Step | Hyp | Ref
| Expression |
1 | | ulmrel 25442 |
. . . 4
⊢ Rel
(⇝𝑢‘𝑆) |
2 | 1 | brrelex12i 5633 |
. . 3
⊢ (𝐹(⇝𝑢‘𝑆)𝐺 → (𝐹 ∈ V ∧ 𝐺 ∈ V)) |
3 | 2 | a1i 11 |
. 2
⊢ (𝑆 ∈ 𝑉 → (𝐹(⇝𝑢‘𝑆)𝐺 → (𝐹 ∈ V ∧ 𝐺 ∈ V))) |
4 | | 3simpa 1146 |
. . . 4
⊢ ((𝐹:(ℤ≥‘𝑛)⟶(ℂ
↑m 𝑆) ∧
𝐺:𝑆⟶ℂ ∧ ∀𝑥 ∈ ℝ+
∃𝑗 ∈
(ℤ≥‘𝑛)∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑘)‘𝑧) − (𝐺‘𝑧))) < 𝑥) → (𝐹:(ℤ≥‘𝑛)⟶(ℂ
↑m 𝑆) ∧
𝐺:𝑆⟶ℂ)) |
5 | | fvex 6769 |
. . . . . . 7
⊢
(ℤ≥‘𝑛) ∈ V |
6 | | fex 7084 |
. . . . . . 7
⊢ ((𝐹:(ℤ≥‘𝑛)⟶(ℂ
↑m 𝑆) ∧
(ℤ≥‘𝑛) ∈ V) → 𝐹 ∈ V) |
7 | 5, 6 | mpan2 687 |
. . . . . 6
⊢ (𝐹:(ℤ≥‘𝑛)⟶(ℂ
↑m 𝑆)
→ 𝐹 ∈
V) |
8 | 7 | a1i 11 |
. . . . 5
⊢ (𝑆 ∈ 𝑉 → (𝐹:(ℤ≥‘𝑛)⟶(ℂ
↑m 𝑆)
→ 𝐹 ∈
V)) |
9 | | fex 7084 |
. . . . . 6
⊢ ((𝐺:𝑆⟶ℂ ∧ 𝑆 ∈ 𝑉) → 𝐺 ∈ V) |
10 | 9 | expcom 413 |
. . . . 5
⊢ (𝑆 ∈ 𝑉 → (𝐺:𝑆⟶ℂ → 𝐺 ∈ V)) |
11 | 8, 10 | anim12d 608 |
. . . 4
⊢ (𝑆 ∈ 𝑉 → ((𝐹:(ℤ≥‘𝑛)⟶(ℂ
↑m 𝑆) ∧
𝐺:𝑆⟶ℂ) → (𝐹 ∈ V ∧ 𝐺 ∈ V))) |
12 | 4, 11 | syl5 34 |
. . 3
⊢ (𝑆 ∈ 𝑉 → ((𝐹:(ℤ≥‘𝑛)⟶(ℂ
↑m 𝑆) ∧
𝐺:𝑆⟶ℂ ∧ ∀𝑥 ∈ ℝ+
∃𝑗 ∈
(ℤ≥‘𝑛)∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑘)‘𝑧) − (𝐺‘𝑧))) < 𝑥) → (𝐹 ∈ V ∧ 𝐺 ∈ V))) |
13 | 12 | rexlimdvw 3218 |
. 2
⊢ (𝑆 ∈ 𝑉 → (∃𝑛 ∈ ℤ (𝐹:(ℤ≥‘𝑛)⟶(ℂ
↑m 𝑆) ∧
𝐺:𝑆⟶ℂ ∧ ∀𝑥 ∈ ℝ+
∃𝑗 ∈
(ℤ≥‘𝑛)∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑘)‘𝑧) − (𝐺‘𝑧))) < 𝑥) → (𝐹 ∈ V ∧ 𝐺 ∈ V))) |
14 | | df-ulm 25441 |
. . . . . 6
⊢
⇝𝑢 = (𝑠 ∈ V ↦ {〈𝑓, 𝑦〉 ∣ ∃𝑛 ∈ ℤ (𝑓:(ℤ≥‘𝑛)⟶(ℂ
↑m 𝑠) ∧
𝑦:𝑠⟶ℂ ∧ ∀𝑥 ∈ ℝ+
∃𝑗 ∈
(ℤ≥‘𝑛)∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑧 ∈ 𝑠 (abs‘(((𝑓‘𝑘)‘𝑧) − (𝑦‘𝑧))) < 𝑥)}) |
