MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ulmrel Structured version   Visualization version   GIF version

Theorem ulmrel 25537
Description: The uniform limit relation is a relation. (Contributed by Mario Carneiro, 26-Feb-2015.)
Assertion
Ref Expression
ulmrel Rel (⇝𝑢𝑆)

Proof of Theorem ulmrel
Dummy variables 𝑓 𝑗 𝑘 𝑛 𝑠 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ulm 25536 . 2 𝑢 = (𝑠 ∈ V ↦ {⟨𝑓, 𝑦⟩ ∣ ∃𝑛 ∈ ℤ (𝑓:(ℤ𝑛)⟶(ℂ ↑m 𝑠) ∧ 𝑦:𝑠⟶ℂ ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑠 (abs‘(((𝑓𝑘)‘𝑧) − (𝑦𝑧))) < 𝑥)})
21relmptopab 7519 1 Rel (⇝𝑢𝑆)
Colors of variables: wff setvar class
Syntax hints:  w3a 1086  wral 3064  wrex 3065  Vcvv 3432   class class class wbr 5074  Rel wrel 5594  wf 6429  cfv 6433  (class class class)co 7275  m cmap 8615  cc 10869   < clt 11009  cmin 11205  cz 12319  cuz 12582  +crp 12730  abscabs 14945  𝑢culm 25535
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fv 6441  df-ulm 25536
This theorem is referenced by:  ulmval  25539  ulmdm  25552  ulmcau  25554  ulmdvlem3  25561
  Copyright terms: Public domain W3C validator