MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ulmval Structured version   Visualization version   GIF version

Theorem ulmval 25226
Description: Express the predicate: The sequence of functions 𝐹 converges uniformly to 𝐺 on 𝑆. (Contributed by Mario Carneiro, 26-Feb-2015.)
Assertion
Ref Expression
ulmval (𝑆𝑉 → (𝐹(⇝𝑢𝑆)𝐺 ↔ ∃𝑛 ∈ ℤ (𝐹:(ℤ𝑛)⟶(ℂ ↑m 𝑆) ∧ 𝐺:𝑆⟶ℂ ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑥)))
Distinct variable groups:   𝑗,𝑘,𝑛,𝑥,𝑧,𝐹   𝑗,𝐺,𝑘,𝑛,𝑥,𝑧   𝑆,𝑗,𝑘,𝑛,𝑥,𝑧   𝑛,𝑉
Allowed substitution hints:   𝑉(𝑥,𝑧,𝑗,𝑘)

Proof of Theorem ulmval
Dummy variables 𝑓 𝑦 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ulmrel 25224 . . . 4 Rel (⇝𝑢𝑆)
21brrelex12i 5589 . . 3 (𝐹(⇝𝑢𝑆)𝐺 → (𝐹 ∈ V ∧ 𝐺 ∈ V))
32a1i 11 . 2 (𝑆𝑉 → (𝐹(⇝𝑢𝑆)𝐺 → (𝐹 ∈ V ∧ 𝐺 ∈ V)))
4 3simpa 1150 . . . 4 ((𝐹:(ℤ𝑛)⟶(ℂ ↑m 𝑆) ∧ 𝐺:𝑆⟶ℂ ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑥) → (𝐹:(ℤ𝑛)⟶(ℂ ↑m 𝑆) ∧ 𝐺:𝑆⟶ℂ))
5 fvex 6708 . . . . . . 7 (ℤ𝑛) ∈ V
6 fex 7020 . . . . . . 7 ((𝐹:(ℤ𝑛)⟶(ℂ ↑m 𝑆) ∧ (ℤ𝑛) ∈ V) → 𝐹 ∈ V)
75, 6mpan2 691 . . . . . 6 (𝐹:(ℤ𝑛)⟶(ℂ ↑m 𝑆) → 𝐹 ∈ V)
87a1i 11 . . . . 5 (𝑆𝑉 → (𝐹:(ℤ𝑛)⟶(ℂ ↑m 𝑆) → 𝐹 ∈ V))
9 fex 7020 . . . . . 6 ((𝐺:𝑆⟶ℂ ∧ 𝑆𝑉) → 𝐺 ∈ V)
109expcom 417 . . . . 5 (𝑆𝑉 → (𝐺:𝑆⟶ℂ → 𝐺 ∈ V))
118, 10anim12d 612 . . . 4 (𝑆𝑉 → ((𝐹:(ℤ𝑛)⟶(ℂ ↑m 𝑆) ∧ 𝐺:𝑆⟶ℂ) → (𝐹 ∈ V ∧ 𝐺 ∈ V)))
124, 11syl5 34 . . 3 (𝑆𝑉 → ((𝐹:(ℤ𝑛)⟶(ℂ ↑m 𝑆) ∧ 𝐺:𝑆⟶ℂ ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑥) → (𝐹 ∈ V ∧ 𝐺 ∈ V)))
1312rexlimdvw 3199 . 2 (𝑆𝑉 → (∃𝑛 ∈ ℤ (𝐹:(ℤ𝑛)⟶(ℂ ↑m 𝑆) ∧ 𝐺:𝑆⟶ℂ ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑥) → (𝐹 ∈ V ∧ 𝐺 ∈ V)))
14 df-ulm 25223 . . . . . 6 𝑢 = (𝑠 ∈ V ↦ {⟨𝑓, 𝑦⟩ ∣ ∃𝑛 ∈ ℤ (𝑓:(ℤ𝑛)⟶(ℂ ↑m 𝑠) ∧ 𝑦:𝑠⟶ℂ ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑠 (abs‘(((𝑓𝑘)‘𝑧) − (𝑦𝑧))) < 𝑥)})
15 oveq2 7199 . . . . . . . . . 10 (𝑠 = 𝑆 → (ℂ ↑m 𝑠) = (ℂ ↑m 𝑆))