15 | | oveq2 7263 |
. . . . . . . . . 10
⊢ (𝑠 = 𝑆 → (ℂ ↑m 𝑠) = (ℂ ↑m
𝑆)) |
16 | 15 | feq3d 6571 |
. . . . . . . . 9
⊢ (𝑠 = 𝑆 → (𝑓:(ℤ≥‘𝑛)⟶(ℂ
↑m 𝑠)
↔ 𝑓:(ℤ≥‘𝑛)⟶(ℂ
↑m 𝑆))) |
17 | | feq2 6566 |
. . . . . . . . 9
⊢ (𝑠 = 𝑆 → (𝑦:𝑠⟶ℂ ↔ 𝑦:𝑆⟶ℂ)) |
18 | | raleq 3333 |
. . . . . . . . . . 11
⊢ (𝑠 = 𝑆 → (∀𝑧 ∈ 𝑠 (abs‘(((𝑓‘𝑘)‘𝑧) − (𝑦‘𝑧))) < 𝑥 ↔ ∀𝑧 ∈ 𝑆 (abs‘(((𝑓‘𝑘)‘𝑧) − (𝑦‘𝑧))) < 𝑥)) |
19 | 18 | rexralbidv 3229 |
. . . . . . . . . 10
⊢ (𝑠 = 𝑆 → (∃𝑗 ∈ (ℤ≥‘𝑛)∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑧 ∈ 𝑠 (abs‘(((𝑓‘𝑘)‘𝑧) − (𝑦‘𝑧))) < 𝑥 ↔ ∃𝑗 ∈ (ℤ≥‘𝑛)∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑧 ∈ 𝑆 (abs‘(((𝑓‘𝑘)‘𝑧) − (𝑦‘𝑧))) < 𝑥)) |
20 | 19 | ralbidv 3120 |
. . . . . . . . 9
⊢ (𝑠 = 𝑆 → (∀𝑥 ∈ ℝ+ ∃𝑗 ∈
(ℤ≥‘𝑛)∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑧 ∈ 𝑠 (abs‘(((𝑓‘𝑘)‘𝑧) − (𝑦‘𝑧))) < 𝑥 ↔ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈
(ℤ≥‘𝑛)∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑧 ∈ 𝑆 (abs‘(((𝑓‘𝑘)‘𝑧) − (𝑦‘𝑧))) < 𝑥)) |
21 | 16, 17, 20 | 3anbi123d 1434 |
. . . . . . . 8
⊢ (𝑠 = 𝑆 → ((𝑓:(ℤ≥‘𝑛)⟶(ℂ
↑m 𝑠) ∧
𝑦:𝑠⟶ℂ ∧ ∀𝑥 ∈ ℝ+
∃𝑗 ∈
(ℤ≥‘𝑛)∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑧 ∈ 𝑠 (abs‘(((𝑓‘𝑘)‘𝑧) − (𝑦‘𝑧))) < 𝑥) ↔ (𝑓:(ℤ≥‘𝑛)⟶(ℂ
↑m 𝑆) ∧
𝑦:𝑆⟶ℂ ∧ ∀𝑥 ∈ ℝ+
∃𝑗 ∈
(ℤ≥‘𝑛)∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑧 ∈ 𝑆 (abs‘(((𝑓‘𝑘)‘𝑧) − (𝑦‘𝑧))) < 𝑥))) |
22 | 21 | rexbidv 3225 |
. . . . . . 7
⊢ (𝑠 = 𝑆 → (∃𝑛 ∈ ℤ (𝑓:(ℤ≥‘𝑛)⟶(ℂ
↑m 𝑠) ∧
𝑦:𝑠⟶ℂ ∧ ∀𝑥 ∈ ℝ+
∃𝑗 ∈
(ℤ≥‘𝑛)∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑧 ∈ 𝑠 (abs‘(((𝑓‘𝑘)‘𝑧) − (𝑦‘𝑧))) < 𝑥) ↔ ∃𝑛 ∈ ℤ (𝑓:(ℤ≥‘𝑛)⟶(ℂ
