![]() |
Metamath
Proof Explorer Theorem List (p. 262 of 480) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-30439) |
![]() (30440-31962) |
![]() (31963-47940) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | aaliou3 26101 | Example of a "Liouville number", a very simple definable transcendental real. (Contributed by Stefan O'Rear, 23-Nov-2014.) |
β’ Ξ£π β β (2β-(!βπ)) β πΈ | ||
Syntax | ctayl 26102 | Taylor polynomial of a function. |
class Tayl | ||
Syntax | cana 26103 | The class of analytic functions. |
class Ana | ||
Definition | df-tayl 26104* | Define the Taylor polynomial or Taylor series of a function. TODO-AV: π β (β0 βͺ {+β}) should be replaced by π β β0*. (Contributed by Mario Carneiro, 30-Dec-2016.) |
β’ Tayl = (π β {β, β}, π β (β βpm π ) β¦ (π β (β0 βͺ {+β}), π β β© π β ((0[,]π) β© β€)dom ((π Dπ π)βπ) β¦ βͺ π₯ β β ({π₯} Γ (βfld tsums (π β ((0[,]π) β© β€) β¦ (((((π Dπ π)βπ)βπ) / (!βπ)) Β· ((π₯ β π)βπ))))))) | ||
Definition | df-ana 26105* | Define the set of analytic functions, which are functions such that the Taylor series of the function at each point converges to the function in some neighborhood of the point. (Contributed by Mario Carneiro, 31-Dec-2016.) |
β’ Ana = (π β {β, β} β¦ {π β (β βpm π ) β£ βπ₯ β dom π π₯ β ((intβ((TopOpenββfld) βΎt π ))βdom (π β© (+β(π Tayl π)π₯)))}) | ||
Theorem | taylfvallem1 26106* | Lemma for taylfval 26108. (Contributed by Mario Carneiro, 30-Dec-2016.) |
β’ (π β π β {β, β}) & β’ (π β πΉ:π΄βΆβ) & β’ (π β π΄ β π) & β’ (π β (π β β0 β¨ π = +β)) & β’ ((π β§ π β ((0[,]π) β© β€)) β π΅ β dom ((π Dπ πΉ)βπ)) β β’ (((π β§ π β β) β§ π β ((0[,]π) β© β€)) β (((((π Dπ πΉ)βπ)βπ΅) / (!βπ)) Β· ((π β π΅)βπ)) β β) | ||
Theorem | taylfvallem 26107* | Lemma for taylfval 26108. (Contributed by Mario Carneiro, 30-Dec-2016.) |
β’ (π β π β {β, β}) & β’ (π β πΉ:π΄βΆβ) & β’ (π β π΄ β π) & β’ (π β (π β β0 β¨ π = +β)) & β’ ((π β§ π β ((0[,]π) β© β€)) β π΅ β dom ((π Dπ πΉ)βπ)) β β’ ((π β§ π β β) β (βfld tsums (π β ((0[,]π) β© β€) β¦ (((((π Dπ πΉ)βπ)βπ΅) / (!βπ)) Β· ((π β π΅)βπ)))) β β) | ||
Theorem | taylfval 26108* |
Define the Taylor polynomial of a function. The constant Tayl is a
function of five arguments: π is the base set with respect to
evaluate the derivatives (generally β or
β), πΉ is the
function we are approximating, at point π΅, to order π. The
result is a polynomial function of π₯.
This "extended" version of taylpfval 26114 additionally handles the case π = +β, in which case this is not a polynomial but an infinite series, the Taylor series of the function. (Contributed by Mario Carneiro, 30-Dec-2016.) |
β’ (π β π β {β, β}) & β’ (π β πΉ:π΄βΆβ) & β’ (π β π΄ β π) & β’ (π β (π β β0 β¨ π = +β)) & β’ ((π β§ π β ((0[,]π) β© β€)) β π΅ β dom ((π Dπ πΉ)βπ)) & β’ π = (π(π Tayl πΉ)π΅) β β’ (π β π = βͺ π₯ β β ({π₯} Γ (βfld tsums (π β ((0[,]π) β© β€) β¦ (((((π Dπ πΉ)βπ)βπ΅) / (!βπ)) Β· ((π₯ β π΅)βπ)))))) | ||
Theorem | eltayl 26109* | Value of the Taylor series as a relation (elementhood in the domain here expresses that the series is convergent). (Contributed by Mario Carneiro, 30-Dec-2016.) |
β’ (π β π β {β, β}) & β’ (π β πΉ:π΄βΆβ) & β’ (π β π΄ β π) & β’ (π β (π β β0 β¨ π = +β)) & β’ ((π β§ π β ((0[,]π) β© β€)) β π΅ β dom ((π Dπ πΉ)βπ)) & β’ π = (π(π Tayl πΉ)π΅) β β’ (π β (πππ β (π β β β§ π β (βfld tsums (π β ((0[,]π) β© β€) β¦ (((((π Dπ πΉ)βπ)βπ΅) / (!βπ)) Β· ((π β π΅)βπ))))))) | ||
Theorem | taylf 26110* | The Taylor series defines a function on a subset of the complex numbers. (Contributed by Mario Carneiro, 30-Dec-2016.) |
β’ (π β π β {β, β}) & β’ (π β πΉ:π΄βΆβ) & β’ (π β π΄ β π) & β’ (π β (π β β0 β¨ π = +β)) & β’ ((π β§ π β ((0[,]π) β© β€)) β π΅ β dom ((π Dπ πΉ)βπ)) & β’ π = (π(π Tayl πΉ)π΅) β β’ (π β π:dom πβΆβ) | ||
Theorem | tayl0 26111* | The Taylor series is always defined at the basepoint, with value equal to the value of the function. (Contributed by Mario Carneiro, 30-Dec-2016.) |
β’ (π β π β {β, β}) & β’ (π β πΉ:π΄βΆβ) & β’ (π β π΄ β π) & β’ (π β (π β β0 β¨ π = +β)) & β’ ((π β§ π β ((0[,]π) β© β€)) β π΅ β dom ((π Dπ πΉ)βπ)) & β’ π = (π(π Tayl πΉ)π΅) β β’ (π β (π΅ β dom π β§ (πβπ΅) = (πΉβπ΅))) | ||
Theorem | taylplem1 26112* | Lemma for taylpfval 26114 and similar theorems. (Contributed by Mario Carneiro, 31-Dec-2016.) |
β’ (π β π β {β, β}) & β’ (π β πΉ:π΄βΆβ) & β’ (π β π΄ β π) & β’ (π β π β β0) & β’ (π β π΅ β dom ((π Dπ πΉ)βπ)) β β’ ((π β§ π β ((0[,]π) β© β€)) β π΅ β dom ((π Dπ πΉ)βπ)) | ||
Theorem | taylplem2 26113* | Lemma for taylpfval 26114 and similar theorems. (Contributed by Mario Carneiro, 31-Dec-2016.) |
β’ (π β π β {β, β}) & β’ (π β πΉ:π΄βΆβ) & β’ (π β π΄ β π) & β’ (π β π β β0) & β’ (π β π΅ β dom ((π Dπ πΉ)βπ)) β β’ (((π β§ π β β) β§ π β (0...π)) β (((((π Dπ πΉ)βπ)βπ΅) / (!βπ)) Β· ((π β π΅)βπ)) β β) | ||