1615feq3d 6510 . . . . . . . . 9 (𝑠 = 𝑆 → (𝑓:(ℤ𝑛)⟶(ℂ ↑m 𝑠) ↔ 𝑓:(ℤ𝑛)⟶(ℂ ↑m 𝑆)))
17 feq2 6505 . . . . . . . . 9 (𝑠 = 𝑆 → (𝑦:𝑠⟶ℂ ↔ 𝑦:𝑆⟶ℂ))
18 raleq 3309 . . . . . . . . . . 11 (𝑠 = 𝑆 → (∀𝑧𝑠 (abs‘(((𝑓𝑘)‘𝑧) − (𝑦𝑧))) < 𝑥 ↔ ∀𝑧𝑆 (abs‘(((𝑓𝑘)‘𝑧) − (𝑦𝑧))) < 𝑥))
1918rexralbidv 3210 . . . . . . . . . 10 (𝑠 = 𝑆 → (∃𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑠 (abs‘(((𝑓𝑘)‘𝑧) − (𝑦𝑧))) < 𝑥 ↔ ∃𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝑓𝑘)‘𝑧) − (𝑦𝑧))) < 𝑥))
2019ralbidv 3108 . . . . . . . . 9 (𝑠 = 𝑆 → (∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑠 (abs‘(((𝑓𝑘)‘𝑧) − (𝑦𝑧))) < 𝑥 ↔ ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝑓𝑘)‘𝑧) − (𝑦𝑧))) < 𝑥))
2116, 17, 203anbi123d 1438 . . . . . . . 8 (𝑠 = 𝑆 → ((𝑓:(ℤ𝑛)⟶(ℂ ↑m 𝑠) ∧ 𝑦:𝑠⟶ℂ ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑠 (abs‘(((𝑓𝑘)‘𝑧) − (𝑦𝑧))) < 𝑥) ↔ (𝑓:(ℤ𝑛)⟶(ℂ ↑m 𝑆) ∧ 𝑦:𝑆⟶ℂ ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝑓𝑘)‘𝑧) − (𝑦𝑧))) < 𝑥)))
2221rexbidv 3206 . . . . . . 7 (𝑠 = 𝑆 → (∃𝑛 ∈ ℤ (𝑓:(ℤ𝑛)⟶(ℂ ↑m 𝑠) ∧ 𝑦:𝑠⟶ℂ ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑠 (abs‘(((𝑓𝑘)‘𝑧) − (𝑦𝑧))) < 𝑥) ↔ ∃𝑛 ∈ ℤ (𝑓:(ℤ𝑛)⟶(ℂ ↑m 𝑆) ∧ 𝑦:𝑆⟶ℂ ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝑓𝑘)‘𝑧) − (𝑦𝑧))) < 𝑥)))
2322opabbidv 5105 . . . . . 6 (𝑠 = 𝑆 → {⟨𝑓, 𝑦⟩ ∣ ∃𝑛 ∈ ℤ (𝑓:(ℤ𝑛)⟶(ℂ ↑m 𝑠) ∧ 𝑦:𝑠⟶ℂ ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑠 (abs‘(((𝑓𝑘)‘𝑧) − (𝑦𝑧))) < 𝑥)} = {⟨𝑓, 𝑦⟩ ∣ ∃𝑛 ∈ ℤ (𝑓:(ℤ𝑛)⟶(ℂ ↑m 𝑆) ∧ 𝑦:𝑆⟶ℂ ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝑓𝑘)‘𝑧) − (𝑦𝑧))) < 𝑥)})
24 elex 3416 . . . . . 6 (𝑆𝑉𝑆 ∈ V)
25 simpr1 1196 . . . . . . . . . . . . 13 ((𝑆𝑉 ∧ (𝑓:(ℤ𝑛)⟶(ℂ ↑m 𝑆) ∧ 𝑦:𝑆⟶ℂ ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝑓𝑘)‘𝑧) − (𝑦𝑧))) < 𝑥)) → 𝑓:(ℤ𝑛)⟶(ℂ ↑m 𝑆))
26 uzssz 12424 . . . . . . . . . . . . 13 (ℤ𝑛) ⊆ ℤ