↑m 𝑆) ∧
𝑦:𝑆⟶ℂ ∧ ∀𝑥 ∈ ℝ+
∃𝑗 ∈
(ℤ≥‘𝑛)∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑧 ∈ 𝑆 (abs‘(((𝑓‘𝑘)‘𝑧) − (𝑦‘𝑧))) < 𝑥))) |
23 | 22 | opabbidv 5136 |
. . . . . 6
⊢ (𝑠 = 𝑆 → {〈𝑓, 𝑦〉 ∣ ∃𝑛 ∈ ℤ (𝑓:(ℤ≥‘𝑛)⟶(ℂ
↑m 𝑠) ∧
𝑦:𝑠⟶ℂ ∧ ∀𝑥 ∈ ℝ+
∃𝑗 ∈
(ℤ≥‘𝑛)∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑧 ∈ 𝑠 (abs‘(((𝑓‘𝑘)‘𝑧) − (𝑦‘𝑧))) < 𝑥)} = {〈𝑓, 𝑦〉 ∣ ∃𝑛 ∈ ℤ (𝑓:(ℤ≥‘𝑛)⟶(ℂ
↑m 𝑆) ∧
𝑦:𝑆⟶ℂ ∧ ∀𝑥 ∈ ℝ+
∃𝑗 ∈
(ℤ≥‘𝑛)∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑧 ∈ 𝑆 (abs‘(((𝑓‘𝑘)‘𝑧) − (𝑦‘𝑧))) < 𝑥)}) |
24 | | elex 3440 |
. . . . . 6
⊢ (𝑆 ∈ 𝑉 → 𝑆 ∈ V) |
25 | | simpr1 1192 |
. . . . . . . . . . . . 13
⊢ ((𝑆 ∈ 𝑉 ∧ (𝑓:(ℤ≥‘𝑛)⟶(ℂ
↑m 𝑆) ∧
𝑦:𝑆⟶ℂ ∧ ∀𝑥 ∈ ℝ+
∃𝑗 ∈
(ℤ≥‘𝑛)∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑧 ∈ 𝑆 (abs‘(((𝑓‘𝑘)‘𝑧) − (𝑦‘𝑧))) < 𝑥)) → 𝑓:(ℤ≥‘𝑛)⟶(ℂ
↑m 𝑆)) |
26 | | uzssz 12532 |
. . . . . . . . . . . . 13
⊢
(ℤ≥‘𝑛) ⊆ ℤ |
27 | | ovex 7288 |
. . . . . . . . . . . . . 14
⊢ (ℂ
↑m 𝑆)
∈ V |
28 | | zex 12258 |
. . . . . . . . . . . . . 14
⊢ ℤ
∈ V |
29 | | elpm2r 8591 |
. . . . . . . . . . . . . 14
⊢
((((ℂ ↑m 𝑆) ∈ V ∧ ℤ ∈ V) ∧
(𝑓:(ℤ≥‘𝑛)⟶(ℂ
↑m 𝑆) ∧
(ℤ≥‘𝑛) ⊆ ℤ)) → 𝑓 ∈ ((ℂ ↑m 𝑆) ↑pm
ℤ)) |
30 | 27, 28, 29 | mpanl12 698 |
. . . . . . . . . . . . 13
⊢ ((𝑓:(ℤ≥‘𝑛)⟶(ℂ
↑m 𝑆) ∧
(ℤ≥‘𝑛) ⊆ ℤ) → 𝑓 ∈ ((ℂ ↑m 𝑆) ↑pm
ℤ)) |
31 | 25, 26, 30 | sylancl 585 |
. . . . . . . . . . . 12
⊢ ((𝑆 ∈ 𝑉 ∧ (𝑓:(ℤ≥‘𝑛)⟶(ℂ
↑m 𝑆) ∧
𝑦:𝑆⟶ℂ ∧ ∀𝑥 ∈ ℝ+
∃𝑗 ∈
(ℤ≥‘𝑛)∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑧 ∈ 𝑆 (abs‘(((𝑓‘𝑘)‘𝑧) − (𝑦‘𝑧))) < 𝑥)) → 𝑓 ∈ ((ℂ ↑m 𝑆) ↑pm