Theorem | taylpfval 26114* | Define the Taylor polynomial of a function. The constant Tayl is a function of five arguments: π is the base set with respect to evaluate the derivatives (generally β or β), πΉ is the function we are approximating, at point π΅, to order π. The result is a polynomial function of π₯. (Contributed by Mario Carneiro, 31-Dec-2016.) |
β’ (π β π β {β, β}) & β’ (π β πΉ:π΄βΆβ) & β’ (π β π΄ β π) & β’ (π β π β β0) & β’ (π β π΅ β dom ((π Dπ πΉ)βπ)) & β’ π = (π(π Tayl πΉ)π΅) β β’ (π β π = (π₯ β β β¦ Ξ£π β (0...π)(((((π Dπ πΉ)βπ)βπ΅) / (!βπ)) Β· ((π₯ β π΅)βπ)))) | ||
Theorem | taylpf 26115 | The Taylor polynomial is a function on the complex numbers (even if the base set of the original function is the reals). (Contributed by Mario Carneiro, 31-Dec-2016.) |
β’ (π β π β {β, β}) & β’ (π β πΉ:π΄βΆβ) & β’ (π β π΄ β π) & β’ (π β π β β0) & β’ (π β π΅ β dom ((π Dπ πΉ)βπ)) & β’ π = (π(π Tayl πΉ)π΅) β β’ (π β π:ββΆβ) | ||
Theorem | taylpval 26116* | Value of the Taylor polynomial. (Contributed by Mario Carneiro, 31-Dec-2016.) |
β’ (π β π β {β, β}) & β’ (π β πΉ:π΄βΆβ) & β’ (π β π΄ β π) & β’ (π β π β β0) & β’ (π β π΅ β dom ((π Dπ πΉ)βπ)) & β’ π = (π(π Tayl πΉ)π΅) & β’ (π β π β β) β β’ (π β (πβπ) = Ξ£π β (0...π)(((((π Dπ πΉ)βπ)βπ΅) / (!βπ)) Β· ((π β π΅)βπ))) | ||
Theorem | taylply2 26117* | The Taylor polynomial is a polynomial of degree (at most) π. This version of taylply 26118 shows that the coefficients of π are in a subring of the complex numbers. (Contributed by Mario Carneiro, 1-Jan-2017.) |
β’ (π β π β {β, β}) & β’ (π β πΉ:π΄βΆβ) & β’ (π β π΄ β π) & β’ (π β π β β0) & β’ (π β π΅ β dom ((π Dπ πΉ)βπ)) & β’ π = (π(π Tayl πΉ)π΅) & β’ (π β π· β (SubRingββfld)) & β’ (π β π΅ β π·) & β’ ((π β§ π β (0...π)) β ((((π Dπ πΉ)βπ)βπ΅) / (!βπ)) β π·) β β’ (π β (π β (Polyβπ·) β§ (degβπ) β€ π)) | ||
Theorem | taylply 26118 | The Taylor polynomial is a polynomial of degree (at most) π. (Contributed by Mario Carneiro, 31-Dec-2016.) |
β’ (π β π β {β, β}) & β’ (π β πΉ:π΄βΆβ) & β’ (π β π΄ β π) & β’ (π β π β β0) & β’ (π β π΅ β dom ((π Dπ πΉ)βπ)) & β’ π = (π(π Tayl πΉ)π΅) β β’ (π β (π β (Polyββ) β§ (degβπ) β€ π)) | ||
Theorem | dvtaylp 26119 | The derivative of the Taylor polynomial is the Taylor polynomial of the derivative of the function. (Contributed by Mario Carneiro, 31-Dec-2016.) |
β’ (π β π β {β, β}) & β’ (π β πΉ:π΄βΆβ) & β’ (π β π΄ β π) & β’ (π β π β β0) & β’ (π β π΅ β dom ((π Dπ πΉ)β(π + 1))) β β’ (π β (β D ((π + 1)(π Tayl πΉ)π΅)) = (π(π Tayl (π D πΉ))π΅)) | ||
Theorem | dvntaylp 26120 | The π-th derivative of the Taylor polynomial is the Taylor polynomial of the π-th derivative of the function. (Contributed by Mario Carneiro, 1-Jan-2017.) |
β’ (π β π β {β, β}) & β’ (π β πΉ:π΄βΆβ) & β’ (π β π΄ β π) & β’ (π β π β β0) & β’ (π β π β β0) & β’ (π β π΅ β dom ((π Dπ πΉ)β(π + π))) β β’ (π β ((β Dπ ((π + π)(π Tayl πΉ)π΅))βπ) = (π(π Tayl ((π Dπ πΉ)βπ))π΅)) | ||
Theorem | dvntaylp0 26121 | The first π derivatives of the Taylor polynomial at π΅ match the derivatives of the function from which it is derived. (Contributed by Mario Carneiro, 1-Jan-2017.) |
β’ (π β π β {β, β}) & β’ (π β πΉ:π΄βΆβ) & β’ (π β π΄ β π) & β’ (π β π β (0...π)) & β’ (π β π΅ β dom ((π Dπ πΉ)βπ)) & β’ π = (π(π Tayl πΉ)π΅) β β’ (π β (((β Dπ π)βπ)βπ΅) = (((π Dπ πΉ)βπ)βπ΅)) | ||
Theorem | taylthlem1 26122* | Lemma for taylth 26124. This is the main part of Taylor's theorem, except for the induction step, which is supposed to be proven using L'HΓ΄pital's rule. However, since our proof of L'HΓ΄pital assumes that π = β, we can only do this part generically, and for taylth 26124 itself we must restrict to β. (Contributed by Mario Carneiro, 1-Jan-2017.) |
β’ (π β π β {β, β}) & β’ (π β πΉ:π΄βΆβ) & β’ (π β π΄ β π) & β’ (π β dom ((π Dπ πΉ)βπ) = π΄) & β’ (π β π β β) & β’ (π β π΅ β π΄) & β’ π = (π(π Tayl πΉ)π΅) & β’ π = (π₯ β (π΄ β {π΅}) β¦ (((πΉβπ₯) β (πβπ₯)) / ((π₯ β π΅)βπ))) & β’ ((π β§ (π β (1..^π) β§ 0 β ((π¦ β (π΄ β {π΅}) β¦ (((((π Dπ πΉ)β(π β π))βπ¦) β (((β Dπ π)β(π β π))βπ¦)) / ((π¦ β π΅)βπ))) limβ π΅))) β 0 β ((π₯ β (π΄ β {π΅}) β¦ (((((π Dπ πΉ)β(π β (π + 1)))βπ₯) β (((β Dπ π)β(π β (π + 1)))βπ₯)) / ((π₯ β π΅)β(π + 1)))) limβ π΅)) β β’ (π β 0 β (π limβ π΅)) | ||
Theorem | taylthlem2 26123* | Lemma for taylth 26124. (Contributed by Mario Carneiro, 1-Jan-2017.) |
β’ (π β πΉ:π΄βΆβ) & β’ (π β π΄ β β) & β’ (π β dom ((β Dπ πΉ)βπ) = π΄) & β’ (π β π β β) & β’ (π β π΅ β π΄) & β’ π = (π(β Tayl πΉ)π΅) & β’ (π β π β (1..^π)) & β’ (π β 0 β ((π₯ β (π΄ β {π΅}) β¦ (((((β Dπ πΉ)β(π β π))βπ₯) β (((β Dπ π)β(π β π))βπ₯)) / ((π₯ β π΅)βπ))) limβ π΅)) β β’ (π β 0 β ((π₯ β (π΄ β {π΅}) β¦ (((((β Dπ πΉ)β(π β (π + 1)))βπ₯) β (((β Dπ π)β(π β (π + 1)))βπ₯)) / ((π₯ β π΅)β(π + 1)))) limβ π΅)) | ||