27 ovex 7224 . . . . . . . . . . . . . 14 (ℂ ↑m 𝑆) ∈ V
28 zex 12150 . . . . . . . . . . . . . 14 ℤ ∈ V
29 elpm2r 8504 . . . . . . . . . . . . . 14 ((((ℂ ↑m 𝑆) ∈ V ∧ ℤ ∈ V) ∧ (𝑓:(ℤ𝑛)⟶(ℂ ↑m 𝑆) ∧ (ℤ𝑛) ⊆ ℤ)) → 𝑓 ∈ ((ℂ ↑m 𝑆) ↑pm ℤ))
3027, 28, 29mpanl12 702 . . . . . . . . . . . . 13 ((𝑓:(ℤ𝑛)⟶(ℂ ↑m 𝑆) ∧ (ℤ𝑛) ⊆ ℤ) → 𝑓 ∈ ((ℂ ↑m 𝑆) ↑pm ℤ))
3125, 26, 30sylancl 589 . . . . . . . . . . . 12 ((𝑆𝑉 ∧ (𝑓:(ℤ𝑛)⟶(ℂ ↑m 𝑆) ∧ 𝑦:𝑆⟶ℂ ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝑓𝑘)‘𝑧) − (𝑦𝑧))) < 𝑥)) → 𝑓 ∈ ((ℂ ↑m 𝑆) ↑pm ℤ))
32 simpr2 1197 . . . . . . . . . . . . 13 ((𝑆𝑉 ∧ (𝑓:(ℤ𝑛)⟶(ℂ ↑m 𝑆) ∧ 𝑦:𝑆⟶ℂ ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝑓𝑘)‘𝑧) − (𝑦𝑧))) < 𝑥)) → 𝑦:𝑆⟶ℂ)
33 cnex 10775 . . . . . . . . . . . . . 14 ℂ ∈ V
34 simpl 486 . . . . . . . . . . . . . 14 ((𝑆𝑉 ∧ (𝑓:(ℤ𝑛)⟶(ℂ ↑m 𝑆) ∧ 𝑦:𝑆⟶ℂ ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝑓𝑘)‘𝑧) − (𝑦𝑧))) < 𝑥)) → 𝑆𝑉)
35 elmapg 8499 . . . . . . . . . . . . . 14 ((ℂ ∈ V ∧ 𝑆𝑉) → (𝑦 ∈ (ℂ ↑m 𝑆) ↔ 𝑦:𝑆⟶ℂ))
3633, 34, 35sylancr 590 . . . . . . . . . . . . 13 ((𝑆𝑉 ∧ (𝑓:(ℤ𝑛)⟶(ℂ ↑m 𝑆) ∧ 𝑦:𝑆⟶ℂ ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝑓𝑘)‘𝑧) − (𝑦𝑧))) < 𝑥)) → (𝑦 ∈ (ℂ ↑m 𝑆) ↔ 𝑦:𝑆⟶ℂ))
3732, 36mpbird 260 . . . . . . . . . . . 12 ((𝑆𝑉 ∧ (𝑓:(ℤ𝑛)⟶(ℂ ↑m 𝑆) ∧ 𝑦:𝑆⟶ℂ ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝑓𝑘)‘𝑧) − (𝑦𝑧))) < 𝑥)) → 𝑦 ∈ (ℂ ↑m 𝑆))
3831, 37jca 515 . . . . . . . . . . 11 ((𝑆𝑉 ∧ (𝑓:(ℤ𝑛)⟶(ℂ ↑m 𝑆) ∧ 𝑦:𝑆⟶ℂ ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝑓𝑘)‘𝑧) − (𝑦𝑧))) < 𝑥)) → (𝑓 ∈ ((ℂ ↑m 𝑆) ↑pm ℤ) ∧ 𝑦 ∈ (ℂ ↑m 𝑆)))
3938ex 416 . . . . . . . . . 10 (𝑆𝑉 → ((𝑓:(ℤ𝑛)⟶(ℂ ↑m 𝑆) ∧ 𝑦:𝑆⟶ℂ ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝑓𝑘)‘𝑧) − (𝑦𝑧))) < 𝑥) → (𝑓 ∈ ((ℂ ↑m 𝑆) ↑pm ℤ) ∧ 𝑦 ∈ (ℂ ↑m 𝑆))))