ℤ)) |
32 | | simpr2 1193 |
. . . . . . . . . . . . 13
⊢ ((𝑆 ∈ 𝑉 ∧ (𝑓:(ℤ≥‘𝑛)⟶(ℂ
↑m 𝑆) ∧
𝑦:𝑆⟶ℂ ∧ ∀𝑥 ∈ ℝ+
∃𝑗 ∈
(ℤ≥‘𝑛)∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑧 ∈ 𝑆 (abs‘(((𝑓‘𝑘)‘𝑧) − (𝑦‘𝑧))) < 𝑥)) → 𝑦:𝑆⟶ℂ) |
33 | | cnex 10883 |
. . . . . . . . . . . . . 14
⊢ ℂ
∈ V |
34 | | simpl 482 |
. . . . . . . . . . . . . 14
⊢ ((𝑆 ∈ 𝑉 ∧ (𝑓:(ℤ≥‘𝑛)⟶(ℂ
↑m 𝑆) ∧
𝑦:𝑆⟶ℂ ∧ ∀𝑥 ∈ ℝ+
∃𝑗 ∈
(ℤ≥‘𝑛)∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑧 ∈ 𝑆 (abs‘(((𝑓‘𝑘)‘𝑧) − (𝑦‘𝑧))) < 𝑥)) → 𝑆 ∈ 𝑉) |
35 | | elmapg 8586 |
. . . . . . . . . . . . . 14
⊢ ((ℂ
∈ V ∧ 𝑆 ∈
𝑉) → (𝑦 ∈ (ℂ
↑m 𝑆)
↔ 𝑦:𝑆⟶ℂ)) |
36 | 33, 34, 35 | sylancr 586 |
. . . . . . . . . . . . 13
⊢ ((𝑆 ∈ 𝑉 ∧ (𝑓:(ℤ≥‘𝑛)⟶(ℂ
↑m 𝑆) ∧
𝑦:𝑆⟶ℂ ∧ ∀𝑥 ∈ ℝ+
∃𝑗 ∈
(ℤ≥‘𝑛)∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑧 ∈ 𝑆 (abs‘(((𝑓‘𝑘)‘𝑧) − (𝑦‘𝑧))) < 𝑥)) → (𝑦 ∈ (ℂ ↑m 𝑆) ↔ 𝑦:𝑆⟶ℂ)) |
37 | 32, 36 | mpbird 256 |
. . . . . . . . . . . 12
⊢ ((𝑆 ∈ 𝑉 ∧ (𝑓:(ℤ≥‘𝑛)⟶(ℂ
↑m 𝑆) ∧
𝑦:𝑆⟶ℂ ∧ ∀𝑥 ∈ ℝ+
∃𝑗 ∈
(ℤ≥‘𝑛)∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑧 ∈ 𝑆 (abs‘(((𝑓‘𝑘)‘𝑧) − (𝑦‘𝑧))) < 𝑥)) → 𝑦 ∈ (ℂ ↑m 𝑆)) |
38 | 31, 37 | jca 511 |
. . . . . . . . . . 11
⊢ ((𝑆 ∈ 𝑉 ∧ (𝑓:(ℤ≥‘𝑛)⟶(ℂ
↑m 𝑆) ∧
𝑦:𝑆⟶ℂ ∧ ∀𝑥 ∈ ℝ+
∃𝑗 ∈
(ℤ≥‘𝑛)∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑧 ∈ 𝑆 (abs‘(((𝑓‘𝑘)‘𝑧) − (𝑦‘𝑧))) < 𝑥)) → (𝑓 ∈ ((ℂ ↑m 𝑆) ↑pm ℤ)
∧ 𝑦 ∈ (ℂ
↑m 𝑆))) |
39 | 38 | ex 412 |
. . . . . . . . . 10
⊢ (𝑆 ∈ 𝑉 → ((𝑓:(ℤ≥‘𝑛)⟶(ℂ
↑m 𝑆) ∧
𝑦:𝑆⟶ℂ ∧ ∀𝑥 ∈ ℝ+
∃𝑗 ∈