Theorem | taylth 26124* | Taylor's theorem. The Taylor polynomial of a π-times differentiable function is such that the error term goes to zero faster than (π₯ β π΅)βπ. This is Metamath 100 proof #35. (Contributed by Mario Carneiro, 1-Jan-2017.) |
β’ (π β πΉ:π΄βΆβ) & β’ (π β π΄ β β) & β’ (π β dom ((β Dπ πΉ)βπ) = π΄) & β’ (π β π β β) & β’ (π β π΅ β π΄) & β’ π = (π(β Tayl πΉ)π΅) & β’ π = (π₯ β (π΄ β {π΅}) β¦ (((πΉβπ₯) β (πβπ₯)) / ((π₯ β π΅)βπ))) β β’ (π β 0 β (π limβ π΅)) | ||
Syntax | culm 26125 | Extend class notation to include the uniform convergence predicate. |
class βπ’ | ||
Definition | df-ulm 26126* | Define the uniform convergence of a sequence of functions. Here πΉ(βπ’βπ)πΊ if πΉ is a sequence of functions πΉ(π), π β β defined on π and πΊ is a function on π, and for every 0 < π₯ there is a π such that the functions πΉ(π) for π β€ π are all uniformly within π₯ of πΊ on the domain π. Compare with df-clim 15437. (Contributed by Mario Carneiro, 26-Feb-2015.) |
β’ βπ’ = (π β V β¦ {β¨π, π¦β© β£ βπ β β€ (π:(β€β₯βπ)βΆ(β βm π ) β§ π¦:π βΆβ β§ βπ₯ β β+ βπ β (β€β₯βπ)βπ β (β€β₯βπ)βπ§ β π (absβ(((πβπ)βπ§) β (π¦βπ§))) < π₯)}) | ||
Theorem | ulmrel 26127 | The uniform limit relation is a relation. (Contributed by Mario Carneiro, 26-Feb-2015.) |
β’ Rel (βπ’βπ) | ||
Theorem | ulmscl 26128 | Closure of the base set in a uniform limit. (Contributed by Mario Carneiro, 26-Feb-2015.) |
β’ (πΉ(βπ’βπ)πΊ β π β V) | ||
Theorem | ulmval 26129* | Express the predicate: The sequence of functions πΉ converges uniformly to πΊ on π. (Contributed by Mario Carneiro, 26-Feb-2015.) |
β’ (π β π β (πΉ(βπ’βπ)πΊ β βπ β β€ (πΉ:(β€β₯βπ)βΆ(β βm π) β§ πΊ:πβΆβ β§ βπ₯ β β+ βπ β (β€β₯βπ)βπ β (β€β₯βπ)βπ§ β π (absβ(((πΉβπ)βπ§) β (πΊβπ§))) < π₯))) | ||
Theorem | ulmcl 26130 | Closure of a uniform limit of functions. (Contributed by Mario Carneiro, 26-Feb-2015.) |
β’ (πΉ(βπ’βπ)πΊ β πΊ:πβΆβ) | ||
Theorem | ulmf 26131* | Closure of a uniform limit of functions. (Contributed by Mario Carneiro, 26-Feb-2015.) |
β’ (πΉ(βπ’βπ)πΊ β βπ β β€ πΉ:(β€β₯βπ)βΆ(β βm π)) | ||
Theorem | ulmpm 26132 | Closure of a uniform limit of functions. (Contributed by Mario Carneiro, 26-Feb-2015.) |
β’ (πΉ(βπ’βπ)πΊ β πΉ β ((β βm π) βpm β€)) | ||
Theorem | ulmf2 26133 | Closure of a uniform limit of functions. (Contributed by Mario Carneiro, 18-Mar-2015.) |
β’ ((πΉ Fn π β§ πΉ(βπ’βπ)πΊ) β πΉ:πβΆ(β βm π)) | ||
Theorem | ulm2 26134* | Simplify ulmval 26129 when πΉ and πΊ are known to be functions. (Contributed by Mario Carneiro, 26-Feb-2015.) |
β’ π = (β€β₯βπ) & β’ (π β π β β€) & β’ (π β πΉ:πβΆ(β βm π)) & β’ ((π β§ (π β π β§ π§ β π)) β ((πΉβπ)βπ§) = π΅) & β’ ((π β§ π§ β π) β (πΊβπ§) = π΄) & β’ (π β πΊ:πβΆβ) & β’ (π β π β π) β β’ (π β (πΉ(βπ’βπ)πΊ β βπ₯ β β+ βπ β π βπ β (β€β₯βπ)βπ§ β π (absβ(π΅ β π΄)) < π₯)) | ||
Theorem | ulmi 26135* | The uniform limit property. (Contributed by Mario Carneiro, 27-Feb-2015.) |
β’ π = (β€β₯βπ) & β’ (π β π β β€) & β’ (π β πΉ:πβΆ(β βm π)) & β’ ((π β§ (π β π β§ π§ β π)) β ((πΉβπ)βπ§) = π΅) & β’ ((π β§ π§ β π) β (πΊβπ§) = π΄) & β’ (π β πΉ(βπ’βπ)πΊ) & β’ (π β πΆ β β+) β β’ (π β βπ β π βπ β (β€β₯βπ)βπ§ β π (absβ(π΅ β π΄)) < πΆ) | ||
Theorem | ulmclm 26136* | A uniform limit of functions converges pointwise. (Contributed by Mario Carneiro, 27-Feb-2015.) |
β’ π = (β€β₯βπ) & β’ (π β π β β€) & β’ (π β πΉ:πβΆ(β βm π)) & β’ (π β π΄ β π) & β’ (π β π» β π) & β’ ((π β§ π β π) β ((πΉβπ)βπ΄) = (π»βπ)) & β’ (π β πΉ(βπ’βπ)πΊ) β β’ (π β π» β (πΊβπ΄)) | ||
Theorem | ulmres 26137 | A sequence of functions converges iff the tail of the sequence converges (for any finite cutoff). (Contributed by Mario Carneiro, 24-Mar-2015.) |
β’ π = (β€β₯βπ) & β’ π = (β€β₯βπ) & β’ (π β π β π) & β’ (π β πΉ:πβΆ(β βm π)) β β’ (π β (πΉ(βπ’βπ)πΊ β (πΉ βΎ π)(βπ’βπ)πΊ)) | ||
Theorem | ulmshftlem 26138* | Lemma for ulmshft 26139. (Contributed by Mario Carneiro, 24-Mar-2015.) |
β’ π = (β€β₯βπ) & β’ π = (β€β₯β(π + πΎ)) & β’ (π β π β β€) & β’ (π β πΎ β β€) & β’ (π β πΉ:πβΆ(β βm π)) & β’ (π β π» = (π β π β¦ (πΉβ(π β πΎ)))) β β’ (π β (πΉ(βπ’βπ)πΊ β π»(βπ’βπ)πΊ)) | ||
Theorem | ulmshft 26139* | A sequence of functions converges iff the shifted sequence converges. (Contributed by Mario Carneiro, 24-Mar-2015.) |
β’ π = (β€β₯βπ) & β’ π = (β€β₯β(π + πΎ)) & β’ (π β π β β€) & β’ (π β πΎ β β€) & β’ (π β πΉ:πβΆ(β βm π)) & β’ (π β π» = (π β π β¦ (πΉβ(π β πΎ)))) β β’ (π β (πΉ(βπ’βπ)πΊ β π»(βπ’βπ)πΊ)) | ||
Theorem | ulm0 26140 | Every function converges uniformly on the empty set. (Contributed by Mario Carneiro, 3-Mar-2015.) |
β’ π = (β€β₯βπ) & β’ (π β π β β€) & β’ (π β πΉ:πβΆ(β βm π)) & β’ (π β πΊ:πβΆβ) β β’ ((π β§ π = β ) β πΉ(βπ’βπ)πΊ) | ||
Theorem | ulmuni 26141 | A sequence of functions uniformly converges to at most one limit. (Contributed by Mario Carneiro, 5-Jul-2017.) |
