MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ulmrel Structured version   Visualization version   GIF version

Theorem ulmrel 25635
Description: The uniform limit relation is a relation. (Contributed by Mario Carneiro, 26-Feb-2015.)
Assertion
Ref Expression
ulmrel Rel (⇝𝑢𝑆)

Proof of Theorem ulmrel
Dummy variables 𝑓 𝑗 𝑘 𝑛 𝑠 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ulm 25634 . 2 𝑢 = (𝑠 ∈ V ↦ {⟨𝑓, 𝑦⟩ ∣ ∃𝑛 ∈ ℤ (𝑓:(ℤ𝑛)⟶(ℂ ↑m 𝑠) ∧ 𝑦:𝑠⟶ℂ ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑠 (abs‘(((𝑓𝑘)‘𝑧) − (𝑦𝑧))) < 𝑥)})
21relmptopab 7573 1 Rel (⇝𝑢𝑆)
Colors of variables: wff setvar class
Syntax hints:  w3a 1086  wral 3061  wrex 3070  Vcvv 3441   class class class wbr 5089  Rel wrel 5619  wf 6469  cfv 6473  (class class class)co 7329  m cmap 8678  cc 10962   < clt 11102  cmin 11298  cz 12412  cuz 12675  +crp 12823  abscabs 15036  𝑢culm 25633
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-sep 5240  ax-nul 5247  ax-pr 5369
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ral 3062  df-rex 3071  df-rab 3404  df-v 3443  df-sbc 3727  df-csb 3843  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4269  df-if 4473  df-sn 4573  df-pr 4575  df-op 4579  df-uni 4852  df-br 5090  df-opab 5152  df-mpt 5173  df-id 5512  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6425  df-fun 6475  df-fv 6481  df-ulm 25634
This theorem is referenced by:  ulmval  25637  ulmdm  25650  ulmcau  25652  ulmdvlem3  25659
  Copyright terms: Public domain W3C validator