(ℤ≥‘𝑛)∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑧 ∈ 𝑆 (abs‘(((𝑓‘𝑘)‘𝑧) − (𝑦‘𝑧))) < 𝑥) → (𝑓 ∈ ((ℂ ↑m 𝑆) ↑pm ℤ)
∧ 𝑦 ∈ (ℂ
↑m 𝑆)))) |
40 | 39 | rexlimdvw 3218 |
. . . . . . . . 9
⊢ (𝑆 ∈ 𝑉 → (∃𝑛 ∈ ℤ (𝑓:(ℤ≥‘𝑛)⟶(ℂ
↑m 𝑆) ∧
𝑦:𝑆⟶ℂ ∧ ∀𝑥 ∈ ℝ+
∃𝑗 ∈
(ℤ≥‘𝑛)∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑧 ∈ 𝑆 (abs‘(((𝑓‘𝑘)‘𝑧) − (𝑦‘𝑧))) < 𝑥) → (𝑓 ∈ ((ℂ ↑m 𝑆) ↑pm ℤ)
∧ 𝑦 ∈ (ℂ
↑m 𝑆)))) |
41 | 40 | ssopab2dv 5457 |
. . . . . . . 8
⊢ (𝑆 ∈ 𝑉 → {〈𝑓, 𝑦〉 ∣ ∃𝑛 ∈ ℤ (𝑓:(ℤ≥‘𝑛)⟶(ℂ
↑m 𝑆) ∧
𝑦:𝑆⟶ℂ ∧ ∀𝑥 ∈ ℝ+
∃𝑗 ∈
(ℤ≥‘𝑛)∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑧 ∈ 𝑆 (abs‘(((𝑓‘𝑘)‘𝑧) − (𝑦‘𝑧))) < 𝑥)} ⊆ {〈𝑓, 𝑦〉 ∣ (𝑓 ∈ ((ℂ ↑m 𝑆) ↑pm ℤ)
∧ 𝑦 ∈ (ℂ
↑m 𝑆))}) |
42 | | df-xp 5586 |
. . . . . . . 8
⊢
(((ℂ ↑m 𝑆) ↑pm ℤ) ×
(ℂ ↑m 𝑆)) = {〈𝑓, 𝑦〉 ∣ (𝑓 ∈ ((ℂ ↑m 𝑆) ↑pm ℤ)
∧ 𝑦 ∈ (ℂ
↑m 𝑆))} |
43 | 41, 42 | sseqtrrdi 3968 |
. . . . . . 7
⊢ (𝑆 ∈ 𝑉 → {〈𝑓, 𝑦〉 ∣ ∃𝑛 ∈ ℤ (𝑓:(ℤ≥‘𝑛)⟶(ℂ
↑m 𝑆) ∧
𝑦:𝑆⟶ℂ ∧ ∀𝑥 ∈ ℝ+
∃𝑗 ∈
(ℤ≥‘𝑛)∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑧 ∈ 𝑆 (abs‘(((𝑓‘𝑘)‘𝑧) − (𝑦‘𝑧))) < 𝑥)} ⊆ (((ℂ ↑m
𝑆) ↑pm
ℤ) × (ℂ ↑m 𝑆))) |
44 | | ovex 7288 |
. . . . . . . . 9
⊢ ((ℂ
↑m 𝑆)
↑pm ℤ) ∈ V |
45 | 44, 27 | xpex 7581 |
. . . . . . . 8
⊢
(((ℂ ↑m 𝑆) ↑pm ℤ) ×
(ℂ ↑m 𝑆)) ∈ V |
46 | 45 | ssex 5240 |
. . . . . . 7
⊢
({〈𝑓, 𝑦〉 ∣ ∃𝑛 ∈ ℤ (𝑓:(ℤ≥‘𝑛)⟶(ℂ
↑m 𝑆) ∧
𝑦:𝑆⟶ℂ ∧ ∀𝑥 ∈ ℝ+
∃𝑗 ∈
(ℤ≥‘𝑛)∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑧 ∈ 𝑆 (abs‘(((𝑓‘𝑘)‘𝑧) − (𝑦‘𝑧))) < 𝑥)} ⊆ (((ℂ ↑m
𝑆) ↑pm
ℤ) × (ℂ ↑m 𝑆)) → {〈𝑓, 𝑦〉 ∣ ∃𝑛 ∈ ℤ (𝑓:(ℤ≥‘𝑛)⟶(ℂ
↑m 𝑆) ∧
𝑦:𝑆⟶ℂ ∧ ∀𝑥 ∈ ℝ+
∃𝑗 ∈
(ℤ≥‘𝑛)∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑧 ∈ 𝑆 (abs‘(((𝑓‘𝑘)‘𝑧) − (𝑦‘𝑧))) < 𝑥)} ∈ V) |
