| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ulmrel | Structured version Visualization version GIF version | ||
| Description: The uniform limit relation is a relation. (Contributed by Mario Carneiro, 26-Feb-2015.) |
| Ref | Expression |
|---|---|
| ulmrel | ⊢ Rel (⇝𝑢‘𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ulm 26343 | . 2 ⊢ ⇝𝑢 = (𝑠 ∈ V ↦ {〈𝑓, 𝑦〉 ∣ ∃𝑛 ∈ ℤ (𝑓:(ℤ≥‘𝑛)⟶(ℂ ↑m 𝑠) ∧ 𝑦:𝑠⟶ℂ ∧ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ (ℤ≥‘𝑛)∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑧 ∈ 𝑠 (abs‘(((𝑓‘𝑘)‘𝑧) − (𝑦‘𝑧))) < 𝑥)}) | |
| 2 | 1 | relmptopab 7662 | 1 ⊢ Rel (⇝𝑢‘𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ w3a 1086 ∀wral 3052 ∃wrex 3061 Vcvv 3464 class class class wbr 5124 Rel wrel 5664 ⟶wf 6532 ‘cfv 6536 (class class class)co 7410 ↑m cmap 8845 ℂcc 11132 < clt 11274 − cmin 11471 ℤcz 12593 ℤ≥cuz 12857 ℝ+crp 13013 abscabs 15258 ⇝𝑢culm 26342 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fv 6544 df-ulm 26343 |
| This theorem is referenced by: ulmval 26346 ulmdm 26359 ulmcau 26361 ulmdvlem3 26368 |
| Copyright terms: Public domain | W3C validator |