β’ ((πΉ(βπ’βπ)πΊ β§ πΉ(βπ’βπ)π») β πΊ = π») | ||
Theorem | ulmdm 26142 | Two ways to express that a function has a limit. (The expression ((βπ’βπ)βπΉ) is sometimes useful as a shorthand for "the unique limit of the function πΉ"). (Contributed by Mario Carneiro, 5-Jul-2017.) |
β’ (πΉ β dom (βπ’βπ) β πΉ(βπ’βπ)((βπ’βπ)βπΉ)) | ||
Theorem | ulmcaulem 26143* | Lemma for ulmcau 26144 and ulmcau2 26145: show the equivalence of the four- and five-quantifier forms of the Cauchy convergence condition. Compare cau3 15307. (Contributed by Mario Carneiro, 1-Mar-2015.) |
β’ π = (β€β₯βπ) & β’ (π β π β β€) & β’ (π β π β π) & β’ (π β πΉ:πβΆ(β βm π)) β β’ (π β (βπ₯ β β+ βπ β π βπ β (β€β₯βπ)βπ§ β π (absβ(((πΉβπ)βπ§) β ((πΉβπ)βπ§))) < π₯ β βπ₯ β β+ βπ β π βπ β (β€β₯βπ)βπ β (β€β₯βπ)βπ§ β π (absβ(((πΉβπ)βπ§) β ((πΉβπ)βπ§))) < π₯)) | ||
Theorem | ulmcau 26144* | A sequence of functions converges uniformly iff it is uniformly Cauchy, which is to say that for every 0 < π₯ there is a π such that for all π β€ π the functions πΉ(π) and πΉ(π) are uniformly within π₯ of each other on π. This is the four-quantifier version, see ulmcau2 26145 for the more conventional five-quantifier version. (Contributed by Mario Carneiro, 1-Mar-2015.) |
β’ π = (β€β₯βπ) & β’ (π β π β β€) & β’ (π β π β π) & β’ (π β πΉ:πβΆ(β βm π)) β β’ (π β (πΉ β dom (βπ’βπ) β βπ₯ β β+ βπ β π βπ β (β€β₯βπ)βπ§ β π (absβ(((πΉβπ)βπ§) β ((πΉβπ)βπ§))) < π₯)) | ||
Theorem | ulmcau2 26145* | A sequence of functions converges uniformly iff it is uniformly Cauchy, which is to say that for every 0 < π₯ there is a π such that for all π β€ π, π the functions πΉ(π) and πΉ(π) are uniformly within π₯ of each other on π. (Contributed by Mario Carneiro, 1-Mar-2015.) |
β’ π = (β€β₯βπ) & β’ (π β π β β€) & β’ (π β π β π) & β’ (π β πΉ:πβΆ(β βm π)) β β’ (π β (πΉ β dom (βπ’βπ) β βπ₯ β β+ βπ β π βπ β (β€β₯βπ)βπ β (β€β₯βπ)βπ§ β π (absβ(((πΉβπ)βπ§) β ((πΉβπ)βπ§))) < π₯)) | ||
Theorem | ulmss 26146* | A uniform limit of functions is still a uniform limit if restricted to a subset. (Contributed by Mario Carneiro, 3-Mar-2015.) |
β’ π = (β€β₯βπ) & β’ (π β π β π) & β’ ((π β§ π₯ β π) β π΄ β π) & β’ (π β (π₯ β π β¦ π΄)(βπ’βπ)πΊ) β β’ (π β (π₯ β π β¦ (π΄ βΎ π))(βπ’βπ)(πΊ βΎ π)) | ||
Theorem | ulmbdd 26147* | A uniform limit of bounded functions is bounded. (Contributed by Mario Carneiro, 27-Feb-2015.) |
β’ π = (β€β₯βπ) & β’ (π β π β β€) & β’ (π β πΉ:πβΆ(β βm π)) & β’ ((π β§ π β π) β βπ₯ β β βπ§ β π (absβ((πΉβπ)βπ§)) β€ π₯) & β’ (π β πΉ(βπ’βπ)πΊ) β β’ (π β βπ₯ β β βπ§ β π (absβ(πΊβπ§)) β€ π₯) | ||
Theorem | ulmcn 26148 | A uniform limit of continuous functions is continuous. (Contributed by Mario Carneiro, 27-Feb-2015.) |
β’ π = (β€β₯βπ) & β’ (π β π β β€) & β’ (π β πΉ:πβΆ(πβcnββ)) & β’ (π β πΉ(βπ’βπ)πΊ) β β’ (π β πΊ β (πβcnββ)) | ||
Theorem | ulmdvlem1 26149* | Lemma for ulmdv 26152. (Contributed by Mario Carneiro, 3-Mar-2015.) |
β’ π = (β€β₯βπ) & β’ (π β π β {β, β}) & β’ (π β π β β€) & β’ (π β πΉ:πβΆ(β βm π)) & β’ (π β πΊ:πβΆβ) & β’ ((π β§ π§ β π) β (π β π β¦ ((πΉβπ)βπ§)) β (πΊβπ§)) & β’ (π β (π β π β¦ (π D (πΉβπ)))(βπ’βπ)π») & β’ ((π β§ π) β πΆ β π) & β’ ((π β§ π) β π β β+) & β’ ((π β§ π) β π β β+) & β’ ((π β§ π) β π β β+) & β’ ((π β§ π) β π < π) & β’ ((π β§ π) β (πΆ(ballβ((abs β β ) βΎ (π Γ π)))π) β π) & β’ ((π β§ π) β (absβ(π β πΆ)) < π) & β’ ((π β§ π) β π β π) & β’ ((π β§ π) β βπ β (β€β₯βπ)βπ₯ β π (absβ(((π D (πΉβπ))βπ₯) β ((π D (πΉβπ))βπ₯))) < ((π / 2) / 2)) & β’ ((π β§ π) β (absβ(((π D (πΉβπ))βπΆ) β (π»βπΆ))) < (π / 2)) & β’ ((π β§ π) β π β π) & β’ ((π β§ π) β π β πΆ) & β’ ((π β§ π) β ((absβ(π β πΆ)) < π β (absβ(((((πΉβπ)βπ) β ((πΉβπ)βπΆ)) / (π β πΆ)) β ((π D (πΉβπ))βπΆ))) < ((π / 2) / 2))) β β’ ((π β§ π) β (absβ((((πΊβπ) β (πΊβπΆ)) / (π β πΆ)) β (π»βπΆ))) < π ) | ||
Theorem | ulmdvlem2 26150* | Lemma for ulmdv 26152. (Contributed by Mario Carneiro, 8-May-2015.) |
β’ π = (β€β₯βπ) & β’ (π β π β {β, β}) & β’ (π β π β β€) & β’ (π β πΉ:πβΆ(β βm π)) & β’ (π β πΊ:πβΆβ) & β’ ((π β§ π§ β π) β (π β π β¦ ((πΉβπ)βπ§)) β (πΊβπ§)) & β’ (π β (π β π β¦ (π D (πΉβπ)))(βπ’βπ)π») β β’ ((π β§ π β π) β dom (π D (πΉβπ)) = π) | ||
Theorem | ulmdvlem3 26151* | Lemma for ulmdv 26152. (Contributed by Mario Carneiro, 8-May-2015.) (Proof shortened by Mario Carneiro, 28-Dec-2016.) |
β’ π = (β€β₯βπ) & β’ (π β π β {β, β}) & β’ (π β π β β€) & β’ (π β πΉ:πβΆ(β βm π)) & β’ (π β πΊ:πβΆβ) & β’ ((π β§ π§ β π) β (π β π β¦ ((πΉβπ)βπ§)) β (πΊβπ§)) & β’ (π β (π β π β¦ (π D (πΉβπ)))(βπ’βπ)π») β β’ ((π β§ π§ β π) β π§(π D πΊ)(π»βπ§)) | ||
Theorem | ulmdv 26152* | If πΉ is a sequence of differentiable functions on π which converge pointwise to πΊ, and the derivatives of πΉ(π) converge uniformly to π», then πΊ is differentiable with derivative π». (Contributed by Mario Carneiro, 27-Feb-2015.) |