47 | 43, 46 | syl 17 |
. . . . . 6
⊢ (𝑆 ∈ 𝑉 → {〈𝑓, 𝑦〉 ∣ ∃𝑛 ∈ ℤ (𝑓:(ℤ≥‘𝑛)⟶(ℂ
↑m 𝑆) ∧
𝑦:𝑆⟶ℂ ∧ ∀𝑥 ∈ ℝ+
∃𝑗 ∈
(ℤ≥‘𝑛)∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑧 ∈ 𝑆 (abs‘(((𝑓‘𝑘)‘𝑧) − (𝑦‘𝑧))) < 𝑥)} ∈ V) |
48 | 14, 23, 24, 47 | fvmptd3 6880 |
. . . . 5
⊢ (𝑆 ∈ 𝑉 →
(⇝𝑢‘𝑆) = {〈𝑓, 𝑦〉 ∣ ∃𝑛 ∈ ℤ (𝑓:(ℤ≥‘𝑛)⟶(ℂ
↑m 𝑆) ∧
𝑦:𝑆⟶ℂ ∧ ∀𝑥 ∈ ℝ+
∃𝑗 ∈
(ℤ≥‘𝑛)∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑧 ∈ 𝑆 (abs‘(((𝑓‘𝑘)‘𝑧) − (𝑦‘𝑧))) < 𝑥)}) |
49 | 48 | breqd 5081 |
. . . 4
⊢ (𝑆 ∈ 𝑉 → (𝐹(⇝𝑢‘𝑆)𝐺 ↔ 𝐹{〈𝑓, 𝑦〉 ∣ ∃𝑛 ∈ ℤ (𝑓:(ℤ≥‘𝑛)⟶(ℂ
↑m 𝑆) ∧
𝑦:𝑆⟶ℂ ∧ ∀𝑥 ∈ ℝ+
∃𝑗 ∈
(ℤ≥‘𝑛)∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑧 ∈ 𝑆 (abs‘(((𝑓‘𝑘)‘𝑧) − (𝑦‘𝑧))) < 𝑥)}𝐺)) |
50 | | simpl 482 |
. . . . . . . 8
⊢ ((𝑓 = 𝐹 ∧ 𝑦 = 𝐺) → 𝑓 = 𝐹) |
51 | 50 | feq1d 6569 |
. . . . . . 7
⊢ ((𝑓 = 𝐹 ∧ 𝑦 = 𝐺) → (𝑓:(ℤ≥‘𝑛)⟶(ℂ
↑m 𝑆)
↔ 𝐹:(ℤ≥‘𝑛)⟶(ℂ
↑m 𝑆))) |
52 | | simpr 484 |
. . . . . . . 8
⊢ ((𝑓 = 𝐹 ∧ 𝑦 = 𝐺) → 𝑦 = 𝐺) |
53 | 52 | feq1d 6569 |
. . . . . . 7
⊢ ((𝑓 = 𝐹 ∧ 𝑦 = 𝐺) → (𝑦:𝑆⟶ℂ ↔ 𝐺:𝑆⟶ℂ)) |
54 | 50 | fveq1d 6758 |
. . . . . . . . . . . . . 14
⊢ ((𝑓 = 𝐹 ∧ 𝑦 = 𝐺) → (𝑓‘𝑘) = (𝐹‘𝑘)) |
55 | 54 | fveq1d 6758 |
. . . . . . . . . . . . 13
⊢ ((𝑓 = 𝐹 ∧ 𝑦 = 𝐺) → ((𝑓‘𝑘)‘𝑧) = ((𝐹‘𝑘)‘𝑧)) |
56 | 52 | fveq1d 6758 |
. . . . . . . . . . . . 13
⊢ ((𝑓 = 𝐹 ∧ 𝑦 = 𝐺) → (𝑦‘𝑧) = (𝐺‘𝑧)) |
57 | 55, 56 | oveq12d 7273 |
. . . . . . . . . . . 12
⊢ ((𝑓 = 𝐹 ∧ 𝑦 = 𝐺) → (((𝑓‘𝑘)‘𝑧) − (𝑦‘𝑧)) = (((𝐹‘𝑘)‘𝑧) − (𝐺‘𝑧))) |
58 | 57 | fveq2d 6760 |
. . . . . . . . . . 11
