![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ulmrel | Structured version Visualization version GIF version |
Description: The uniform limit relation is a relation. (Contributed by Mario Carneiro, 26-Feb-2015.) |
Ref | Expression |
---|---|
ulmrel | ⊢ Rel (⇝𝑢‘𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ulm 26398 | . 2 ⊢ ⇝𝑢 = (𝑠 ∈ V ↦ {〈𝑓, 𝑦〉 ∣ ∃𝑛 ∈ ℤ (𝑓:(ℤ≥‘𝑛)⟶(ℂ ↑m 𝑠) ∧ 𝑦:𝑠⟶ℂ ∧ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ (ℤ≥‘𝑛)∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑧 ∈ 𝑠 (abs‘(((𝑓‘𝑘)‘𝑧) − (𝑦‘𝑧))) < 𝑥)}) | |
2 | 1 | relmptopab 7675 | 1 ⊢ Rel (⇝𝑢‘𝑆) |
Colors of variables: wff setvar class |
Syntax hints: ∧ w3a 1084 ∀wral 3050 ∃wrex 3059 Vcvv 3461 class class class wbr 5152 Rel wrel 5686 ⟶wf 6549 ‘cfv 6553 (class class class)co 7423 ↑m cmap 8854 ℂcc 11152 < clt 11294 − cmin 11490 ℤcz 12605 ℤ≥cuz 12869 ℝ+crp 13023 abscabs 15234 ⇝𝑢culm 26397 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5303 ax-nul 5310 ax-pr 5432 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ral 3051 df-rex 3060 df-rab 3419 df-v 3463 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-nul 4325 df-if 4533 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-br 5153 df-opab 5215 df-mpt 5236 df-id 5579 df-xp 5687 df-rel 5688 df-cnv 5689 df-co 5690 df-dm 5691 df-rn 5692 df-res 5693 df-ima 5694 df-iota 6505 df-fun 6555 df-fv 6561 df-ulm 26398 |
This theorem is referenced by: ulmval 26401 ulmdm 26414 ulmcau 26416 ulmdvlem3 26423 |
Copyright terms: Public domain | W3C validator |