Detailed syntax breakdown of Definition df-clim
| Step | Hyp | Ref
| Expression |
| 1 | | cli 15520 |
. 2
class
⇝ |
| 2 | | vy |
. . . . . 6
setvar 𝑦 |
| 3 | 2 | cv 1539 |
. . . . 5
class 𝑦 |
| 4 | | cc 11153 |
. . . . 5
class
ℂ |
| 5 | 3, 4 | wcel 2108 |
. . . 4
wff 𝑦 ∈ ℂ |
| 6 | | vk |
. . . . . . . . . . 11
setvar 𝑘 |
| 7 | 6 | cv 1539 |
. . . . . . . . . 10
class 𝑘 |
| 8 | | vf |
. . . . . . . . . . 11
setvar 𝑓 |
| 9 | 8 | cv 1539 |
. . . . . . . . . 10
class 𝑓 |
| 10 | 7, 9 | cfv 6561 |
. . . . . . . . 9
class (𝑓‘𝑘) |
| 11 | 10, 4 | wcel 2108 |
. . . . . . . 8
wff (𝑓‘𝑘) ∈ ℂ |
| 12 | | cmin 11492 |
. . . . . . . . . . 11
class
− |
| 13 | 10, 3, 12 | co 7431 |
. . . . . . . . . 10
class ((𝑓‘𝑘) − 𝑦) |
| 14 | | cabs 15273 |
. . . . . . . . . 10
class
abs |
| 15 | 13, 14 | cfv 6561 |
. . . . . . . . 9
class
(abs‘((𝑓‘𝑘) − 𝑦)) |
| 16 | | vx |
. . . . . . . . . 10
setvar 𝑥 |
| 17 | 16 | cv 1539 |
. . . . . . . . 9
class 𝑥 |
| 18 | | clt 11295 |
. . . . . . . . 9
class
< |
| 19 | 15, 17, 18 | wbr 5143 |
. . . . . . . 8
wff
(abs‘((𝑓‘𝑘) − 𝑦)) < 𝑥 |
| 20 | 11, 19 | wa 395 |
. . . . . . 7
wff ((𝑓‘𝑘) ∈ ℂ ∧ (abs‘((𝑓‘𝑘) − 𝑦)) < 𝑥) |
| 21 | | vj |
. . . . . . . . 9
setvar 𝑗 |
| 22 | 21 | cv 1539 |
. . . . . . . 8
class 𝑗 |
| 23 | | cuz 12878 |
. . . . . . . 8
class
ℤ≥ |
| 24 | 22, 23 | cfv 6561 |
. . . . . . 7
class
(ℤ≥‘𝑗) |
| 25 | 20, 6, 24 | wral 3061 |
. . . . . 6
wff
∀𝑘 ∈
(ℤ≥‘𝑗)((𝑓‘𝑘) ∈ ℂ ∧ (abs‘((𝑓‘𝑘) − 𝑦)) < 𝑥) |
| 26 | | cz 12613 |
. . . . . 6
class
ℤ |
| 27 | 25, 21, 26 | wrex 3070 |
. . . . 5
wff
∃𝑗 ∈
ℤ ∀𝑘 ∈
(ℤ≥‘𝑗)((𝑓‘𝑘) ∈ ℂ ∧ (abs‘((𝑓‘𝑘) − 𝑦)) < 𝑥) |
| 28 | | crp 13034 |
. . . . 5
class
ℝ+ |
| 29 | 27, 16, 28 | wral 3061 |
. . . 4
wff
∀𝑥 ∈
ℝ+ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)((𝑓‘𝑘) ∈ ℂ ∧ (abs‘((𝑓‘𝑘) − 𝑦)) < 𝑥) |
| 30 | 5, 29 | wa 395 |
. . 3
wff (𝑦 ∈ ℂ ∧
∀𝑥 ∈
ℝ+ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)((𝑓‘𝑘) ∈ ℂ ∧ (abs‘((𝑓‘𝑘) − 𝑦)) < 𝑥)) |
| 31 | 30, 8, 2 | copab 5205 |
. 2
class
{〈𝑓, 𝑦〉 ∣ (𝑦 ∈ ℂ ∧
∀𝑥 ∈
ℝ+ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)((𝑓‘𝑘) ∈ ℂ ∧ (abs‘((𝑓‘𝑘) − 𝑦)) < 𝑥))} |
| 32 | 1, 31 | wceq 1540 |
1
wff ⇝ =
{〈𝑓, 𝑦〉 ∣ (𝑦 ∈ ℂ ∧
∀𝑥 ∈
ℝ+ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)((𝑓‘𝑘) ∈ ℂ ∧ (abs‘((𝑓‘𝑘) − 𝑦)) < 𝑥))} |