4039rexlimdvw 3199 . . . . . . . . 9 (𝑆𝑉 → (∃𝑛 ∈ ℤ (𝑓:(ℤ𝑛)⟶(ℂ ↑m 𝑆) ∧ 𝑦:𝑆⟶ℂ ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝑓𝑘)‘𝑧) − (𝑦𝑧))) < 𝑥) → (𝑓 ∈ ((ℂ ↑m 𝑆) ↑pm ℤ) ∧ 𝑦 ∈ (ℂ ↑m 𝑆))))
4140ssopab2dv 5417 . . . . . . . 8 (𝑆𝑉 → {⟨𝑓, 𝑦⟩ ∣ ∃𝑛 ∈ ℤ (𝑓:(ℤ𝑛)⟶(ℂ ↑m 𝑆) ∧ 𝑦:𝑆⟶ℂ ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝑓𝑘)‘𝑧) − (𝑦𝑧))) < 𝑥)} ⊆ {⟨𝑓, 𝑦⟩ ∣ (𝑓 ∈ ((ℂ ↑m 𝑆) ↑pm ℤ) ∧ 𝑦 ∈ (ℂ ↑m 𝑆))})
42 df-xp 5542 . . . . . . . 8 (((ℂ ↑m 𝑆) ↑pm ℤ) × (ℂ ↑m 𝑆)) = {⟨𝑓, 𝑦⟩ ∣ (𝑓 ∈ ((ℂ ↑m 𝑆) ↑pm ℤ) ∧ 𝑦 ∈ (ℂ ↑m 𝑆))}
4341, 42sseqtrrdi 3938 . . . . . . 7 (𝑆𝑉 → {⟨𝑓, 𝑦⟩ ∣ ∃𝑛 ∈ ℤ (𝑓:(ℤ𝑛)⟶(ℂ ↑m 𝑆) ∧ 𝑦:𝑆⟶ℂ ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝑓𝑘)‘𝑧) − (𝑦𝑧))) < 𝑥)} ⊆ (((ℂ ↑m 𝑆) ↑pm ℤ) × (ℂ ↑m 𝑆)))
44 ovex 7224 . . . . . . . . 9 ((ℂ ↑m 𝑆) ↑pm ℤ) ∈ V
4544, 27xpex 7516 . . . . . . . 8 (((ℂ ↑m 𝑆) ↑pm ℤ) × (ℂ ↑m 𝑆)) ∈ V
4645ssex 5199 . . . . . . 7 ({⟨𝑓, 𝑦⟩ ∣ ∃𝑛 ∈ ℤ (𝑓:(ℤ𝑛)⟶(ℂ ↑m 𝑆) ∧ 𝑦:𝑆⟶ℂ ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝑓𝑘)‘𝑧) − (𝑦𝑧))) < 𝑥)} ⊆ (((ℂ ↑m 𝑆) ↑pm ℤ) × (ℂ ↑m 𝑆)) → {⟨𝑓, 𝑦⟩ ∣ ∃𝑛 ∈ ℤ (𝑓:(ℤ𝑛)⟶(ℂ ↑m 𝑆) ∧ 𝑦:𝑆⟶ℂ ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝑓𝑘)‘𝑧) − (𝑦𝑧))) < 𝑥)} ∈ V)
4743, 46syl 17 . . . . . 6 (𝑆𝑉 → {⟨𝑓, 𝑦⟩ ∣ ∃𝑛 ∈ ℤ (𝑓:(ℤ𝑛)⟶(ℂ ↑m 𝑆) ∧ 𝑦:𝑆⟶ℂ ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝑓𝑘)‘𝑧) − (𝑦𝑧))) < 𝑥)} ∈ V)
4814, 23, 24, 47fvmptd3 6819 . . . . 5 (𝑆𝑉 → (⇝𝑢𝑆) = {⟨𝑓, 𝑦⟩ ∣ ∃𝑛 ∈ ℤ (𝑓:(ℤ𝑛)⟶(ℂ ↑m 𝑆) ∧ 𝑦:𝑆⟶ℂ ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝑓𝑘)‘𝑧) − (𝑦𝑧))) < 𝑥)})
4948breqd 5050 . . . 4 (𝑆𝑉 → (𝐹(⇝𝑢𝑆)𝐺𝐹{⟨𝑓, 𝑦⟩ ∣ ∃𝑛 ∈ ℤ (𝑓:(ℤ𝑛)⟶(ℂ ↑m 𝑆) ∧ 𝑦:𝑆⟶ℂ ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝑓𝑘)‘𝑧) − (𝑦𝑧))) < 𝑥)}𝐺))
50 simpl 486 . . . . . . . 8 ((𝑓 = 𝐹𝑦 = 𝐺) → 𝑓 = 𝐹)
5150feq1d 6508 . . . . . . 7 ((𝑓 = 𝐹𝑦 = 𝐺) → (𝑓:(ℤ𝑛)⟶(ℂ ↑m 𝑆) ↔ 𝐹:(ℤ𝑛)⟶(ℂ ↑m 𝑆)))
52 simpr 488 . . . . . . . 8 ((𝑓 = 𝐹𝑦 = 𝐺) → 𝑦 = 𝐺)