β’ π = (β€β₯βπ) & β’ (π β π β {β, β}) & β’ (π β π β β€) & β’ (π β πΉ:πβΆ(β βm π)) & β’ (π β πΊ:πβΆβ) & β’ ((π β§ π§ β π) β (π β π β¦ ((πΉβπ)βπ§)) β (πΊβπ§)) & β’ (π β (π β π β¦ (π D (πΉβπ)))(βπ’βπ)π») β β’ (π β (π D πΊ) = π») | ||
Theorem | mtest 26153* | The Weierstrass M-test. If πΉ is a sequence of functions which are uniformly bounded by the convergent sequence π(π), then the series generated by the sequence πΉ converges uniformly. (Contributed by Mario Carneiro, 3-Mar-2015.) |
β’ π = (β€β₯βπ) & β’ (π β π β β€) & β’ (π β π β π) & β’ (π β πΉ:πβΆ(β βm π)) & β’ (π β π β π) & β’ ((π β§ π β π) β (πβπ) β β) & β’ ((π β§ (π β π β§ π§ β π)) β (absβ((πΉβπ)βπ§)) β€ (πβπ)) & β’ (π β seqπ( + , π) β dom β ) β β’ (π β seqπ( βf + , πΉ) β dom (βπ’βπ)) | ||
Theorem | mtestbdd 26154* | Given the hypotheses of the Weierstrass M-test, the convergent function of the sequence is uniformly bounded. (Contributed by Mario Carneiro, 9-Jul-2017.) |
β’ π = (β€β₯βπ) & β’ (π β π β β€) & β’ (π β π β π) & β’ (π β πΉ:πβΆ(β βm π)) & β’ (π β π β π) & β’ ((π β§ π β π) β (πβπ) β β) & β’ ((π β§ (π β π β§ π§ β π)) β (absβ((πΉβπ)βπ§)) β€ (πβπ)) & β’ (π β seqπ( + , π) β dom β ) & β’ (π β seqπ( βf + , πΉ)(βπ’βπ)π) β β’ (π β βπ₯ β β βπ§ β π (absβ(πβπ§)) β€ π₯) | ||
Theorem | mbfulm 26155 | A uniform limit of measurable functions is measurable. (This is just a corollary of the fact that a pointwise limit of measurable functions is measurable, see mbflim 25418.) (Contributed by Mario Carneiro, 18-Mar-2015.) |
β’ π = (β€β₯βπ) & β’ (π β π β β€) & β’ (π β πΉ:πβΆMblFn) & β’ (π β πΉ(βπ’βπ)πΊ) β β’ (π β πΊ β MblFn) | ||
Theorem | iblulm 26156 | A uniform limit of integrable functions is integrable. (Contributed by Mario Carneiro, 3-Mar-2015.) |
β’ π = (β€β₯βπ) & β’ (π β π β β€) & β’ (π β πΉ:πβΆπΏ1) & β’ (π β πΉ(βπ’βπ)πΊ) & β’ (π β (volβπ) β β) β β’ (π β πΊ β πΏ1) | ||
Theorem | itgulm 26157* | A uniform limit of integrals of integrable functions converges to the integral of the limit function. (Contributed by Mario Carneiro, 18-Mar-2015.) |
β’ π = (β€β₯βπ) & β’ (π β π β β€) & β’ (π β πΉ:πβΆπΏ1) & β’ (π β πΉ(βπ’βπ)πΊ) & β’ (π β (volβπ) β β) β β’ (π β (π β π β¦ β«π((πΉβπ)βπ₯) dπ₯) β β«π(πΊβπ₯) dπ₯) | ||
Theorem | itgulm2 26158* | A uniform limit of integrals of integrable functions converges to the integral of the limit function. (Contributed by Mario Carneiro, 18-Mar-2015.) |
β’ π = (β€β₯βπ) & β’ (π β π β β€) & β’ ((π β§ π β π) β (π₯ β π β¦ π΄) β πΏ1) & β’ (π β (π β π β¦ (π₯ β π β¦ π΄))(βπ’βπ)(π₯ β π β¦ π΅)) & β’ (π β (volβπ) β β) β β’ (π β ((π₯ β π β¦ π΅) β πΏ1 β§ (π β π β¦ β«ππ΄ dπ₯) β β«ππ΅ dπ₯)) | ||
Theorem | pserval 26159* | Value of the function πΊ that gives the sequence of monomials of a power series. (Contributed by Mario Carneiro, 26-Feb-2015.) |
β’ πΊ = (π₯ β β β¦ (π β β0 β¦ ((π΄βπ) Β· (π₯βπ)))) β β’ (π β β β (πΊβπ) = (π β β0 β¦ ((π΄βπ) Β· (πβπ)))) | ||
Theorem | pserval2 26160* | Value of the function πΊ that gives the sequence of monomials of a power series. (Contributed by Mario Carneiro, 26-Feb-2015.) |
β’ πΊ = (π₯ β β β¦ (π β β0 β¦ ((π΄βπ) Β· (π₯βπ)))) β β’ ((π β β β§ π β β0) β ((πΊβπ)βπ) = ((π΄βπ) Β· (πβπ))) | ||
Theorem | psergf 26161* | The sequence of terms in the infinite sequence defining a power series for fixed π. (Contributed by Mario Carneiro, 26-Feb-2015.) |
β’ πΊ = (π₯ β β β¦ (π β β0 β¦ ((π΄βπ) Β· (π₯βπ)))) & β’ (π β π΄:β0βΆβ) & β’ (π β π β β) β β’ (π β (πΊβπ):β0βΆβ) | ||
Theorem | radcnvlem1 26162* | Lemma for radcnvlt1 26167, radcnvle 26169. If π is a point closer to zero than π and the power series converges at π, then it converges absolutely at π, even if the terms in the sequence are multiplied by π. (Contributed by Mario Carneiro, 31-Mar-2015.) |
β’ πΊ = (π₯ β β β¦ (π β β0 β¦ ((π΄βπ) Β· (π₯βπ)))) & β’ (π β π΄:β0βΆβ) & β’ (π β π β β) & β’ (π β π β β) & β’ (π β (absβπ) < (absβπ)) & β’ (π β seq0( + , (πΊβπ)) β dom β ) & β’ π» = (π β β0 β¦ (π Β· (absβ((πΊβπ)βπ)))) β β’ (π β seq0( + , π») β dom β ) | ||
Theorem | radcnvlem2 26163* | Lemma for radcnvlt1 26167, radcnvle 26169. If π is a point closer to zero than π and the power series converges at π, then it converges absolutely at π. (Contributed by Mario Carneiro, 26-Feb-2015.) |
β’ πΊ = (π₯ β β β¦ (π β β0 β¦ ((π΄βπ) Β· (π₯βπ)))) & β’ (π β π΄:β0βΆβ) & β’ (π β π β β) & β’ (π β π β β) & β’ (π β (absβπ) < (absβπ)) & β’ (π β seq0( + , (πΊβπ)) β dom β ) β β’ (π β seq0( + , (abs β (πΊβπ))) β dom β ) | ||
Theorem | radcnvlem3 26164* | Lemma for radcnvlt1 26167, radcnvle 26169. If π is a point closer to zero than π and the power series converges at π, then it converges at π. (Contributed by Mario Carneiro, 31-Mar-2015.) |
β’ πΊ = (π₯ β β β¦ (π β β0 β¦ ((π΄βπ) Β· (π₯βπ)))) & β’ (π β π΄:β0βΆβ) & β’ (π β π β β) & β’ (π β π β β) & β’ (π β (absβπ) < (absβπ)) & β’ (π β seq0( + , (πΊβπ)) β dom β ) β β’ (π β seq0( + , (πΊβπ)) β dom β ) | ||
