (π‘¦β€˜π‘§))) < π‘₯)})
21relmptopab 7656 1 Rel (β‡π‘’β€˜π‘†)
Colors of variables: wff setvar class
Syntax hints:   ∧ w3a 1088  βˆ€wral 3062  βˆƒwrex 3071  Vcvv 3475   class class class wbr 5149  Rel wrel 5682  βŸΆwf 6540  β€˜cfv 6544  (class class class)co 7409   ↑m cmap 8820  β„‚cc 11108   < clt 11248   βˆ’ cmin 11444  β„€cz 12558  β„€β‰₯cuz 12822  β„+crp 12974  abscabs 15181  β‡π‘’culm 25888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fv 6552  df-ulm 25889
This theorem is referenced by:  ulmval  25892  ulmdm  25905  ulmcau  25907  ulmdvlem3  25914
  Copyright terms: Public domain W3C validator