5352feq1d 6508 . . . . . . 7 ((𝑓 = 𝐹𝑦 = 𝐺) → (𝑦:𝑆⟶ℂ ↔ 𝐺:𝑆⟶ℂ))
5450fveq1d 6697 . . . . . . . . . . . . . 14 ((𝑓 = 𝐹𝑦 = 𝐺) → (𝑓𝑘) = (𝐹𝑘))
5554fveq1d 6697 . . . . . . . . . . . . 13 ((𝑓 = 𝐹𝑦 = 𝐺) → ((𝑓𝑘)‘𝑧) = ((𝐹𝑘)‘𝑧))
5652fveq1d 6697 . . . . . . . . . . . . 13 ((𝑓 = 𝐹𝑦 = 𝐺) → (𝑦𝑧) = (𝐺𝑧))
5755, 56oveq12d 7209 . . . . . . . . . . . 12 ((𝑓 = 𝐹𝑦 = 𝐺) → (((𝑓𝑘)‘𝑧) − (𝑦𝑧)) = (((𝐹𝑘)‘𝑧) − (𝐺𝑧)))
5857fveq2d 6699 . . . . . . . . . . 11 ((𝑓 = 𝐹𝑦 = 𝐺) → (abs‘(((𝑓𝑘)‘𝑧) − (𝑦𝑧))) = (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))))
5958breq1d 5049 . . . . . . . . . 10 ((𝑓 = 𝐹𝑦 = 𝐺) → ((abs‘(((𝑓𝑘)‘𝑧) − (𝑦𝑧))) < 𝑥 ↔ (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑥))
6059ralbidv 3108 . . . . . . . . 9 ((𝑓 = 𝐹𝑦 = 𝐺) → (∀𝑧𝑆 (abs‘(((𝑓𝑘)‘𝑧) − (𝑦𝑧))) < 𝑥 ↔ ∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑥))
6160rexralbidv 3210 . . . . . . . 8 ((𝑓 = 𝐹𝑦 = 𝐺) → (∃𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝑓𝑘)‘𝑧) − (𝑦𝑧))) < 𝑥 ↔ ∃𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑥))
6261ralbidv 3108 . . . . . . 7 ((𝑓 = 𝐹𝑦 = 𝐺) → (∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝑓𝑘)‘𝑧) − (𝑦𝑧))) < 𝑥 ↔ ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑥))
6351, 53, 623anbi123d 1438 . . . . . 6 ((𝑓 = 𝐹𝑦 = 𝐺) → ((𝑓:(ℤ𝑛)⟶(ℂ ↑m 𝑆) ∧ 𝑦:𝑆⟶ℂ ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝑓𝑘)‘𝑧) − (𝑦𝑧))) < 𝑥) ↔ (𝐹:(ℤ𝑛)⟶(ℂ ↑m 𝑆) ∧ 𝐺:𝑆⟶ℂ ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑥)))
6463rexbidv 3206 . . . . 5 ((𝑓 = 𝐹𝑦 = 𝐺) → (∃𝑛 ∈ ℤ (𝑓:(ℤ𝑛)⟶(ℂ ↑m 𝑆) ∧ 𝑦:𝑆⟶ℂ ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝑓𝑘)‘𝑧) − (𝑦𝑧))) < 𝑥) ↔ ∃𝑛 ∈ ℤ (𝐹:(ℤ𝑛)⟶(ℂ ↑m 𝑆) ∧ 𝐺:𝑆⟶ℂ ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑥)))