⊢ ((𝑓 = 𝐹 ∧ 𝑦 = 𝐺) → (abs‘(((𝑓‘𝑘)‘𝑧) − (𝑦‘𝑧))) = (abs‘(((𝐹‘𝑘)‘𝑧) − (𝐺‘𝑧)))) |
59 | 58 | breq1d 5080 |
. . . . . . . . . 10
⊢ ((𝑓 = 𝐹 ∧ 𝑦 = 𝐺) → ((abs‘(((𝑓‘𝑘)‘𝑧) − (𝑦‘𝑧))) < 𝑥 ↔ (abs‘(((𝐹‘𝑘)‘𝑧) − (𝐺‘𝑧))) < 𝑥)) |
60 | 59 | ralbidv 3120 |
. . . . . . . . 9
⊢ ((𝑓 = 𝐹 ∧ 𝑦 = 𝐺) → (∀𝑧 ∈ 𝑆 (abs‘(((𝑓‘𝑘)‘𝑧) − (𝑦‘𝑧))) < 𝑥 ↔ ∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑘)‘𝑧) − (𝐺‘𝑧))) < 𝑥)) |
61 | 60 | rexralbidv 3229 |
. . . . . . . 8
⊢ ((𝑓 = 𝐹 ∧ 𝑦 = 𝐺) → (∃𝑗 ∈ (ℤ≥‘𝑛)∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑧 ∈ 𝑆 (abs‘(((𝑓‘𝑘)‘𝑧) − (𝑦‘𝑧))) < 𝑥 ↔ ∃𝑗 ∈ (ℤ≥‘𝑛)∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑘)‘𝑧) − (𝐺‘𝑧))) < 𝑥)) |
62 | 61 | ralbidv 3120 |
. . . . . . 7
⊢ ((𝑓 = 𝐹 ∧ 𝑦 = 𝐺) → (∀𝑥 ∈ ℝ+ ∃𝑗 ∈
(ℤ≥‘𝑛)∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑧 ∈ 𝑆 (abs‘(((𝑓‘𝑘)‘𝑧) − (𝑦‘𝑧))) < 𝑥 ↔ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈
(ℤ≥‘𝑛)∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑘)‘𝑧) − (𝐺‘𝑧))) < 𝑥)) |
63 | 51, 53, 62 | 3anbi123d 1434 |
. . . . . 6
⊢ ((𝑓 = 𝐹 ∧ 𝑦 = 𝐺) → ((𝑓:(ℤ≥‘𝑛)⟶(ℂ
↑m 𝑆) ∧
𝑦:𝑆⟶ℂ ∧ ∀𝑥 ∈ ℝ+
∃𝑗 ∈
(ℤ≥‘𝑛)∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑧 ∈ 𝑆 (abs‘(((𝑓‘𝑘)‘𝑧) − (𝑦‘𝑧))) < 𝑥) ↔ (𝐹:(ℤ≥‘𝑛)⟶(ℂ
↑m 𝑆) ∧
𝐺:𝑆⟶ℂ ∧ ∀𝑥 ∈ ℝ+
∃𝑗 ∈
(ℤ≥‘𝑛)∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑘)‘𝑧) − (𝐺‘𝑧))) < 𝑥))) |
64 | 63 | rexbidv 3225 |
. . . . 5
⊢ ((𝑓 = 𝐹 ∧ 𝑦 = 𝐺) → (∃𝑛 ∈ ℤ (𝑓:(ℤ≥‘𝑛)⟶(ℂ
↑m 𝑆) ∧
𝑦:𝑆⟶ℂ ∧ ∀𝑥 ∈ ℝ+
∃𝑗 ∈
(ℤ≥‘𝑛)∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑧 ∈ 𝑆 (abs‘(((𝑓‘𝑘)‘𝑧) − (𝑦‘𝑧))) < 𝑥) ↔ ∃𝑛 ∈ ℤ (𝐹:(ℤ≥‘𝑛)⟶(ℂ