Theorem | radcnv0 26165* | Zero is always a convergent point for any power series. (Contributed by Mario Carneiro, 26-Feb-2015.) |
β’ πΊ = (π₯ β β β¦ (π β β0 β¦ ((π΄βπ) Β· (π₯βπ)))) & β’ (π β π΄:β0βΆβ) β β’ (π β 0 β {π β β β£ seq0( + , (πΊβπ)) β dom β }) | ||
Theorem | radcnvcl 26166* | The radius of convergence π of an infinite series is a nonnegative extended real number. (Contributed by Mario Carneiro, 26-Feb-2015.) |
β’ πΊ = (π₯ β β β¦ (π β β0 β¦ ((π΄βπ) Β· (π₯βπ)))) & β’ (π β π΄:β0βΆβ) & β’ π = sup({π β β β£ seq0( + , (πΊβπ)) β dom β }, β*, < ) β β’ (π β π β (0[,]+β)) | ||
Theorem | radcnvlt1 26167* | If π is within the open disk of radius π centered at zero, then the infinite series converges absolutely at π, and also converges when the series is multiplied by π. (Contributed by Mario Carneiro, 26-Feb-2015.) |
β’ πΊ = (π₯ β β β¦ (π β β0 β¦ ((π΄βπ) Β· (π₯βπ)))) & β’ (π β π΄:β0βΆβ) & β’ π = sup({π β β β£ seq0( + , (πΊβπ)) β dom β }, β*, < ) & β’ (π β π β β) & β’ (π β (absβπ) < π ) & β’ π» = (π β β0 β¦ (π Β· (absβ((πΊβπ)βπ)))) β β’ (π β (seq0( + , π») β dom β β§ seq0( + , (abs β (πΊβπ))) β dom β )) | ||
Theorem | radcnvlt2 26168* | If π is within the open disk of radius π centered at zero, then the infinite series converges at π. (Contributed by Mario Carneiro, 26-Feb-2015.) |
β’ πΊ = (π₯ β β β¦ (π β β0 β¦ ((π΄βπ) Β· (π₯βπ)))) & β’ (π β π΄:β0βΆβ) & β’ π = sup({π β β β£ seq0( + , (πΊβπ)) β dom β }, β*, < ) & β’ (π β π β β) & β’ (π β (absβπ) < π ) β β’ (π β seq0( + , (πΊβπ)) β dom β ) | ||
Theorem | radcnvle 26169* | If π is a convergent point of the infinite series, then π is within the closed disk of radius π centered at zero. Or, by contraposition, the series diverges at any point strictly more than π from the origin. (Contributed by Mario Carneiro, 26-Feb-2015.) |
β’ πΊ = (π₯ β β β¦ (π β β0 β¦ ((π΄βπ) Β· (π₯βπ)))) & β’ (π β π΄:β0βΆβ) & β’ π = sup({π β β β£ seq0( + , (πΊβπ)) β dom β }, β*, < ) & β’ (π β π β β) & β’ (π β seq0( + , (πΊβπ)) β dom β ) β β’ (π β (absβπ) β€ π ) | ||
Theorem | dvradcnv 26170* | The radius of convergence of the (formal) derivative π» of the power series πΊ is at least as large as the radius of convergence of πΊ. (In fact they are equal, but we don't have as much use for the negative side of this claim.) (Contributed by Mario Carneiro, 31-Mar-2015.) |
β’ πΊ = (π₯ β β β¦ (π β β0 β¦ ((π΄βπ) Β· (π₯βπ)))) & β’ π = sup({π β β β£ seq0( + , (πΊβπ)) β dom β }, β*, < ) & β’ π» = (π β β0 β¦ (((π + 1) Β· (π΄β(π + 1))) Β· (πβπ))) & β’ (π β π΄:β0βΆβ) & β’ (π β π β β) & β’ (π β (absβπ) < π ) β β’ (π β seq0( + , π») β dom β ) | ||
Theorem | pserulm 26171* | If π is a region contained in a circle of radius π < π , then the sequence of partial sums of the infinite series converges uniformly on π. (Contributed by Mario Carneiro, 26-Feb-2015.) |
β’ πΊ = (π₯ β β β¦ (π β β0 β¦ ((π΄βπ) Β· (π₯βπ)))) & β’ πΉ = (π¦ β π β¦ Ξ£π β β0 ((πΊβπ¦)βπ)) & β’ (π β π΄:β0βΆβ) & β’ π = sup({π β β β£ seq0( + , (πΊβπ)) β dom β }, β*, < ) & β’ π» = (π β β0 β¦ (π¦ β π β¦ (seq0( + , (πΊβπ¦))βπ))) & β’ (π β π β β) & β’ (π β π < π ) & β’ (π β π β (β‘abs β (0[,]π))) β β’ (π β π»(βπ’βπ)πΉ) | ||
Theorem | psercn2 26172* | Since by pserulm 26171 the series converges uniformly, it is also continuous by ulmcn 26148. (Contributed by Mario Carneiro, 3-Mar-2015.) |
β’ πΊ = (π₯ β β β¦ (π β β0 β¦ ((π΄βπ) Β· (π₯βπ)))) & β’ πΉ = (π¦ β π β¦ Ξ£π β β0 ((πΊβπ¦)βπ)) & β’ (π β π΄:β0βΆβ) & β’ π = sup({π β β β£ seq0( + , (πΊβπ)) β dom β }, β*, < ) & β’ π» = (π β β0 β¦ (π¦ β π β¦ (seq0( + , (πΊβπ¦))βπ))) & β’ (π β π β β) & β’ (π β π < π ) & β’ (π β π β (β‘abs β (0[,]π))) β β’ (π β πΉ β (πβcnββ)) | ||
Theorem | psercnlem2 26173* | Lemma for psercn 26175. (Contributed by Mario Carneiro, 18-Mar-2015.) |
β’ πΊ = (π₯ β β β¦ (π β β0 β¦ ((π΄βπ) Β· (π₯βπ)))) & β’ πΉ = (π¦ β π β¦ Ξ£π β β0 ((πΊβπ¦)βπ)) & β’ (π β π΄:β0βΆβ) & β’ π = sup({π β β β£ seq0( + , (πΊβπ)) β dom β }, β*, < ) & β’ π = (β‘abs β (0[,)π )) & β’ ((π β§ π β π) β (π β β+ β§ (absβπ) < π β§ π < π )) β β’ ((π β§ π β π) β (π β (0(ballβ(abs β β ))π) β§ (0(ballβ(abs β β ))π) β (β‘abs β (0[,]π)) β§ (β‘abs β (0[,]π)) β π)) | ||
Theorem | psercnlem1 26174* | Lemma for psercn 26175. (Contributed by Mario Carneiro, 18-Mar-2015.) |
β’ πΊ = (π₯ β β β¦ (π β β0 β¦ ((π΄βπ) Β· (π₯βπ)))) & β’ πΉ = (π¦ β π β¦ Ξ£π β β0 ((πΊβπ¦)βπ)) & β’ (π β π΄:β0βΆβ) & β’ π = sup({π β β β£ seq0( + , (πΊβπ)) β dom β }, β*, < ) & β’ π = (β‘abs β (0[,)π )) & β’ π = if(π β β, (((absβπ) + π ) / 2), ((absβπ) + 1)) β β’ ((π β§ π β π) β (π β β+ β§ (absβπ) < π β§ π < π )) | ||
Theorem | psercn 26175* | An infinite series converges to a continuous function on the open disk of radius π , where π is the radius of convergence of the series. (Contributed by Mario Carneiro, 4-Mar-2015.) |