65 eqid 2736 . . . . 5 {⟨𝑓, 𝑦⟩ ∣ ∃𝑛 ∈ ℤ (𝑓:(ℤ𝑛)⟶(ℂ ↑m 𝑆) ∧ 𝑦:𝑆⟶ℂ ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝑓𝑘)‘𝑧) − (𝑦𝑧))) < 𝑥)} = {⟨𝑓, 𝑦⟩ ∣ ∃𝑛 ∈ ℤ (𝑓:(ℤ𝑛)⟶(ℂ ↑m 𝑆) ∧ 𝑦:𝑆⟶ℂ ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝑓𝑘)‘𝑧) − (𝑦𝑧))) < 𝑥)}
6664, 65brabga 5400 . . . 4 ((𝐹 ∈ V ∧ 𝐺 ∈ V) → (𝐹{⟨𝑓, 𝑦⟩ ∣ ∃𝑛 ∈ ℤ (𝑓:(ℤ𝑛)⟶(ℂ ↑m 𝑆) ∧ 𝑦:𝑆⟶ℂ ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝑓𝑘)‘𝑧) − (𝑦𝑧))) < 𝑥)}𝐺 ↔ ∃𝑛 ∈ ℤ (𝐹:(ℤ𝑛)⟶(ℂ ↑m 𝑆) ∧ 𝐺:𝑆⟶ℂ ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑥)))
6749, 66sylan9bb 513 . . 3 ((𝑆𝑉 ∧ (𝐹 ∈ V ∧ 𝐺 ∈ V)) → (𝐹(⇝𝑢𝑆)𝐺 ↔ ∃𝑛 ∈ ℤ (𝐹:(ℤ𝑛)⟶(ℂ ↑m 𝑆) ∧ 𝐺:𝑆⟶ℂ ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑥)))
6867ex 416 . 2 (𝑆𝑉 → ((𝐹 ∈ V ∧ 𝐺 ∈ V) → (𝐹(⇝𝑢𝑆)𝐺 ↔ ∃𝑛 ∈ ℤ (𝐹:(ℤ𝑛)⟶(ℂ ↑m 𝑆) ∧ 𝐺:𝑆⟶ℂ ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑥))))
693, 13, 68pm5.21ndd 384 1 (𝑆𝑉 → (𝐹(⇝𝑢𝑆)𝐺 ↔ ∃𝑛 ∈ ℤ (𝐹:(ℤ𝑛)⟶(ℂ ↑m 𝑆) ∧ 𝐺:𝑆⟶ℂ ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1089   = wceq 1543  wcel 2112  wral 3051  wrex 3052  Vcvv 3398  wss 3853   class class class wbr 5039  {copab 5101   × cxp 5534  wf 6354  cfv 6358  (class class class)co 7191  m cmap 8486  pm cpm 8487  cc 10692   < clt 10832  cmin 11027  cz 12141  cuz 12403  +crp 12551  abscabs 14762  𝑢culm 25222
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501  ax-cnex 10750  ax-resscn 10751
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-ral 3056  df-rex 3057  df-reu 3058  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-op 4534  df-uni 4806  df-iun 4892  df-br 5040  df-opab 5102  df-mpt 5121  df-id 5440  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-ov 7194  df-oprab 7195  df-mpo 7196  df-map 8488  df-pm 8489  df-neg 11030  df-z 12142  df-uz 12404  df-ulm 25223
This theorem is referenced by:  ulmcl  25227  ulmf  25228  ulm2  25231
  Copyright terms: Public domain W3C validator