↑m 𝑆) ∧
𝐺:𝑆⟶ℂ ∧ ∀𝑥 ∈ ℝ+
∃𝑗 ∈
(ℤ≥‘𝑛)∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑘)‘𝑧) − (𝐺‘𝑧))) < 𝑥))) |
65 | | eqid 2738 |
. . . . 5
⊢
{〈𝑓, 𝑦〉 ∣ ∃𝑛 ∈ ℤ (𝑓:(ℤ≥‘𝑛)⟶(ℂ
↑m 𝑆) ∧
𝑦:𝑆⟶ℂ ∧ ∀𝑥 ∈ ℝ+
∃𝑗 ∈
(ℤ≥‘𝑛)∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑧 ∈ 𝑆 (abs‘(((𝑓‘𝑘)‘𝑧) − (𝑦‘𝑧))) < 𝑥)} = {〈𝑓, 𝑦〉 ∣ ∃𝑛 ∈ ℤ (𝑓:(ℤ≥‘𝑛)⟶(ℂ
↑m 𝑆) ∧
𝑦:𝑆⟶ℂ ∧ ∀𝑥 ∈ ℝ+
∃𝑗 ∈
(ℤ≥‘𝑛)∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑧 ∈ 𝑆 (abs‘(((𝑓‘𝑘)‘𝑧) − (𝑦‘𝑧))) < 𝑥)} |
66 | 64, 65 | brabga 5440 |
. . . 4
⊢ ((𝐹 ∈ V ∧ 𝐺 ∈ V) → (𝐹{〈𝑓, 𝑦〉 ∣ ∃𝑛 ∈ ℤ (𝑓:(ℤ≥‘𝑛)⟶(ℂ
↑m 𝑆) ∧
𝑦:𝑆⟶ℂ ∧ ∀𝑥 ∈ ℝ+
∃𝑗 ∈
(ℤ≥‘𝑛)∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑧 ∈ 𝑆 (abs‘(((𝑓‘𝑘)‘𝑧) − (𝑦‘𝑧))) < 𝑥)}𝐺 ↔ ∃𝑛 ∈ ℤ (𝐹:(ℤ≥‘𝑛)⟶(ℂ
↑m 𝑆) ∧
𝐺:𝑆⟶ℂ ∧ ∀𝑥 ∈ ℝ+
∃𝑗 ∈
(ℤ≥‘𝑛)∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑘)‘𝑧) − (𝐺‘𝑧))) < 𝑥))) |
67 | 49, 66 | sylan9bb 509 |
. . 3
⊢ ((𝑆 ∈ 𝑉 ∧ (𝐹 ∈ V ∧ 𝐺 ∈ V)) → (𝐹(⇝𝑢‘𝑆)𝐺 ↔ ∃𝑛 ∈ ℤ (𝐹:(ℤ≥‘𝑛)⟶(ℂ
↑m 𝑆) ∧
𝐺:𝑆⟶ℂ ∧ ∀𝑥 ∈ ℝ+
∃𝑗 ∈
(ℤ≥‘𝑛)∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑘)‘𝑧) − (𝐺‘𝑧))) < 𝑥))) |
68 | 67 | ex 412 |
. 2
⊢ (𝑆 ∈ 𝑉 → ((𝐹 ∈ V ∧ 𝐺 ∈ V) → (𝐹(⇝𝑢‘𝑆)𝐺 ↔ ∃𝑛 ∈ ℤ (𝐹:(ℤ≥‘𝑛)⟶(ℂ
↑m 𝑆) ∧
𝐺:𝑆⟶ℂ ∧ ∀𝑥 ∈ ℝ+
∃𝑗 ∈
(ℤ≥‘𝑛)∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑘)‘𝑧) − (𝐺‘𝑧))) < 𝑥)))) |
69 | 3, 13, 68 | pm5.21ndd 380 |
1
⊢ (𝑆 ∈ 𝑉 → (𝐹(⇝𝑢‘𝑆)𝐺 ↔ ∃𝑛 ∈ ℤ (𝐹:(ℤ≥‘𝑛)⟶(ℂ
↑m 𝑆) ∧
𝐺:𝑆⟶ℂ ∧ ∀𝑥 ∈ ℝ+
∃𝑗 ∈
(ℤ≥‘𝑛)∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑘)‘𝑧) − (𝐺‘𝑧))) < 𝑥))) |