β’ πΊ = (π₯ β β β¦ (π β β0 β¦ ((π΄βπ) Β· (π₯βπ)))) & β’ πΉ = (π¦ β π β¦ Ξ£π β β0 ((πΊβπ¦)βπ)) & β’ (π β π΄:β0βΆβ) & β’ π = sup({π β β β£ seq0( + , (πΊβπ)) β dom β }, β*, < ) & β’ π = (β‘abs β (0[,)π )) & β’ π = if(π β β, (((absβπ) + π ) / 2), ((absβπ) + 1)) β β’ (π β πΉ β (πβcnββ)) | ||
Theorem | pserdvlem1 26176* | Lemma for pserdv 26178. (Contributed by Mario Carneiro, 7-May-2015.) |
β’ πΊ = (π₯ β β β¦ (π β β0 β¦ ((π΄βπ) Β· (π₯βπ)))) & β’ πΉ = (π¦ β π β¦ Ξ£π β β0 ((πΊβπ¦)βπ)) & β’ (π β π΄:β0βΆβ) & β’ π = sup({π β β β£ seq0( + , (πΊβπ)) β dom β }, β*, < ) & β’ π = (β‘abs β (0[,)π )) & β’ π = if(π β β, (((absβπ) + π ) / 2), ((absβπ) + 1)) β β’ ((π β§ π β π) β ((((absβπ) + π) / 2) β β+ β§ (absβπ) < (((absβπ) + π) / 2) β§ (((absβπ) + π) / 2) < π )) | ||
Theorem | pserdvlem2 26177* | Lemma for pserdv 26178. (Contributed by Mario Carneiro, 7-May-2015.) |
β’ πΊ = (π₯ β β β¦ (π β β0 β¦ ((π΄βπ) Β· (π₯βπ)))) & β’ πΉ = (π¦ β π β¦ Ξ£π β β0 ((πΊβπ¦)βπ)) & β’ (π β π΄:β0βΆβ) & β’ π = sup({π β β β£ seq0( + , (πΊβπ)) β dom β }, β*, < ) & β’ π = (β‘abs β (0[,)π )) & β’ π = if(π β β, (((absβπ) + π ) / 2), ((absβπ) + 1)) & β’ π΅ = (0(ballβ(abs β β ))(((absβπ) + π) / 2)) β β’ ((π β§ π β π) β (β D (πΉ βΎ π΅)) = (π¦ β π΅ β¦ Ξ£π β β0 (((π + 1) Β· (π΄β(π + 1))) Β· (π¦βπ)))) | ||
Theorem | pserdv 26178* | The derivative of a power series on its region of convergence. (Contributed by Mario Carneiro, 31-Mar-2015.) |
β’ πΊ = (π₯ β β β¦ (π β β0 β¦ ((π΄βπ) Β· (π₯βπ)))) & β’ πΉ = (π¦ β π β¦ Ξ£π β β0 ((πΊβπ¦)βπ)) & β’ (π β π΄:β0βΆβ) & β’ π = sup({π β β β£ seq0( + , (πΊβπ)) β dom β }, β*, < ) & β’ π = (β‘abs β (0[,)π )) & β’ π = if(π β β, (((absβπ) + π ) / 2), ((absβπ) + 1)) & β’ π΅ = (0(ballβ(abs β β ))(((absβπ) + π) / 2)) β β’ (π β (β D πΉ) = (π¦ β π β¦ Ξ£π β β0 (((π + 1) Β· (π΄β(π + 1))) Β· (π¦βπ)))) | ||
Theorem | pserdv2 26179* | The derivative of a power series on its region of convergence. (Contributed by Mario Carneiro, 31-Mar-2015.) |
β’ πΊ = (π₯ β β β¦ (π β β0 β¦ ((π΄βπ) Β· (π₯βπ)))) & β’ πΉ = (π¦ β π β¦ Ξ£π β β0 ((πΊβπ¦)βπ)) & β’ (π β π΄:β0βΆβ) & β’ π = sup({π β β β£ seq0( + , (πΊβπ)) β dom β }, β*, < ) & β’ π = (β‘abs β (0[,)π )) & β’ π = if(π β β, (((absβπ) + π ) / 2), ((absβπ) + 1)) & β’ π΅ = (0(ballβ(abs β β ))(((absβπ) + π) / 2)) β β’ (π β (β D πΉ) = (π¦ β π β¦ Ξ£π β β ((π Β· (π΄βπ)) Β· (π¦β(π β 1))))) | ||
Theorem | abelthlem1 26180* | Lemma for abelth 26190. (Contributed by Mario Carneiro, 1-Apr-2015.) |
β’ (π β π΄:β0βΆβ) & β’ (π β seq0( + , π΄) β dom β ) β β’ (π β 1 β€ sup({π β β β£ seq0( + , ((π§ β β β¦ (π β β0 β¦ ((π΄βπ) Β· (π§βπ))))βπ)) β dom β }, β*, < )) | ||
Theorem | abelthlem2 26181* | Lemma for abelth 26190. The peculiar region π, known as a Stolz angle , is a teardrop-shaped subset of the closed unit ball containing 1. Indeed, except for 1 itself, the rest of the Stolz angle is enclosed in the open unit ball. (Contributed by Mario Carneiro, 31-Mar-2015.) |
β’ (π β π΄:β0βΆβ) & β’ (π β seq0( + , π΄) β dom β ) & β’ (π β π β β) & β’ (π β 0 β€ π) & β’ π = {π§ β β β£ (absβ(1 β π§)) β€ (π Β· (1 β (absβπ§)))} β β’ (π β (1 β π β§ (π β {1}) β (0(ballβ(abs β β ))1))) | ||
Theorem | abelthlem3 26182* | Lemma for abelth 26190. (Contributed by Mario Carneiro, 31-Mar-2015.) |
β’ (π β π΄:β0βΆβ) & β’ (π β seq0( + , π΄) β dom β ) & β’ (π β π β β) & β’ (π β 0 β€ π) & β’ π = {π§ β β β£ (absβ(1 β π§)) β€ (π Β· (1 β (absβπ§)))} β β’ ((π β§ π β π) β seq0( + , (π β β0 β¦ ((π΄βπ) Β· (πβπ)))) β dom β ) | ||
Theorem | abelthlem4 26183* | Lemma for abelth 26190. (Contributed by Mario Carneiro, 31-Mar-2015.) |
β’ (π β π΄:β0βΆβ) & β’ (π β seq0( + , π΄) β dom β ) & β’ (π β π β β) & β’ (π β 0 β€ π) & β’ π = {π§ β β β£ (absβ(1 β π§)) β€ (π Β· (1 β (absβπ§)))} & β’ πΉ = (π₯ β π β¦ Ξ£π β β0 ((π΄βπ) Β· (π₯βπ))) β β’ (π β πΉ:πβΆβ) | ||
Theorem | abelthlem5 26184* | Lemma for abelth 26190. (Contributed by Mario Carneiro, 1-Apr-2015.) |
β’ (π β π΄:β0βΆβ) & β’ (π β seq0( + , π΄) β dom β ) & β’ (π β π β β) & β’ (π β 0 β€ π) & β’ π = {π§ β β β£ (absβ(1 β π§)) β€ (π Β· (1 β (absβπ§)))} & β’ πΉ = (π₯ β π β¦ Ξ£π β β0 ((π΄βπ) Β· (π₯βπ))) & β’ (π β seq0( + , π΄) β 0) β β’ ((π β§ π β (0(ballβ(abs β β ))1)) β seq0( + , (π β β0 β¦ ((seq0( + , π΄)βπ) Β· (πβπ)))) β dom β ) | ||
Theorem | abelthlem6 26185* | Lemma for abelth 26190. (Contributed by Mario Carneiro, 2-Apr-2015.) |
β’ (π β π΄:β0βΆβ) & β’ (π β seq0( + , π΄) β dom β ) & β’ (π β π β β) & β’ (π β 0 β€ π) & β’ π = {π§ β β β£ (absβ(1 β π§)) β€ (π Β· (1 β (absβπ§)))} & β’ πΉ = (π₯ β π β¦ Ξ£π β β0 ((π΄βπ) Β· (π₯βπ))) & β’ (π β seq0( + , π΄) β 0) & β’ (π β π β (π β {1})) β β’ (π β (πΉβπ) = ((1 β π) Β· Ξ£π β β0 ((seq0( + , π΄)βπ) Β· (πβπ)))) | ||
Theorem | abelthlem7a 26186* | Lemma for abelth 26190. (Contributed by Mario Carneiro, 8-May-2015.) |
β’ (π β π΄:β0βΆβ) & β’ (π β seq0( + , π΄) β dom β ) & β’ (π β π β β) & β’ (π β 0 β€ π) & β’ π = {π§ β β β£ (absβ(1 β π§)) β€ (π Β· (1 β (absβπ§)))} & β’ πΉ = (π₯ β π β¦ Ξ£π β β0 ((π΄βπ) Β· (π₯βπ))) & β’ (π β seq0( + , π΄) β 0) & β’ (π β π β (π β {1})) β β’ (π β (π β β β§ (absβ(1 β π)) β€ (π Β· (1 β (absβπ))))) | ||
Theorem | abelthlem7 26187* | Lemma for abelth 26190. (Contributed by Mario Carneiro, 2-Apr-2015.) |
β’ (π β π΄:β0βΆβ) & β’ (π β seq0( + , π΄) β dom β ) & β’ (π β π β β) & β’ (π β 0 β€ π) & β’ π = {π§ β β β£ (absβ(1 β π§)) β€ (π Β· (1 β (absβπ§)))} & β’ πΉ = (π₯ β π β¦ Ξ£π β β0 ((π΄βπ) Β· (π₯βπ))) & β’ (π β seq0( + , π΄) β 0) & β’ (π β π β (π β {1})) & β’ (π β π β β+) & β’ (π β π β β0) & β’ (π β βπ β (β€β₯βπ)(absβ(seq0( + , π΄)βπ)) < π ) & β’ (π β (absβ(1 β π)) < (π / (Ξ£π β (0...(π β 1))(absβ(seq0( + , π΄)βπ)) + 1))) β β’ (π β (absβ(πΉβπ)) < ((π + 1) Β· π )) | ||
Theorem | abelthlem8 26188* | Lemma for abelth 26190. (Contributed by Mario Carneiro, 2-Apr-2015.) |
β’ (π β π΄:β0βΆβ) & β’ (π β seq0( + , π΄) β dom β ) & β’ (π β π β β) & β’ (π β 0 β€ π) & β’ π = {π§ β β β£ (absβ(1 β π§)) β€ (π Β· (1 β (absβπ§)))} & β’ πΉ = (π₯ β π β¦ Ξ£π β β0 ((π΄βπ) Β· (π₯βπ))) & β’ (π β seq0( + , π΄) β 0) β β’ ((π β§ π β β+) β βπ€ β β+ βπ¦ β π ((absβ(1 β π¦)) < π€ β (absβ((πΉβ1) β (πΉβπ¦))) < π )) | ||
Theorem | abelthlem9 26189* | Lemma for abelth 26190. By adjusting the constant term, we can assume that the entire series converges to 0. (Contributed by Mario Carneiro, 1-Apr-2015.) |
β’ (π β π΄:β0βΆβ) & β’ (π β seq0( + , π΄) β dom β ) & β’ (π β π β β) & β’ (π β 0 β€ π) & β’ π = {π§ β β β£ (absβ(1 β π§)) β€ (π Β· (1 β (absβπ§)))} & β’ πΉ = (π₯ β π β¦ Ξ£π β β0 ((π΄βπ) Β· (π₯βπ))) β β’ ((π β§ π β β+) β βπ€ β β+ βπ¦ β π ((absβ(1 β π¦)) < π€ β (absβ((πΉβ1) β (πΉβπ¦))) < π )) | ||
Theorem | abelth 26190* | Abel's theorem. If the power series Ξ£π β β0π΄(π)(π₯βπ) is convergent at 1, then it is equal to the limit from "below", along a Stolz angle π (note that the π = 1 case of a Stolz angle is the real line [0, 1]). (Continuity on π β {1} follows more generally from psercn 26175.) (Contributed by Mario Carneiro, 2-Apr-2015.) (Revised by Mario Carneiro, 8-Sep-2015.) |
β’ (π β π΄:β0βΆβ) & β’ (π β seq0( + , π΄) β dom β ) & β’ (π β π β β) & β’ (π β 0 β€ π) & β’ π = {π§ β β β£ (absβ(1 β π§)) β€ (π Β· (1 β (absβπ§)))} & β’ πΉ = (π₯ β π β¦ Ξ£π β β0 ((π΄βπ) Β· (π₯βπ))) β β’ (π β πΉ β (πβcnββ)) | ||
Theorem | abelth2 26191* | Abel's theorem, restricted to the [0, 1] interval. (Contributed by Mario Carneiro, 2-Apr-2015.) |
β’ (π β π΄:β0βΆβ) & β’ (π β seq0( + , π΄) β dom β ) & β’ πΉ = (π₯ β (0[,]1) β¦ Ξ£π β β0 ((π΄βπ) Β· (π₯βπ))) β β’ (π β πΉ β ((0[,]1)βcnββ)) | ||
Theorem | efcn 26192 | The exponential function is continuous. (Contributed by Paul Chapman, 15-Sep-2007.) (Revised by Mario Carneiro, 20-Jun-2015.) |
β’ exp β (ββcnββ) | ||
Theorem | sincn 26193 | Sine is continuous. (Contributed by Paul Chapman, 28-Nov-2007.) (Revised by Mario Carneiro, 3-Sep-2014.) |
β’ sin β (ββcnββ) | ||
Theorem | coscn 26194 | Cosine is continuous. (Contributed by Paul Chapman, 28-Nov-2007.) (Revised by Mario Carneiro, 3-Sep-2014.) |
β’ cos β (ββcnββ) | ||
Theorem | reeff1olem 26195* | Lemma for reeff1o 26196. (Contributed by Paul Chapman, 18-Oct-2007.) (Revised by Mario Carneiro, 30-Apr-2014.) |
β’ ((π β β β§ 1 < π) β βπ₯ β β (expβπ₯) = π) | ||
Theorem | reeff1o 26196 | The real exponential function is one-to-one onto. (Contributed by Paul Chapman, 18-Oct-2007.) (Revised by Mario Carneiro, 10-Nov-2013.) |
β’ (exp βΎ β):ββ1-1-ontoββ+ | ||
Theorem | reefiso 26197 | The exponential function on the reals determines an isomorphism from reals onto positive reals. (Contributed by Steve Rodriguez, 25-Nov-2007.) (Revised by Mario Carneiro, 11-Mar-2014.) |
β’ (exp βΎ β) Isom < , < (β, β+) | ||
Theorem | efcvx 26198 | The exponential function on the reals is a strictly convex function. (Contributed by Mario Carneiro, 20-Jun-2015.) |
β’ (((π΄ β β β§ π΅ β β β§ π΄ < π΅) β§ π β (0(,)1)) β (expβ((π Β· π΄) + ((1 β π) Β· π΅))) < ((π Β· (expβπ΄)) + ((1 β π) Β· (expβπ΅)))) | ||
Theorem | reefgim 26199 | The exponential function is a group isomorphism from the group of reals under addition to the group of positive reals under multiplication. (Contributed by Mario Carneiro, 21-Jun-2015.) (Revised by Thierry Arnoux, 30-Jun-2019.) |
β’ π = ((mulGrpββfld) βΎs β+) β β’ (exp βΎ β) β (βfld GrpIso π) | ||
Theorem | pilem1 26200 | Lemma for pire 26205, pigt2lt4 26203 and sinpi 26204. (Contributed by Mario Carneiro, 9-May-2014.) |
β’ (π΄ β (β+ β© (β‘sin β {0})) β (π΄ β β+ β§ (sinβπ΄) = 0)) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |