Home | Metamath
Proof Explorer Theorem List (p. 262 of 458) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | Metamath Proof Explorer
(1-28805) |
Hilbert Space Explorer
(28806-30328) |
Users' Mathboxes
(30329-45797) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | 2lgsoddprmlem3d 26101 | Lemma 4 for 2lgsoddprmlem3 26102. (Contributed by AV, 20-Jul-2021.) |
⊢ (((7↑2) − 1) / 8) = (2 · 3) | ||
Theorem | 2lgsoddprmlem3 26102 | Lemma 3 for 2lgsoddprm 26104. (Contributed by AV, 20-Jul-2021.) |
⊢ ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁 ∧ 𝑅 = (𝑁 mod 8)) → (2 ∥ (((𝑅↑2) − 1) / 8) ↔ 𝑅 ∈ {1, 7})) | ||
Theorem | 2lgsoddprmlem4 26103 | Lemma 4 for 2lgsoddprm 26104. (Contributed by AV, 20-Jul-2021.) |
⊢ ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁) → (2 ∥ (((𝑁↑2) − 1) / 8) ↔ (𝑁 mod 8) ∈ {1, 7})) | ||
Theorem | 2lgsoddprm 26104 | The second supplement to the law of quadratic reciprocity for odd primes (common representation, see theorem 9.5 in [ApostolNT] p. 181): The Legendre symbol for 2 at an odd prime is minus one to the power of the square of the odd prime minus one divided by eight ((2 /L 𝑃) = -1^(((P^2)-1)/8) ). (Contributed by AV, 20-Jul-2021.) |
⊢ (𝑃 ∈ (ℙ ∖ {2}) → (2 /L 𝑃) = (-1↑(((𝑃↑2) − 1) / 8))) | ||
Theorem | 2sqlem1 26105* | Lemma for 2sq 26118. (Contributed by Mario Carneiro, 19-Jun-2015.) |
⊢ 𝑆 = ran (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2)) ⇒ ⊢ (𝐴 ∈ 𝑆 ↔ ∃𝑥 ∈ ℤ[i] 𝐴 = ((abs‘𝑥)↑2)) | ||
Theorem | 2sqlem2 26106* | Lemma for 2sq 26118. (Contributed by Mario Carneiro, 19-Jun-2015.) |
⊢ 𝑆 = ran (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2)) ⇒ ⊢ (𝐴 ∈ 𝑆 ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝐴 = ((𝑥↑2) + (𝑦↑2))) | ||
Theorem | mul2sq 26107 | Fibonacci's identity (actually due to Diophantus). The product of two sums of two squares is also a sum of two squares. We can take advantage of Gaussian integers here to trivialize the proof. (Contributed by Mario Carneiro, 19-Jun-2015.) |
⊢ 𝑆 = ran (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2)) ⇒ ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → (𝐴 · 𝐵) ∈ 𝑆) | ||
Theorem | 2sqlem3 26108 | Lemma for 2sqlem5 26110. (Contributed by Mario Carneiro, 20-Jun-2015.) |
⊢ 𝑆 = ran (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2)) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝑃 ∈ ℙ) & ⊢ (𝜑 → 𝐴 ∈ ℤ) & ⊢ (𝜑 → 𝐵 ∈ ℤ) & ⊢ (𝜑 → 𝐶 ∈ ℤ) & ⊢ (𝜑 → 𝐷 ∈ ℤ) & ⊢ (𝜑 → (𝑁 · 𝑃) = ((𝐴↑2) + (𝐵↑2))) & ⊢ (𝜑 → 𝑃 = ((𝐶↑2) + (𝐷↑2))) & ⊢ (𝜑 → 𝑃 ∥ ((𝐶 · 𝐵) + (𝐴 · 𝐷))) ⇒ ⊢ (𝜑 → 𝑁 ∈ 𝑆) | ||
Theorem | 2sqlem4 26109 | Lemma for 2sqlem5 26110. (Contributed by Mario Carneiro, 20-Jun-2015.) |
⊢ 𝑆 = ran (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2)) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝑃 ∈ ℙ) & ⊢ (𝜑 → 𝐴 ∈ ℤ) & ⊢ (𝜑 → 𝐵 ∈ ℤ) & ⊢ (𝜑 → 𝐶 ∈ ℤ) & ⊢ (𝜑 → 𝐷 ∈ ℤ) & ⊢ (𝜑 → (𝑁 · 𝑃) = ((𝐴↑2) + (𝐵↑2))) & ⊢ (𝜑 → 𝑃 = ((𝐶↑2) + (𝐷↑2))) ⇒ ⊢ (𝜑 → 𝑁 ∈ 𝑆) | ||
Theorem | 2sqlem5 26110 | Lemma for 2sq 26118. If a number that is a sum of two squares is divisible by a prime that is a sum of two squares, then the quotient is a sum of two squares. (Contributed by Mario Carneiro, 20-Jun-2015.) |
⊢ 𝑆 = ran (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2)) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝑃 ∈ ℙ) & ⊢ (𝜑 → (𝑁 · 𝑃) ∈ 𝑆) & ⊢ (𝜑 → 𝑃 ∈ 𝑆) ⇒ ⊢ (𝜑 → 𝑁 ∈ 𝑆) | ||
Theorem | 2sqlem6 26111* | Lemma for 2sq 26118. If a number that is a sum of two squares is divisible by a number whose prime divisors are all sums of two squares, then the quotient is a sum of two squares. (Contributed by Mario Carneiro, 20-Jun-2015.) |
⊢ 𝑆 = ran (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2)) & ⊢ (𝜑 → 𝐴 ∈ ℕ) & ⊢ (𝜑 → 𝐵 ∈ ℕ) & ⊢ (𝜑 → ∀𝑝 ∈ ℙ (𝑝 ∥ 𝐵 → 𝑝 ∈ 𝑆)) & ⊢ (𝜑 → (𝐴 · 𝐵) ∈ 𝑆) ⇒ ⊢ (𝜑 → 𝐴 ∈ 𝑆) | ||
Theorem | 2sqlem7 26112* | Lemma for 2sq 26118. (Contributed by Mario Carneiro, 19-Jun-2015.) |
⊢ 𝑆 = ran (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2)) & ⊢ 𝑌 = {𝑧 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ((𝑥 gcd 𝑦) = 1 ∧ 𝑧 = ((𝑥↑2) + (𝑦↑2)))} ⇒ ⊢ 𝑌 ⊆ (𝑆 ∩ ℕ) | ||
Theorem | 2sqlem8a 26113* | Lemma for 2sqlem8 26114. (Contributed by Mario Carneiro, 4-Jun-2016.) |
⊢ 𝑆 = ran (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2)) & ⊢ 𝑌 = {𝑧 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ((𝑥 gcd 𝑦) = 1 ∧ 𝑧 = ((𝑥↑2) + (𝑦↑2)))} & ⊢ (𝜑 → ∀𝑏 ∈ (1...(𝑀 − 1))∀𝑎 ∈ 𝑌 (𝑏 ∥ 𝑎 → 𝑏 ∈ 𝑆)) & ⊢ (𝜑 → 𝑀 ∥ 𝑁) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝑀 ∈ (ℤ≥‘2)) & ⊢ (𝜑 → 𝐴 ∈ ℤ) & ⊢ (𝜑 → 𝐵 ∈ ℤ) & ⊢ (𝜑 → (𝐴 gcd 𝐵) = 1) & ⊢ (𝜑 → 𝑁 = ((𝐴↑2) + (𝐵↑2))) & ⊢ 𝐶 = (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2)) & ⊢ 𝐷 = (((𝐵 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2)) ⇒ ⊢ (𝜑 → (𝐶 gcd 𝐷) ∈ ℕ) | ||
Theorem | 2sqlem8 26114* | Lemma for 2sq 26118. (Contributed by Mario Carneiro, 20-Jun-2015.) |
⊢ 𝑆 = ran (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2)) & ⊢ 𝑌 = {𝑧 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ((𝑥 gcd 𝑦) = 1 ∧ 𝑧 = ((𝑥↑2) + (𝑦↑2)))} & ⊢ (𝜑 → ∀𝑏 ∈ (1...(𝑀 − 1))∀𝑎 ∈ 𝑌 (𝑏 ∥ 𝑎 → 𝑏 ∈ 𝑆)) & ⊢ (𝜑 → 𝑀 ∥ 𝑁) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝑀 ∈ (ℤ≥‘2)) & ⊢ (𝜑 → 𝐴 ∈ ℤ) & ⊢ (𝜑 → 𝐵 ∈ ℤ) & ⊢ (𝜑 → (𝐴 gcd 𝐵) = 1) & ⊢ (𝜑 → 𝑁 = ((𝐴↑2) + (𝐵↑2))) & ⊢ 𝐶 = (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2)) & ⊢ 𝐷 = (((𝐵 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2)) & ⊢ 𝐸 = (𝐶 / (𝐶 gcd 𝐷)) & ⊢ 𝐹 = (𝐷 / (𝐶 gcd 𝐷)) ⇒ ⊢ (𝜑 → 𝑀 ∈ 𝑆) | ||
Theorem | 2sqlem9 26115* | Lemma for 2sq 26118. (Contributed by Mario Carneiro, 19-Jun-2015.) |
⊢ 𝑆 = ran (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2)) & ⊢ 𝑌 = {𝑧 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ((𝑥 gcd 𝑦) = 1 ∧ 𝑧 = ((𝑥↑2) + (𝑦↑2)))} & ⊢ (𝜑 → ∀𝑏 ∈ (1...(𝑀 − 1))∀𝑎 ∈ 𝑌 (𝑏 ∥ 𝑎 → 𝑏 ∈ 𝑆)) & ⊢ (𝜑 → 𝑀 ∥ 𝑁) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑁 ∈ 𝑌) ⇒ ⊢ (𝜑 → 𝑀 ∈ 𝑆) | ||
Theorem | 2sqlem10 26116* | Lemma for 2sq 26118. Every factor of a "proper" sum of two squares (where the summands are coprime) is a sum of two squares. (Contributed by Mario Carneiro, 19-Jun-2015.) |
⊢ 𝑆 = ran (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2)) & ⊢ 𝑌 = {𝑧 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ((𝑥 gcd 𝑦) = 1 ∧ 𝑧 = ((𝑥↑2) + (𝑦↑2)))} ⇒ ⊢ ((𝐴 ∈ 𝑌 ∧ 𝐵 ∈ ℕ ∧ 𝐵 ∥ 𝐴) → 𝐵 ∈ 𝑆) | ||
Theorem | 2sqlem11 26117* | Lemma for 2sq 26118. (Contributed by Mario Carneiro, 19-Jun-2015.) |
⊢ 𝑆 = ran (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2)) & ⊢ 𝑌 = {𝑧 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ((𝑥 gcd 𝑦) = 1 ∧ 𝑧 = ((𝑥↑2) + (𝑦↑2)))} ⇒ ⊢ ((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) → 𝑃 ∈ 𝑆) | ||
Theorem | 2sq 26118* | All primes of the form 4𝑘 + 1 are sums of two squares. This is Metamath 100 proof #20. (Contributed by Mario Carneiro, 20-Jun-2015.) |
⊢ ((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑃 = ((𝑥↑2) + (𝑦↑2))) | ||
Theorem | 2sqblem 26119 | Lemma for 2sqb 26120. (Contributed by Mario Carneiro, 20-Jun-2015.) |
⊢ (𝜑 → (𝑃 ∈ ℙ ∧ 𝑃 ≠ 2)) & ⊢ (𝜑 → (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ)) & ⊢ (𝜑 → 𝑃 = ((𝑋↑2) + (𝑌↑2))) & ⊢ (𝜑 → 𝐴 ∈ ℤ) & ⊢ (𝜑 → 𝐵 ∈ ℤ) & ⊢ (𝜑 → (𝑃 gcd 𝑌) = ((𝑃 · 𝐴) + (𝑌 · 𝐵))) ⇒ ⊢ (𝜑 → (𝑃 mod 4) = 1) | ||
Theorem | 2sqb 26120* | The converse to 2sq 26118. (Contributed by Mario Carneiro, 20-Jun-2015.) |
⊢ (𝑃 ∈ ℙ → (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑃 = ((𝑥↑2) + (𝑦↑2)) ↔ (𝑃 = 2 ∨ (𝑃 mod 4) = 1))) | ||
Theorem | 2sq2 26121 | 2 is the sum of squares of two nonnegative integers iff the two integers are 1. (Contributed by AV, 19-Jun-2023.) |
⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0) → (((𝐴↑2) + (𝐵↑2)) = 2 ↔ (𝐴 = 1 ∧ 𝐵 = 1))) | ||
Theorem | 2sqn0 26122 | If the sum of two squares is prime, none of the original number is zero. (Contributed by Thierry Arnoux, 4-Feb-2020.) |
⊢ (𝜑 → 𝑃 ∈ ℙ) & ⊢ (𝜑 → 𝐴 ∈ ℤ) & ⊢ (𝜑 → 𝐵 ∈ ℤ) & ⊢ (𝜑 → ((𝐴↑2) + (𝐵↑2)) = 𝑃) ⇒ ⊢ (𝜑 → 𝐴 ≠ 0) | ||
Theorem | 2sqcoprm 26123 | If the sum of two squares is prime, the two original numbers are coprime. (Contributed by Thierry Arnoux, 2-Feb-2020.) |
⊢ (𝜑 → 𝑃 ∈ ℙ) & ⊢ (𝜑 → 𝐴 ∈ ℤ) & ⊢ (𝜑 → 𝐵 ∈ ℤ) & ⊢ (𝜑 → ((𝐴↑2) + (𝐵↑2)) = 𝑃) ⇒ ⊢ (𝜑 → (𝐴 gcd 𝐵) = 1) | ||
Theorem | 2sqmod 26124 | Given two decompositions of a prime as a sum of two squares, show that they are equal. (Contributed by Thierry Arnoux, 2-Feb-2020.) |
⊢ (𝜑 → 𝑃 ∈ ℙ) & ⊢ (𝜑 → 𝐴 ∈ ℕ0) & ⊢ (𝜑 → 𝐵 ∈ ℕ0) & ⊢ (𝜑 → 𝐶 ∈ ℕ0) & ⊢ (𝜑 → 𝐷 ∈ ℕ0) & ⊢ (𝜑 → 𝐴 ≤ 𝐵) & ⊢ (𝜑 → 𝐶 ≤ 𝐷) & ⊢ (𝜑 → ((𝐴↑2) + (𝐵↑2)) = 𝑃) & ⊢ (𝜑 → ((𝐶↑2) + (𝐷↑2)) = 𝑃) ⇒ ⊢ (𝜑 → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)) | ||
Theorem | 2sqmo 26125* | There exists at most one decomposition of a prime as a sum of two squares. See 2sqb 26120 for the existence of such a decomposition. (Contributed by Thierry Arnoux, 2-Feb-2020.) |
⊢ (𝑃 ∈ ℙ → ∃*𝑎 ∈ ℕ0 ∃𝑏 ∈ ℕ0 (𝑎 ≤ 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)) | ||
Theorem | 2sqnn0 26126* | All primes of the form 4𝑘 + 1 are sums of squares of two nonnegative integers. (Contributed by AV, 3-Jun-2023.) |
⊢ ((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) → ∃𝑥 ∈ ℕ0 ∃𝑦 ∈ ℕ0 𝑃 = ((𝑥↑2) + (𝑦↑2))) | ||
Theorem | 2sqnn 26127* | All primes of the form 4𝑘 + 1 are sums of squares of two positive integers. (Contributed by AV, 11-Jun-2023.) |
⊢ ((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝑃 = ((𝑥↑2) + (𝑦↑2))) | ||
Theorem | addsq2reu 26128* |
For each complex number 𝐶, there exists a unique complex
number
𝑎 added to the square of a unique
another complex number 𝑏
resulting in the given complex number 𝐶. The unique complex number
𝑎 is 𝐶, and the unique another complex
number 𝑏 is 0.
Remark: This, together with addsqnreup 26131, is an example showing that the pattern ∃!𝑎 ∈ 𝐴∃!𝑏 ∈ 𝐵𝜑 does not necessarily mean "There are unique sets 𝑎 and 𝑏 fulfilling 𝜑). See also comments for df-eu 2588 and 2eu4 2675. For more details see comment for addsqnreup 26131. (Contributed by AV, 21-Jun-2023.) |
⊢ (𝐶 ∈ ℂ → ∃!𝑎 ∈ ℂ ∃!𝑏 ∈ ℂ (𝑎 + (𝑏↑2)) = 𝐶) | ||
Theorem | addsqn2reu 26129* |
For each complex number 𝐶, there does not exist a unique
complex
number 𝑏, squared and added to a unique
another complex number
𝑎 resulting in the given complex number
𝐶.
Actually, for each
complex number 𝑏, 𝑎 = (𝐶 − (𝑏↑2)) is unique.
Remark: This, together with addsq2reu 26128, shows that commutation of two unique quantifications need not be equivalent, and provides an evident justification of the fact that considering the pair of variables is necessary to obtain what we intuitively understand as "double unique existence". (Proposed by GL, 23-Jun-2023.). (Contributed by AV, 23-Jun-2023.) |
⊢ (𝐶 ∈ ℂ → ¬ ∃!𝑏 ∈ ℂ ∃!𝑎 ∈ ℂ (𝑎 + (𝑏↑2)) = 𝐶) | ||
Theorem | addsqrexnreu 26130* |
For each complex number, there exists a complex number to which the
square of more than one (or no) other complex numbers can be added to
result in the given complex number.
Remark: This theorem, together with addsq2reu 26128, shows that there are cases in which there is a set together with a not unique other set fulfilling a wff, although there is a unique set fulfilling the wff together with another unique set (see addsq2reu 26128). For more details see comment for addsqnreup 26131. (Contributed by AV, 20-Jun-2023.) |
⊢ (𝐶 ∈ ℂ → ∃𝑎 ∈ ℂ ¬ ∃!𝑏 ∈ ℂ (𝑎 + (𝑏↑2)) = 𝐶) | ||
Theorem | addsqnreup 26131* |
There is no unique decomposition of a complex number as a sum of a
complex number and a square of a complex number.
Remark: This theorem, together with addsq2reu 26128, is a real life example (about a numerical property) showing that the pattern ∃!𝑎 ∈ 𝐴∃!𝑏 ∈ 𝐵𝜑 does not necessarily mean "There are unique sets 𝑎 and 𝑏 fulfilling 𝜑"). See also comments for df-eu 2588 and 2eu4 2675. In the case of decompositions of complex numbers as a sum of a complex number and a square of a complex number, the only/unique complex number to which the square of a unique complex number is added yields in the given complex number is the given number itself, and the unique complex number to be squared is 0 (see comment for addsq2reu 26128). There are, however, complex numbers to which the square of more than one other complex numbers can be added to yield the given complex number (see addsqrexnreu 26130). For example, 〈1, (√‘(𝐶 − 1))〉 and 〈1, -(√‘(𝐶 − 1))〉 are two different decompositions of 𝐶 (if 𝐶 ≠ 1). Therefore, there is no unique decomposition of any complex number as a sum of a complex number and a square of a complex number, as generally proved by this theorem. As a consequence, a theorem must claim the existence of a unique pair of sets to express "There are unique 𝑎 and 𝑏 so that .." (more formally ∃!𝑝 ∈ (𝐴 × 𝐵)𝜑 with 𝑝 = 〈𝑎, 𝑏〉), or by showing (∃!𝑥 ∈ 𝐴∃𝑦 ∈ 𝐵𝜑 ∧ ∃!𝑦 ∈ 𝐵∃𝑥 ∈ 𝐴𝜑) (see 2reu4 4422 resp. 2eu4 2675). These two representations are equivalent (see opreu2reurex 6127). An analogon of this theorem using the latter variant is given in addsqn2reurex2 26133. In some cases, however, the variant with (ordered!) pairs may be possible only for ordered sets (like ℝ or ℙ) and claiming that the first component is less than or equal to the second component (see, for example, 2sqreunnltb 26149 and 2sqreuopb 26156). Alternatively, (proper) unordered pairs can be used: ∃!𝑝𝑒𝒫 𝐴((♯‘𝑝) = 2 ∧ 𝜑), or, using the definition of proper pairs: ∃!𝑝 ∈ (Pairsproper‘𝐴)𝜑 (see, for example, inlinecirc02preu 45595). (Contributed by AV, 21-Jun-2023.) |
⊢ (𝐶 ∈ ℂ → ¬ ∃!𝑝 ∈ (ℂ × ℂ)((1st ‘𝑝) + ((2nd ‘𝑝)↑2)) = 𝐶) | ||
Theorem | addsq2nreurex 26132* | For each complex number 𝐶, there is no unique complex number 𝑎 added to the square of another complex number 𝑏 resulting in the given complex number 𝐶. (Contributed by AV, 2-Jul-2023.) |
⊢ (𝐶 ∈ ℂ → ¬ ∃!𝑎 ∈ ℂ ∃𝑏 ∈ ℂ (𝑎 + (𝑏↑2)) = 𝐶) | ||
Theorem | addsqn2reurex2 26133* |
For each complex number 𝐶, there does not uniquely exist two
complex numbers 𝑎 and 𝑏, with 𝑏 squared
and added to 𝑎
resulting in the given complex number 𝐶.
Remark: This, together with addsq2reu 26128, is an example showing that the pattern ∃!𝑎 ∈ 𝐴∃!𝑏 ∈ 𝐵𝜑 does not necessarily mean "There are unique sets 𝑎 and 𝑏 fulfilling 𝜑), as it is the case with the pattern (∃!𝑎 ∈ 𝐴∃𝑏 ∈ 𝐵𝜑 ∧ ∃!𝑏 ∈ 𝐵∃𝑎 ∈ 𝐴𝜑. See also comments for df-eu 2588 and 2eu4 2675. (Contributed by AV, 2-Jul-2023.) |
⊢ (𝐶 ∈ ℂ → ¬ (∃!𝑎 ∈ ℂ ∃𝑏 ∈ ℂ (𝑎 + (𝑏↑2)) = 𝐶 ∧ ∃!𝑏 ∈ ℂ ∃𝑎 ∈ ℂ (𝑎 + (𝑏↑2)) = 𝐶)) | ||
Theorem | 2sqreulem1 26134* | Lemma 1 for 2sqreu 26144. (Contributed by AV, 4-Jun-2023.) |
⊢ ((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) → ∃!𝑎 ∈ ℕ0 ∃!𝑏 ∈ ℕ0 (𝑎 ≤ 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)) | ||
Theorem | 2sqreultlem 26135* | Lemma for 2sqreult 26146. (Contributed by AV, 8-Jun-2023.) (Proposed by GL, 8-Jun-2023.) |
⊢ ((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) → ∃!𝑎 ∈ ℕ0 ∃!𝑏 ∈ ℕ0 (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)) | ||
Theorem | 2sqreultblem 26136* | Lemma for 2sqreultb 26147. (Contributed by AV, 10-Jun-2023.) The prime needs not be odd, as observed by WL. (Revised by AV, 18-Jun-2023.) |
⊢ (𝑃 ∈ ℙ → ((𝑃 mod 4) = 1 ↔ ∃!𝑎 ∈ ℕ0 ∃!𝑏 ∈ ℕ0 (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃))) | ||
Theorem | 2sqreunnlem1 26137* | Lemma 1 for 2sqreunn 26145. (Contributed by AV, 11-Jun-2023.) |
⊢ ((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) → ∃!𝑎 ∈ ℕ ∃!𝑏 ∈ ℕ (𝑎 ≤ 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)) | ||
Theorem | 2sqreunnltlem 26138* | Lemma for 2sqreunnlt 26148. (Contributed by AV, 4-Jun-2023.) Specialization to different integers, proposed by GL. (Revised by AV, 11-Jun-2023.) |
⊢ ((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) → ∃!𝑎 ∈ ℕ ∃!𝑏 ∈ ℕ (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)) | ||
Theorem | 2sqreunnltblem 26139* | Lemma for 2sqreunnltb 26149. (Contributed by AV, 11-Jun-2023.) The prime needs not be odd, as observed by WL. (Revised by AV, 18-Jun-2023.) |
⊢ (𝑃 ∈ ℙ → ((𝑃 mod 4) = 1 ↔ ∃!𝑎 ∈ ℕ ∃!𝑏 ∈ ℕ (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃))) | ||
Theorem | 2sqreulem2 26140 | Lemma 2 for 2sqreu 26144 etc. (Contributed by AV, 25-Jun-2023.) |
⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ∧ 𝐶 ∈ ℕ0) → (((𝐴↑2) + (𝐵↑2)) = ((𝐴↑2) + (𝐶↑2)) → 𝐵 = 𝐶)) | ||
Theorem | 2sqreulem3 26141 | Lemma 3 for 2sqreu 26144 etc. (Contributed by AV, 25-Jun-2023.) |
⊢ ((𝐴 ∈ ℕ0 ∧ (𝐵 ∈ ℕ0 ∧ 𝐶 ∈ ℕ0)) → (((𝜑 ∧ ((𝐴↑2) + (𝐵↑2)) = 𝑃) ∧ (𝜓 ∧ ((𝐴↑2) + (𝐶↑2)) = 𝑃)) → 𝐵 = 𝐶)) | ||
Theorem | 2sqreulem4 26142* | Lemma 4 for 2sqreu 26144 et. (Contributed by AV, 25-Jun-2023.) |
⊢ (𝜑 ↔ (𝜓 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)) ⇒ ⊢ ∀𝑎 ∈ ℕ0 ∃*𝑏 ∈ ℕ0 𝜑 | ||
Theorem | 2sqreunnlem2 26143* | Lemma 2 for 2sqreunn 26145. (Contributed by AV, 25-Jun-2023.) |
⊢ (𝜑 ↔ (𝜓 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)) ⇒ ⊢ ∀𝑎 ∈ ℕ ∃*𝑏 ∈ ℕ 𝜑 | ||
Theorem | 2sqreu 26144* | There exists a unique decomposition of a prime of the form 4𝑘 + 1 as a sum of squares of two nonnegative integers. See 2sqnn0 26126 for the existence of such a decomposition. (Contributed by AV, 4-Jun-2023.) (Revised by AV, 25-Jun-2023.) |
⊢ (𝜑 ↔ (𝑎 ≤ 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)) ⇒ ⊢ ((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) → (∃!𝑎 ∈ ℕ0 ∃𝑏 ∈ ℕ0 𝜑 ∧ ∃!𝑏 ∈ ℕ0 ∃𝑎 ∈ ℕ0 𝜑)) | ||
Theorem | 2sqreunn 26145* | There exists a unique decomposition of a prime of the form 4𝑘 + 1 as a sum of squares of two positive integers. See 2sqnn 26127 for the existence of such a decomposition. (Contributed by AV, 11-Jun-2023.) (Revised by AV, 25-Jun-2023.) |
⊢ (𝜑 ↔ (𝑎 ≤ 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)) ⇒ ⊢ ((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) → (∃!𝑎 ∈ ℕ ∃𝑏 ∈ ℕ 𝜑 ∧ ∃!𝑏 ∈ ℕ ∃𝑎 ∈ ℕ 𝜑)) | ||
Theorem | 2sqreult 26146* | There exists a unique decomposition of a prime as a sum of squares of two different nonnegative integers. (Contributed by AV, 8-Jun-2023.) (Proposed by GL, 8-Jun-2023.) (Revised by AV, 25-Jun-2023.) |
⊢ (𝜑 ↔ (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)) ⇒ ⊢ ((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) → (∃!𝑎 ∈ ℕ0 ∃𝑏 ∈ ℕ0 𝜑 ∧ ∃!𝑏 ∈ ℕ0 ∃𝑎 ∈ ℕ0 𝜑)) | ||
Theorem | 2sqreultb 26147* | There exists a unique decomposition of a prime as a sum of squares of two different nonnegative integers iff 𝑃≡1 (mod 4). (Contributed by AV, 10-Jun-2023.) The prime needs not be odd, as observed by WL. (Revised by AV, 25-Jun-2023.) |
⊢ (𝜑 ↔ (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)) ⇒ ⊢ (𝑃 ∈ ℙ → ((𝑃 mod 4) = 1 ↔ (∃!𝑎 ∈ ℕ0 ∃𝑏 ∈ ℕ0 𝜑 ∧ ∃!𝑏 ∈ ℕ0 ∃𝑎 ∈ ℕ0 𝜑))) | ||
Theorem | 2sqreunnlt 26148* | There exists a unique decomposition of a prime of the form 4𝑘 + 1 as a sum of squares of two different positive integers. (Contributed by AV, 4-Jun-2023.) Specialization to different integers, proposed by GL. (Revised by AV, 25-Jun-2023.) |
⊢ (𝜑 ↔ (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)) ⇒ ⊢ ((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) → (∃!𝑎 ∈ ℕ ∃𝑏 ∈ ℕ 𝜑 ∧ ∃!𝑏 ∈ ℕ ∃𝑎 ∈ ℕ 𝜑)) | ||
Theorem | 2sqreunnltb 26149* | There exists a unique decomposition of a prime as a sum of squares of two different positive integers iff the prime is of the form 4𝑘 + 1. (Contributed by AV, 11-Jun-2023.) The prime needs not be odd, as observed by WL. (Revised by AV, 25-Jun-2023.) |
⊢ (𝜑 ↔ (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)) ⇒ ⊢ (𝑃 ∈ ℙ → ((𝑃 mod 4) = 1 ↔ (∃!𝑎 ∈ ℕ ∃𝑏 ∈ ℕ 𝜑 ∧ ∃!𝑏 ∈ ℕ ∃𝑎 ∈ ℕ 𝜑))) | ||
Theorem | 2sqreuop 26150* | There exists a unique decomposition of a prime of the form 4𝑘 + 1 as a sum of squares of two nonnegative integers. Ordered pair variant of 2sqreu 26144. (Contributed by AV, 2-Jul-2023.) |
⊢ ((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) → ∃!𝑝 ∈ (ℕ0 × ℕ0)((1st ‘𝑝) ≤ (2nd ‘𝑝) ∧ (((1st ‘𝑝)↑2) + ((2nd ‘𝑝)↑2)) = 𝑃)) | ||
Theorem | 2sqreuopnn 26151* | There exists a unique decomposition of a prime of the form 4𝑘 + 1 as a sum of squares of two positive integers. Ordered pair variant of 2sqreunn 26145. (Contributed by AV, 2-Jul-2023.) |
⊢ ((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) → ∃!𝑝 ∈ (ℕ × ℕ)((1st ‘𝑝) ≤ (2nd ‘𝑝) ∧ (((1st ‘𝑝)↑2) + ((2nd ‘𝑝)↑2)) = 𝑃)) | ||
Theorem | 2sqreuoplt 26152* | There exists a unique decomposition of a prime as a sum of squares of two different nonnegative integers. Ordered pair variant of 2sqreult 26146. (Contributed by AV, 2-Jul-2023.) |
⊢ ((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) → ∃!𝑝 ∈ (ℕ0 × ℕ0)((1st ‘𝑝) < (2nd ‘𝑝) ∧ (((1st ‘𝑝)↑2) + ((2nd ‘𝑝)↑2)) = 𝑃)) | ||
Theorem | 2sqreuopltb 26153* | There exists a unique decomposition of a prime as a sum of squares of two different nonnegative integers iff 𝑃≡1 (mod 4). Ordered pair variant of 2sqreultb 26147. (Contributed by AV, 3-Jul-2023.) |
⊢ (𝑃 ∈ ℙ → ((𝑃 mod 4) = 1 ↔ ∃!𝑝 ∈ (ℕ0 × ℕ0)((1st ‘𝑝) < (2nd ‘𝑝) ∧ (((1st ‘𝑝)↑2) + ((2nd ‘𝑝)↑2)) = 𝑃))) | ||
Theorem | 2sqreuopnnlt 26154* | There exists a unique decomposition of a prime of the form 4𝑘 + 1 as a sum of squares of two different positive integers. Ordered pair variant of 2sqreunnlt 26148. (Contributed by AV, 3-Jul-2023.) |
⊢ ((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) → ∃!𝑝 ∈ (ℕ × ℕ)((1st ‘𝑝) < (2nd ‘𝑝) ∧ (((1st ‘𝑝)↑2) + ((2nd ‘𝑝)↑2)) = 𝑃)) | ||
Theorem | 2sqreuopnnltb 26155* | There exists a unique decomposition of a prime as a sum of squares of two different positive integers iff the prime is of the form 4𝑘 + 1. Ordered pair variant of 2sqreunnltb 26149. (Contributed by AV, 3-Jul-2023.) |
⊢ (𝑃 ∈ ℙ → ((𝑃 mod 4) = 1 ↔ ∃!𝑝 ∈ (ℕ × ℕ)((1st ‘𝑝) < (2nd ‘𝑝) ∧ (((1st ‘𝑝)↑2) + ((2nd ‘𝑝)↑2)) = 𝑃))) | ||
Theorem | 2sqreuopb 26156* | There exists a unique decomposition of a prime as a sum of squares of two different positive integers iff the prime is of the form 4𝑘 + 1. Alternate ordered pair variant of 2sqreunnltb 26149. (Contributed by AV, 3-Jul-2023.) |
⊢ (𝑃 ∈ ℙ → ((𝑃 mod 4) = 1 ↔ ∃!𝑝 ∈ (ℕ × ℕ)∃𝑎∃𝑏(𝑝 = 〈𝑎, 𝑏〉 ∧ (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)))) | ||
Theorem | chebbnd1lem1 26157 | Lemma for chebbnd1 26160: show a lower bound on π(𝑥) at even integers using similar techniques to those used to prove bpos 25981. (Note that the expression 𝐾 is actually equal to 2 · 𝑁, but proving that is not necessary for the proof, and it's too much work.) The key to the proof is bposlem1 25972, which shows that each term in the expansion ((2 · 𝑁)C𝑁) = ∏𝑝 ∈ ℙ (𝑝↑(𝑝 pCnt ((2 · 𝑁)C𝑁))) is at most 2 · 𝑁, so that the sum really only has nonzero elements up to 2 · 𝑁, and since each term is at most 2 · 𝑁, after taking logs we get the inequality π(2 · 𝑁) · log(2 · 𝑁) ≤ log((2 · 𝑁)C𝑁), and bclbnd 25968 finishes the proof. (Contributed by Mario Carneiro, 22-Sep-2014.) (Revised by Mario Carneiro, 15-Apr-2016.) |
⊢ 𝐾 = if((2 · 𝑁) ≤ ((2 · 𝑁)C𝑁), (2 · 𝑁), ((2 · 𝑁)C𝑁)) ⇒ ⊢ (𝑁 ∈ (ℤ≥‘4) → (log‘((4↑𝑁) / 𝑁)) < ((π‘(2 · 𝑁)) · (log‘(2 · 𝑁)))) | ||
Theorem | chebbnd1lem2 26158 | Lemma for chebbnd1 26160: Show that log(𝑁) / 𝑁 does not change too much between 𝑁 and 𝑀 = ⌊(𝑁 / 2). (Contributed by Mario Carneiro, 22-Sep-2014.) |
⊢ 𝑀 = (⌊‘(𝑁 / 2)) ⇒ ⊢ ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → ((log‘(2 · 𝑀)) / (2 · 𝑀)) < (2 · ((log‘𝑁) / 𝑁))) | ||
Theorem | chebbnd1lem3 26159 | Lemma for chebbnd1 26160: get a lower bound on π(𝑁) / (𝑁 / log(𝑁)) that is independent of 𝑁. (Contributed by Mario Carneiro, 21-Sep-2014.) |
⊢ 𝑀 = (⌊‘(𝑁 / 2)) ⇒ ⊢ ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (((log‘2) − (1 / (2 · e))) / 2) < ((π‘𝑁) · ((log‘𝑁) / 𝑁))) | ||
Theorem | chebbnd1 26160 | The Chebyshev bound: The function π(𝑥) is eventually lower bounded by a positive constant times 𝑥 / log(𝑥). Alternatively stated, the function (𝑥 / log(𝑥)) / π(𝑥) is eventually bounded. (Contributed by Mario Carneiro, 22-Sep-2014.) |
⊢ (𝑥 ∈ (2[,)+∞) ↦ ((𝑥 / (log‘𝑥)) / (π‘𝑥))) ∈ 𝑂(1) | ||
Theorem | chtppilimlem1 26161 | Lemma for chtppilim 26163. (Contributed by Mario Carneiro, 22-Sep-2014.) |
⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → 𝐴 < 1) & ⊢ (𝜑 → 𝑁 ∈ (2[,)+∞)) & ⊢ (𝜑 → ((𝑁↑𝑐𝐴) / (π‘𝑁)) < (1 − 𝐴)) ⇒ ⊢ (𝜑 → ((𝐴↑2) · ((π‘𝑁) · (log‘𝑁))) < (θ‘𝑁)) | ||
Theorem | chtppilimlem2 26162* | Lemma for chtppilim 26163. (Contributed by Mario Carneiro, 22-Sep-2014.) |
⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → 𝐴 < 1) ⇒ ⊢ (𝜑 → ∃𝑧 ∈ ℝ ∀𝑥 ∈ (2[,)+∞)(𝑧 ≤ 𝑥 → ((𝐴↑2) · ((π‘𝑥) · (log‘𝑥))) < (θ‘𝑥))) | ||
Theorem | chtppilim 26163 | The θ function is asymptotic to π(𝑥)log(𝑥), so it is sufficient to prove θ(𝑥) / 𝑥 ⇝𝑟 1 to establish the PNT. (Contributed by Mario Carneiro, 22-Sep-2014.) |
⊢ (𝑥 ∈ (2[,)+∞) ↦ ((θ‘𝑥) / ((π‘𝑥) · (log‘𝑥)))) ⇝𝑟 1 | ||
Theorem | chto1ub 26164 | The θ function is upper bounded by a linear term. Corollary of chtub 25900. (Contributed by Mario Carneiro, 22-Sep-2014.) |
⊢ (𝑥 ∈ ℝ+ ↦ ((θ‘𝑥) / 𝑥)) ∈ 𝑂(1) | ||
Theorem | chebbnd2 26165 | The Chebyshev bound, part 2: The function π(𝑥) is eventually upper bounded by a positive constant times 𝑥 / log(𝑥). Alternatively stated, the function π(𝑥) / (𝑥 / log(𝑥)) is eventually bounded. (Contributed by Mario Carneiro, 22-Sep-2014.) |
⊢ (𝑥 ∈ (2[,)+∞) ↦ ((π‘𝑥) / (𝑥 / (log‘𝑥)))) ∈ 𝑂(1) | ||
Theorem | chto1lb 26166 | The θ function is lower bounded by a linear term. Corollary of chebbnd1 26160. (Contributed by Mario Carneiro, 8-Apr-2016.) |
⊢ (𝑥 ∈ (2[,)+∞) ↦ (𝑥 / (θ‘𝑥))) ∈ 𝑂(1) | ||
Theorem | chpchtlim 26167 | The ψ and θ functions are asymptotic to each other, so is sufficient to prove either θ(𝑥) / 𝑥 ⇝𝑟 1 or ψ(𝑥) / 𝑥 ⇝𝑟 1 to establish the PNT. (Contributed by Mario Carneiro, 8-Apr-2016.) |
⊢ (𝑥 ∈ (2[,)+∞) ↦ ((ψ‘𝑥) / (θ‘𝑥))) ⇝𝑟 1 | ||
Theorem | chpo1ub 26168 | The ψ function is upper bounded by a linear term. (Contributed by Mario Carneiro, 16-Apr-2016.) |
⊢ (𝑥 ∈ ℝ+ ↦ ((ψ‘𝑥) / 𝑥)) ∈ 𝑂(1) | ||
Theorem | chpo1ubb 26169* | The ψ function is upper bounded by a linear term. (Contributed by Mario Carneiro, 31-May-2016.) |
⊢ ∃𝑐 ∈ ℝ+ ∀𝑥 ∈ ℝ+ (ψ‘𝑥) ≤ (𝑐 · 𝑥) | ||
Theorem | vmadivsum 26170* | The sum of the von Mangoldt function over 𝑛 is asymptotic to log𝑥 + 𝑂(1). Equation 9.2.13 of [Shapiro], p. 331. (Contributed by Mario Carneiro, 16-Apr-2016.) |
⊢ (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − (log‘𝑥))) ∈ 𝑂(1) | ||
Theorem | vmadivsumb 26171* | Give a total bound on the von Mangoldt sum. (Contributed by Mario Carneiro, 30-May-2016.) |
⊢ ∃𝑐 ∈ ℝ+ ∀𝑥 ∈ (1[,)+∞)(abs‘(Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − (log‘𝑥))) ≤ 𝑐 | ||
Theorem | rplogsumlem1 26172* | Lemma for rplogsum 26215. (Contributed by Mario Carneiro, 2-May-2016.) |
⊢ (𝐴 ∈ ℕ → Σ𝑛 ∈ (2...𝐴)((log‘𝑛) / (𝑛 · (𝑛 − 1))) ≤ 2) | ||
Theorem | rplogsumlem2 26173* | Lemma for rplogsum 26215. Equation 9.2.14 of [Shapiro], p. 331. (Contributed by Mario Carneiro, 2-May-2016.) |
⊢ (𝐴 ∈ ℤ → Σ𝑛 ∈ (1...𝐴)(((Λ‘𝑛) − if(𝑛 ∈ ℙ, (log‘𝑛), 0)) / 𝑛) ≤ 2) | ||
Theorem | dchrisum0lem1a 26174 | Lemma for dchrisum0lem1 26204. (Contributed by Mario Carneiro, 7-Jun-2016.) |
⊢ (((𝜑 ∧ 𝑋 ∈ ℝ+) ∧ 𝐷 ∈ (1...(⌊‘𝑋))) → (𝑋 ≤ ((𝑋↑2) / 𝐷) ∧ (⌊‘((𝑋↑2) / 𝐷)) ∈ (ℤ≥‘(⌊‘𝑋)))) | ||
Theorem | rpvmasumlem 26175* | Lemma for rpvmasum 26214. Calculate the "trivial case" estimate Σ𝑛 ≤ 𝑥( 1 (𝑛)Λ(𝑛) / 𝑛) = log𝑥 + 𝑂(1), where 1 (𝑥) is the principal Dirichlet character. Equation 9.4.7 of [Shapiro], p. 376. (Contributed by Mario Carneiro, 2-May-2016.) |
⊢ 𝑍 = (ℤ/nℤ‘𝑁) & ⊢ 𝐿 = (ℤRHom‘𝑍) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ 𝐺 = (DChr‘𝑁) & ⊢ 𝐷 = (Base‘𝐺) & ⊢ 1 = (0g‘𝐺) ⇒ ⊢ (𝜑 → (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(( 1 ‘(𝐿‘𝑛)) · ((Λ‘𝑛) / 𝑛)) − (log‘𝑥))) ∈ 𝑂(1)) | ||
Theorem | dchrisumlema 26176* | Lemma for dchrisum 26180. Lemma 9.4.1 of [Shapiro], p. 377. (Contributed by Mario Carneiro, 2-May-2016.) |
⊢ 𝑍 = (ℤ/nℤ‘𝑁) & ⊢ 𝐿 = (ℤRHom‘𝑍) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ 𝐺 = (DChr‘𝑁) & ⊢ 𝐷 = (Base‘𝐺) & ⊢ 1 = (0g‘𝐺) & ⊢ (𝜑 → 𝑋 ∈ 𝐷) & ⊢ (𝜑 → 𝑋 ≠ 1 ) & ⊢ (𝑛 = 𝑥 → 𝐴 = 𝐵) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ ((𝜑 ∧ 𝑛 ∈ ℝ+) → 𝐴 ∈ ℝ) & ⊢ ((𝜑 ∧ (𝑛 ∈ ℝ+ ∧ 𝑥 ∈ ℝ+) ∧ (𝑀 ≤ 𝑛 ∧ 𝑛 ≤ 𝑥)) → 𝐵 ≤ 𝐴) & ⊢ (𝜑 → (𝑛 ∈ ℝ+ ↦ 𝐴) ⇝𝑟 0) & ⊢ 𝐹 = (𝑛 ∈ ℕ ↦ ((𝑋‘(𝐿‘𝑛)) · 𝐴)) ⇒ ⊢ (𝜑 → ((𝐼 ∈ ℝ+ → ⦋𝐼 / 𝑛⦌𝐴 ∈ ℝ) ∧ (𝐼 ∈ (𝑀[,)+∞) → 0 ≤ ⦋𝐼 / 𝑛⦌𝐴))) | ||
Theorem | dchrisumlem1 26177* | Lemma for dchrisum 26180. Lemma 9.4.1 of [Shapiro], p. 377. (Contributed by Mario Carneiro, 2-May-2016.) |
⊢ 𝑍 = (ℤ/nℤ‘𝑁) & ⊢ 𝐿 = (ℤRHom‘𝑍) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ 𝐺 = (DChr‘𝑁) & ⊢ 𝐷 = (Base‘𝐺) & ⊢ 1 = (0g‘𝐺) & ⊢ (𝜑 → 𝑋 ∈ 𝐷) & ⊢ (𝜑 → 𝑋 ≠ 1 ) & ⊢ (𝑛 = 𝑥 → 𝐴 = 𝐵) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ ((𝜑 ∧ 𝑛 ∈ ℝ+) → 𝐴 ∈ ℝ) & ⊢ ((𝜑 ∧ (𝑛 ∈ ℝ+ ∧ 𝑥 ∈ ℝ+) ∧ (𝑀 ≤ 𝑛 ∧ 𝑛 ≤ 𝑥)) → 𝐵 ≤ 𝐴) & ⊢ (𝜑 → (𝑛 ∈ ℝ+ ↦ 𝐴) ⇝𝑟 0) & ⊢ 𝐹 = (𝑛 ∈ ℕ ↦ ((𝑋‘(𝐿‘𝑛)) · 𝐴)) & ⊢ (𝜑 → 𝑅 ∈ ℝ) & ⊢ (𝜑 → ∀𝑢 ∈ (0..^𝑁)(abs‘Σ𝑛 ∈ (0..^𝑢)(𝑋‘(𝐿‘𝑛))) ≤ 𝑅) ⇒ ⊢ ((𝜑 ∧ 𝑈 ∈ ℕ0) → (abs‘Σ𝑛 ∈ (0..^𝑈)(𝑋‘(𝐿‘𝑛))) ≤ 𝑅) | ||
Theorem | dchrisumlem2 26178* | Lemma for dchrisum 26180. Lemma 9.4.1 of [Shapiro], p. 377. (Contributed by Mario Carneiro, 2-May-2016.) |
⊢ 𝑍 = (ℤ/nℤ‘𝑁) & ⊢ 𝐿 = (ℤRHom‘𝑍) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ 𝐺 = (DChr‘𝑁) & ⊢ 𝐷 = (Base‘𝐺) & ⊢ 1 = (0g‘𝐺) & ⊢ (𝜑 → 𝑋 ∈ 𝐷) & ⊢ (𝜑 → 𝑋 ≠ 1 ) & ⊢ (𝑛 = 𝑥 → 𝐴 = 𝐵) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ ((𝜑 ∧ 𝑛 ∈ ℝ+) → 𝐴 ∈ ℝ) & ⊢ ((𝜑 ∧ (𝑛 ∈ ℝ+ ∧ 𝑥 ∈ ℝ+) ∧ (𝑀 ≤ 𝑛 ∧ 𝑛 ≤ 𝑥)) → 𝐵 ≤ 𝐴) & ⊢ (𝜑 → (𝑛 ∈ ℝ+ ↦ 𝐴) ⇝𝑟 0) & ⊢ 𝐹 = (𝑛 ∈ ℕ ↦ ((𝑋‘(𝐿‘𝑛)) · 𝐴)) & ⊢ (𝜑 → 𝑅 ∈ ℝ) & ⊢ (𝜑 → ∀𝑢 ∈ (0..^𝑁)(abs‘Σ𝑛 ∈ (0..^𝑢)(𝑋‘(𝐿‘𝑛))) ≤ 𝑅) & ⊢ (𝜑 → 𝑈 ∈ ℝ+) & ⊢ (𝜑 → 𝑀 ≤ 𝑈) & ⊢ (𝜑 → 𝑈 ≤ (𝐼 + 1)) & ⊢ (𝜑 → 𝐼 ∈ ℕ) & ⊢ (𝜑 → 𝐽 ∈ (ℤ≥‘𝐼)) ⇒ ⊢ (𝜑 → (abs‘((seq1( + , 𝐹)‘𝐽) − (seq1( + , 𝐹)‘𝐼))) ≤ ((2 · 𝑅) · ⦋𝑈 / 𝑛⦌𝐴)) | ||
Theorem | dchrisumlem3 26179* | Lemma for dchrisum 26180. Lemma 9.4.1 of [Shapiro], p. 377. (Contributed by Mario Carneiro, 2-May-2016.) |
⊢ 𝑍 = (ℤ/nℤ‘𝑁) & ⊢ 𝐿 = (ℤRHom‘𝑍) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ 𝐺 = (DChr‘𝑁) & ⊢ 𝐷 = (Base‘𝐺) & ⊢ 1 = (0g‘𝐺) & ⊢ (𝜑 → 𝑋 ∈ 𝐷) & ⊢ (𝜑 → 𝑋 ≠ 1 ) & ⊢ (𝑛 = 𝑥 → 𝐴 = 𝐵) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ ((𝜑 ∧ 𝑛 ∈ ℝ+) → 𝐴 ∈ ℝ) & ⊢ ((𝜑 ∧ (𝑛 ∈ ℝ+ ∧ 𝑥 ∈ ℝ+) ∧ (𝑀 ≤ 𝑛 ∧ 𝑛 ≤ 𝑥)) → 𝐵 ≤ 𝐴) & ⊢ (𝜑 → (𝑛 ∈ ℝ+ ↦ 𝐴) ⇝𝑟 0) & ⊢ 𝐹 = (𝑛 ∈ ℕ ↦ ((𝑋‘(𝐿‘𝑛)) · 𝐴)) & ⊢ (𝜑 → 𝑅 ∈ ℝ) & ⊢ (𝜑 → ∀𝑢 ∈ (0..^𝑁)(abs‘Σ𝑛 ∈ (0..^𝑢)(𝑋‘(𝐿‘𝑛))) ≤ 𝑅) ⇒ ⊢ (𝜑 → ∃𝑡∃𝑐 ∈ (0[,)+∞)(seq1( + , 𝐹) ⇝ 𝑡 ∧ ∀𝑥 ∈ (𝑀[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑥)) − 𝑡)) ≤ (𝑐 · 𝐵))) | ||
Theorem | dchrisum 26180* | If 𝑛 ∈ [𝑀, +∞) ↦ 𝐴(𝑛) is a positive decreasing function approaching zero, then the infinite sum Σ𝑛, 𝑋(𝑛)𝐴(𝑛) is convergent, with the partial sum Σ𝑛 ≤ 𝑥, 𝑋(𝑛)𝐴(𝑛) within 𝑂(𝐴(𝑀)) of the limit 𝑇. Lemma 9.4.1 of [Shapiro], p. 377. (Contributed by Mario Carneiro, 2-May-2016.) |
⊢ 𝑍 = (ℤ/nℤ‘𝑁) & ⊢ 𝐿 = (ℤRHom‘𝑍) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ 𝐺 = (DChr‘𝑁) & ⊢ 𝐷 = (Base‘𝐺) & ⊢ 1 = (0g‘𝐺) & ⊢ (𝜑 → 𝑋 ∈ 𝐷) & ⊢ (𝜑 → 𝑋 ≠ 1 ) & ⊢ (𝑛 = 𝑥 → 𝐴 = 𝐵) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ ((𝜑 ∧ 𝑛 ∈ ℝ+) → 𝐴 ∈ ℝ) & ⊢ ((𝜑 ∧ (𝑛 ∈ ℝ+ ∧ 𝑥 ∈ ℝ+) ∧ (𝑀 ≤ 𝑛 ∧ 𝑛 ≤ 𝑥)) → 𝐵 ≤ 𝐴) & ⊢ (𝜑 → (𝑛 ∈ ℝ+ ↦ 𝐴) ⇝𝑟 0) & ⊢ 𝐹 = (𝑛 ∈ ℕ ↦ ((𝑋‘(𝐿‘𝑛)) · 𝐴)) ⇒ ⊢ (𝜑 → ∃𝑡∃𝑐 ∈ (0[,)+∞)(seq1( + , 𝐹) ⇝ 𝑡 ∧ ∀𝑥 ∈ (𝑀[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑥)) − 𝑡)) ≤ (𝑐 · 𝐵))) | ||
Theorem | dchrmusumlema 26181* | Lemma for dchrmusum 26212 and dchrisumn0 26209. Apply dchrisum 26180 for the function 1 / 𝑦. (Contributed by Mario Carneiro, 4-May-2016.) |
⊢ 𝑍 = (ℤ/nℤ‘𝑁) & ⊢ 𝐿 = (ℤRHom‘𝑍) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ 𝐺 = (DChr‘𝑁) & ⊢ 𝐷 = (Base‘𝐺) & ⊢ 1 = (0g‘𝐺) & ⊢ (𝜑 → 𝑋 ∈ 𝐷) & ⊢ (𝜑 → 𝑋 ≠ 1 ) & ⊢ 𝐹 = (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿‘𝑎)) / 𝑎)) ⇒ ⊢ (𝜑 → ∃𝑡∃𝑐 ∈ (0[,)+∞)(seq1( + , 𝐹) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / 𝑦))) | ||
Theorem | dchrmusum2 26182* | The sum of the Möbius function multiplied by a non-principal Dirichlet character, divided by 𝑛, is bounded, provided that 𝑇 ≠ 0. Lemma 9.4.2 of [Shapiro], p. 380. (Contributed by Mario Carneiro, 4-May-2016.) |
⊢ 𝑍 = (ℤ/nℤ‘𝑁) & ⊢ 𝐿 = (ℤRHom‘𝑍) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ 𝐺 = (DChr‘𝑁) & ⊢ 𝐷 = (Base‘𝐺) & ⊢ 1 = (0g‘𝐺) & ⊢ (𝜑 → 𝑋 ∈ 𝐷) & ⊢ (𝜑 → 𝑋 ≠ 1 ) & ⊢ 𝐹 = (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿‘𝑎)) / 𝑎)) & ⊢ (𝜑 → 𝐶 ∈ (0[,)+∞)) & ⊢ (𝜑 → seq1( + , 𝐹) ⇝ 𝑇) & ⊢ (𝜑 → ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑇)) ≤ (𝐶 / 𝑦)) ⇒ ⊢ (𝜑 → (𝑥 ∈ ℝ+ ↦ (Σ𝑑 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿‘𝑑)) · ((μ‘𝑑) / 𝑑)) · 𝑇)) ∈ 𝑂(1)) | ||
Theorem | dchrvmasumlem1 26183* | An alternative expression for a Dirichlet-weighted von Mangoldt sum in terms of the Möbius function. Equation 9.4.11 of [Shapiro], p. 377. (Contributed by Mario Carneiro, 3-May-2016.) |
⊢ 𝑍 = (ℤ/nℤ‘𝑁) & ⊢ 𝐿 = (ℤRHom‘𝑍) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ 𝐺 = (DChr‘𝑁) & ⊢ 𝐷 = (Base‘𝐺) & ⊢ 1 = (0g‘𝐺) & ⊢ (𝜑 → 𝑋 ∈ 𝐷) & ⊢ (𝜑 → 𝑋 ≠ 1 ) & ⊢ (𝜑 → 𝐴 ∈ ℝ+) ⇒ ⊢ (𝜑 → Σ𝑛 ∈ (1...(⌊‘𝐴))((𝑋‘(𝐿‘𝑛)) · ((Λ‘𝑛) / 𝑛)) = Σ𝑑 ∈ (1...(⌊‘𝐴))(((𝑋‘(𝐿‘𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿‘𝑚)) · ((log‘𝑚) / 𝑚)))) | ||
Theorem | dchrvmasum2lem 26184* | Give an expression for log𝑥 remarkably similar to Σ𝑛 ≤ 𝑥(𝑋(𝑛)Λ(𝑛) / 𝑛) given in dchrvmasumlem1 26183. Part of Lemma 9.4.3 of [Shapiro], p. 380. (Contributed by Mario Carneiro, 4-May-2016.) |
⊢ 𝑍 = (ℤ/nℤ‘𝑁) & ⊢ 𝐿 = (ℤRHom‘𝑍) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ 𝐺 = (DChr‘𝑁) & ⊢ 𝐷 = (Base‘𝐺) & ⊢ 1 = (0g‘𝐺) & ⊢ (𝜑 → 𝑋 ∈ 𝐷) & ⊢ (𝜑 → 𝑋 ≠ 1 ) & ⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → 1 ≤ 𝐴) ⇒ ⊢ (𝜑 → (log‘𝐴) = Σ𝑑 ∈ (1...(⌊‘𝐴))(((𝑋‘(𝐿‘𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿‘𝑚)) · ((log‘((𝐴 / 𝑑) / 𝑚)) / 𝑚)))) | ||
Theorem | dchrvmasum2if 26185* | Combine the results of dchrvmasumlem1 26183 and dchrvmasum2lem 26184 inside a conditional. (Contributed by Mario Carneiro, 4-May-2016.) |
⊢ 𝑍 = (ℤ/nℤ‘𝑁) & ⊢ 𝐿 = (ℤRHom‘𝑍) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ 𝐺 = (DChr‘𝑁) & ⊢ 𝐷 = (Base‘𝐺) & ⊢ 1 = (0g‘𝐺) & ⊢ (𝜑 → 𝑋 ∈ 𝐷) & ⊢ (𝜑 → 𝑋 ≠ 1 ) & ⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → 1 ≤ 𝐴) ⇒ ⊢ (𝜑 → (Σ𝑛 ∈ (1...(⌊‘𝐴))((𝑋‘(𝐿‘𝑛)) · ((Λ‘𝑛) / 𝑛)) + if(𝜓, (log‘𝐴), 0)) = Σ𝑑 ∈ (1...(⌊‘𝐴))(((𝑋‘(𝐿‘𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿‘𝑚)) · ((log‘if(𝜓, (𝐴 / 𝑑), 𝑚)) / 𝑚)))) | ||
Theorem | dchrvmasumlem2 26186* | Lemma for dchrvmasum 26213. (Contributed by Mario Carneiro, 4-May-2016.) |
⊢ 𝑍 = (ℤ/nℤ‘𝑁) & ⊢ 𝐿 = (ℤRHom‘𝑍) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ 𝐺 = (DChr‘𝑁) & ⊢ 𝐷 = (Base‘𝐺) & ⊢ 1 = (0g‘𝐺) & ⊢ (𝜑 → 𝑋 ∈ 𝐷) & ⊢ (𝜑 → 𝑋 ≠ 1 ) & ⊢ ((𝜑 ∧ 𝑚 ∈ ℝ+) → 𝐹 ∈ ℂ) & ⊢ (𝑚 = (𝑥 / 𝑑) → 𝐹 = 𝐾) & ⊢ (𝜑 → 𝐶 ∈ (0[,)+∞)) & ⊢ (𝜑 → 𝑇 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑚 ∈ (3[,)+∞)) → (abs‘(𝐹 − 𝑇)) ≤ (𝐶 · ((log‘𝑚) / 𝑚))) & ⊢ (𝜑 → 𝑅 ∈ ℝ) & ⊢ (𝜑 → ∀𝑚 ∈ (1[,)3)(abs‘(𝐹 − 𝑇)) ≤ 𝑅) ⇒ ⊢ (𝜑 → (𝑥 ∈ ℝ+ ↦ Σ𝑑 ∈ (1...(⌊‘𝑥))((abs‘(𝐾 − 𝑇)) / 𝑑)) ∈ 𝑂(1)) | ||
Theorem | dchrvmasumlem3 26187* | Lemma for dchrvmasum 26213. (Contributed by Mario Carneiro, 3-May-2016.) |
⊢ 𝑍 = (ℤ/nℤ‘𝑁) & ⊢ 𝐿 = (ℤRHom‘𝑍) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ 𝐺 = (DChr‘𝑁) & ⊢ 𝐷 = (Base‘𝐺) & ⊢ 1 = (0g‘𝐺) & ⊢ (𝜑 → 𝑋 ∈ 𝐷) & ⊢ (𝜑 → 𝑋 ≠ 1 ) & ⊢ ((𝜑 ∧ 𝑚 ∈ ℝ+) → 𝐹 ∈ ℂ) & ⊢ (𝑚 = (𝑥 / 𝑑) → 𝐹 = 𝐾) & ⊢ (𝜑 → 𝐶 ∈ (0[,)+∞)) & ⊢ (𝜑 → 𝑇 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑚 ∈ (3[,)+∞)) → (abs‘(𝐹 − 𝑇)) ≤ (𝐶 · ((log‘𝑚) / 𝑚))) & ⊢ (𝜑 → 𝑅 ∈ ℝ) & ⊢ (𝜑 → ∀𝑚 ∈ (1[,)3)(abs‘(𝐹 − 𝑇)) ≤ 𝑅) ⇒ ⊢ (𝜑 → (𝑥 ∈ ℝ+ ↦ Σ𝑑 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿‘𝑑)) · ((μ‘𝑑) / 𝑑)) · (𝐾 − 𝑇))) ∈ 𝑂(1)) | ||
Theorem | dchrvmasumlema 26188* | Lemma for dchrvmasum 26213 and dchrvmasumif 26191. Apply dchrisum 26180 for the function log(𝑦) / 𝑦, which is decreasing above e (or above 3, the nearest integer bound). (Contributed by Mario Carneiro, 5-May-2016.) |
⊢ 𝑍 = (ℤ/nℤ‘𝑁) & ⊢ 𝐿 = (ℤRHom‘𝑍) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ 𝐺 = (DChr‘𝑁) & ⊢ 𝐷 = (Base‘𝐺) & ⊢ 1 = (0g‘𝐺) & ⊢ (𝜑 → 𝑋 ∈ 𝐷) & ⊢ (𝜑 → 𝑋 ≠ 1 ) & ⊢ 𝐹 = (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿‘𝑎)) · ((log‘𝑎) / 𝑎))) ⇒ ⊢ (𝜑 → ∃𝑡∃𝑐 ∈ (0[,)+∞)(seq1( + , 𝐹) ⇝ 𝑡 ∧ ∀𝑦 ∈ (3[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 · ((log‘𝑦) / 𝑦)))) | ||
Theorem | dchrvmasumiflem1 26189* | Lemma for dchrvmasumif 26191. (Contributed by Mario Carneiro, 5-May-2016.) |
⊢ 𝑍 = (ℤ/nℤ‘𝑁) & ⊢ 𝐿 = (ℤRHom‘𝑍) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ 𝐺 = (DChr‘𝑁) & ⊢ 𝐷 = (Base‘𝐺) & ⊢ 1 = (0g‘𝐺) & ⊢ (𝜑 → 𝑋 ∈ 𝐷) & ⊢ (𝜑 → 𝑋 ≠ 1 ) & ⊢ 𝐹 = (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿‘𝑎)) / 𝑎)) & ⊢ (𝜑 → 𝐶 ∈ (0[,)+∞)) & ⊢ (𝜑 → seq1( + , 𝐹) ⇝ 𝑆) & ⊢ (𝜑 → ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑆)) ≤ (𝐶 / 𝑦)) & ⊢ 𝐾 = (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿‘𝑎)) · ((log‘𝑎) / 𝑎))) & ⊢ (𝜑 → 𝐸 ∈ (0[,)+∞)) & ⊢ (𝜑 → seq1( + , 𝐾) ⇝ 𝑇) & ⊢ (𝜑 → ∀𝑦 ∈ (3[,)+∞)(abs‘((seq1( + , 𝐾)‘(⌊‘𝑦)) − 𝑇)) ≤ (𝐸 · ((log‘𝑦) / 𝑦))) ⇒ ⊢ (𝜑 → (𝑥 ∈ ℝ+ ↦ Σ𝑑 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿‘𝑑)) · ((μ‘𝑑) / 𝑑)) · (Σ𝑘 ∈ (1...(⌊‘(𝑥 / 𝑑)))((𝑋‘(𝐿‘𝑘)) · ((log‘if(𝑆 = 0, (𝑥 / 𝑑), 𝑘)) / 𝑘)) − if(𝑆 = 0, 0, 𝑇)))) ∈ 𝑂(1)) | ||
Theorem | dchrvmasumiflem2 26190* | Lemma for dchrvmasum 26213. (Contributed by Mario Carneiro, 5-May-2016.) |
⊢ 𝑍 = (ℤ/nℤ‘𝑁) & ⊢ 𝐿 = (ℤRHom‘𝑍) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ 𝐺 = (DChr‘𝑁) & ⊢ 𝐷 = (Base‘𝐺) & ⊢ 1 = (0g‘𝐺) & ⊢ (𝜑 → 𝑋 ∈ 𝐷) & ⊢ (𝜑 → 𝑋 ≠ 1 ) & ⊢ 𝐹 = (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿‘𝑎)) / 𝑎)) & ⊢ (𝜑 → 𝐶 ∈ (0[,)+∞)) & ⊢ (𝜑 → seq1( + , 𝐹) ⇝ 𝑆) & ⊢ (𝜑 → ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑆)) ≤ (𝐶 / 𝑦)) & ⊢ 𝐾 = (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿‘𝑎)) · ((log‘𝑎) / 𝑎))) & ⊢ (𝜑 → 𝐸 ∈ (0[,)+∞)) & ⊢ (𝜑 → seq1( + , 𝐾) ⇝ 𝑇) & ⊢ (𝜑 → ∀𝑦 ∈ (3[,)+∞)(abs‘((seq1( + , 𝐾)‘(⌊‘𝑦)) − 𝑇)) ≤ (𝐸 · ((log‘𝑦) / 𝑦))) ⇒ ⊢ (𝜑 → (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿‘𝑛)) · ((Λ‘𝑛) / 𝑛)) + if(𝑆 = 0, (log‘𝑥), 0))) ∈ 𝑂(1)) | ||
Theorem | dchrvmasumif 26191* | An asymptotic approximation for the sum of 𝑋(𝑛)Λ(𝑛) / 𝑛 conditional on the value of the infinite sum 𝑆. (We will later show that the case 𝑆 = 0 is impossible, and hence establish dchrvmasum 26213.) (Contributed by Mario Carneiro, 5-May-2016.) |
⊢ 𝑍 = (ℤ/nℤ‘𝑁) & ⊢ 𝐿 = (ℤRHom‘𝑍) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ 𝐺 = (DChr‘𝑁) & ⊢ 𝐷 = (Base‘𝐺) & ⊢ 1 = (0g‘𝐺) & ⊢ (𝜑 → 𝑋 ∈ 𝐷) & ⊢ (𝜑 → 𝑋 ≠ 1 ) & ⊢ 𝐹 = (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿‘𝑎)) / 𝑎)) & ⊢ (𝜑 → 𝐶 ∈ (0[,)+∞)) & ⊢ (𝜑 → seq1( + , 𝐹) ⇝ 𝑆) & ⊢ (𝜑 → ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑆)) ≤ (𝐶 / 𝑦)) ⇒ ⊢ (𝜑 → (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿‘𝑛)) · ((Λ‘𝑛) / 𝑛)) + if(𝑆 = 0, (log‘𝑥), 0))) ∈ 𝑂(1)) | ||
Theorem | dchrvmaeq0 26192* | The set 𝑊 is the collection of all non-principal Dirichlet characters such that the sum Σ𝑛 ∈ ℕ, 𝑋(𝑛) / 𝑛 is equal to zero. (Contributed by Mario Carneiro, 5-May-2016.) |
⊢ 𝑍 = (ℤ/nℤ‘𝑁) & ⊢ 𝐿 = (ℤRHom‘𝑍) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ 𝐺 = (DChr‘𝑁) & ⊢ 𝐷 = (Base‘𝐺) & ⊢ 1 = (0g‘𝐺) & ⊢ (𝜑 → 𝑋 ∈ 𝐷) & ⊢ (𝜑 → 𝑋 ≠ 1 ) & ⊢ 𝐹 = (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿‘𝑎)) / 𝑎)) & ⊢ (𝜑 → 𝐶 ∈ (0[,)+∞)) & ⊢ (𝜑 → seq1( + , 𝐹) ⇝ 𝑆) & ⊢ (𝜑 → ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑆)) ≤ (𝐶 / 𝑦)) & ⊢ 𝑊 = {𝑦 ∈ (𝐷 ∖ { 1 }) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿‘𝑚)) / 𝑚) = 0} ⇒ ⊢ (𝜑 → (𝑋 ∈ 𝑊 ↔ 𝑆 = 0)) | ||
Theorem | dchrisum0fval 26193* | Value of the function 𝐹, the divisor sum of a Dirichlet character. (Contributed by Mario Carneiro, 5-May-2016.) |
⊢ 𝑍 = (ℤ/nℤ‘𝑁) & ⊢ 𝐿 = (ℤRHom‘𝑍) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ 𝐺 = (DChr‘𝑁) & ⊢ 𝐷 = (Base‘𝐺) & ⊢ 1 = (0g‘𝐺) & ⊢ 𝐹 = (𝑏 ∈ ℕ ↦ Σ𝑣 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝑏} (𝑋‘(𝐿‘𝑣))) ⇒ ⊢ (𝐴 ∈ ℕ → (𝐹‘𝐴) = Σ𝑡 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝐴} (𝑋‘(𝐿‘𝑡))) | ||
Theorem | dchrisum0fmul 26194* | The function 𝐹, the divisor sum of a Dirichlet character, is a multiplicative function (but not completely multiplicative). Equation 9.4.27 of [Shapiro], p. 382. (Contributed by Mario Carneiro, 5-May-2016.) |
⊢ 𝑍 = (ℤ/nℤ‘𝑁) & ⊢ 𝐿 = (ℤRHom‘𝑍) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ 𝐺 = (DChr‘𝑁) & ⊢ 𝐷 = (Base‘𝐺) & ⊢ 1 = (0g‘𝐺) & ⊢ 𝐹 = (𝑏 ∈ ℕ ↦ Σ𝑣 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝑏} (𝑋‘(𝐿‘𝑣))) & ⊢ (𝜑 → 𝑋 ∈ 𝐷) & ⊢ (𝜑 → 𝐴 ∈ ℕ) & ⊢ (𝜑 → 𝐵 ∈ ℕ) & ⊢ (𝜑 → (𝐴 gcd 𝐵) = 1) ⇒ ⊢ (𝜑 → (𝐹‘(𝐴 · 𝐵)) = ((𝐹‘𝐴) · (𝐹‘𝐵))) | ||
Theorem | dchrisum0ff 26195* | The function 𝐹 is a real function. (Contributed by Mario Carneiro, 5-May-2016.) |
⊢ 𝑍 = (ℤ/nℤ‘𝑁) & ⊢ 𝐿 = (ℤRHom‘𝑍) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ 𝐺 = (DChr‘𝑁) & ⊢ 𝐷 = (Base‘𝐺) & ⊢ 1 = (0g‘𝐺) & ⊢ 𝐹 = (𝑏 ∈ ℕ ↦ Σ𝑣 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝑏} (𝑋‘(𝐿‘𝑣))) & ⊢ (𝜑 → 𝑋 ∈ 𝐷) & ⊢ (𝜑 → 𝑋:(Base‘𝑍)⟶ℝ) ⇒ ⊢ (𝜑 → 𝐹:ℕ⟶ℝ) | ||
Theorem | dchrisum0flblem1 26196* | Lemma for dchrisum0flb 26198. Base case, prime power. (Contributed by Mario Carneiro, 5-May-2016.) |
⊢ 𝑍 = (ℤ/nℤ‘𝑁) & ⊢ 𝐿 = (ℤRHom‘𝑍) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ 𝐺 = (DChr‘𝑁) & ⊢ 𝐷 = (Base‘𝐺) & ⊢ 1 = (0g‘𝐺) & ⊢ 𝐹 = (𝑏 ∈ ℕ ↦ Σ𝑣 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝑏} (𝑋‘(𝐿‘𝑣))) & ⊢ (𝜑 → 𝑋 ∈ 𝐷) & ⊢ (𝜑 → 𝑋:(Base‘𝑍)⟶ℝ) & ⊢ (𝜑 → 𝑃 ∈ ℙ) & ⊢ (𝜑 → 𝐴 ∈ ℕ0) ⇒ ⊢ (𝜑 → if((√‘(𝑃↑𝐴)) ∈ ℕ, 1, 0) ≤ (𝐹‘(𝑃↑𝐴))) | ||
Theorem | dchrisum0flblem2 26197* | Lemma for dchrisum0flb 26198. Induction over relatively prime factors, with the prime power case handled in dchrisum0flblem1 . (Contributed by Mario Carneiro, 5-May-2016.) Replace reference to OLD theorem. (Revised by Wolf Lammen, 8-Sep-2020.) |
⊢ 𝑍 = (ℤ/nℤ‘𝑁) & ⊢ 𝐿 = (ℤRHom‘𝑍) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ 𝐺 = (DChr‘𝑁) & ⊢ 𝐷 = (Base‘𝐺) & ⊢ 1 = (0g‘𝐺) & ⊢ 𝐹 = (𝑏 ∈ ℕ ↦ Σ𝑣 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝑏} (𝑋‘(𝐿‘𝑣))) & ⊢ (𝜑 → 𝑋 ∈ 𝐷) & ⊢ (𝜑 → 𝑋:(Base‘𝑍)⟶ℝ) & ⊢ (𝜑 → 𝐴 ∈ (ℤ≥‘2)) & ⊢ (𝜑 → 𝑃 ∈ ℙ) & ⊢ (𝜑 → 𝑃 ∥ 𝐴) & ⊢ (𝜑 → ∀𝑦 ∈ (1..^𝐴)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹‘𝑦)) ⇒ ⊢ (𝜑 → if((√‘𝐴) ∈ ℕ, 1, 0) ≤ (𝐹‘𝐴)) | ||
Theorem | dchrisum0flb 26198* | The divisor sum of a real Dirichlet character, is lower bounded by zero everywhere and one at the squares. Equation 9.4.29 of [Shapiro], p. 382. (Contributed by Mario Carneiro, 5-May-2016.) |
⊢ 𝑍 = (ℤ/nℤ‘𝑁) & ⊢ 𝐿 = (ℤRHom‘𝑍) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ 𝐺 = (DChr‘𝑁) & ⊢ 𝐷 = (Base‘𝐺) & ⊢ 1 = (0g‘𝐺) & ⊢ 𝐹 = (𝑏 ∈ ℕ ↦ Σ𝑣 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝑏} (𝑋‘(𝐿‘𝑣))) & ⊢ (𝜑 → 𝑋 ∈ 𝐷) & ⊢ (𝜑 → 𝑋:(Base‘𝑍)⟶ℝ) & ⊢ (𝜑 → 𝐴 ∈ ℕ) ⇒ ⊢ (𝜑 → if((√‘𝐴) ∈ ℕ, 1, 0) ≤ (𝐹‘𝐴)) | ||
Theorem | dchrisum0fno1 26199* | The sum Σ𝑘 ≤ 𝑥, 𝐹(𝑥) / √𝑘 is divergent (i.e. not eventually bounded). Equation 9.4.30 of [Shapiro], p. 383. (Contributed by Mario Carneiro, 5-May-2016.) |
⊢ 𝑍 = (ℤ/nℤ‘𝑁) & ⊢ 𝐿 = (ℤRHom‘𝑍) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ 𝐺 = (DChr‘𝑁) & ⊢ 𝐷 = (Base‘𝐺) & ⊢ 1 = (0g‘𝐺) & ⊢ 𝐹 = (𝑏 ∈ ℕ ↦ Σ𝑣 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝑏} (𝑋‘(𝐿‘𝑣))) & ⊢ (𝜑 → 𝑋 ∈ 𝐷) & ⊢ (𝜑 → 𝑋:(Base‘𝑍)⟶ℝ) & ⊢ (𝜑 → (𝑥 ∈ ℝ+ ↦ Σ𝑘 ∈ (1...(⌊‘𝑥))((𝐹‘𝑘) / (√‘𝑘))) ∈ 𝑂(1)) ⇒ ⊢ ¬ 𝜑 | ||
Theorem | rpvmasum2 26200* | A partial result along the lines of rpvmasum 26214. The sum of the von Mangoldt function over those integers 𝑛≡𝐴 (mod 𝑁) is asymptotic to (1 − 𝑀)(log𝑥 / ϕ(𝑥)) + 𝑂(1), where 𝑀 is the number of non-principal Dirichlet characters with Σ𝑛 ∈ ℕ, 𝑋(𝑛) / 𝑛 = 0. Our goal is to show this set is empty. Equation 9.4.3 of [Shapiro], p. 375. (Contributed by Mario Carneiro, 5-May-2016.) |
⊢ 𝑍 = (ℤ/nℤ‘𝑁) & ⊢ 𝐿 = (ℤRHom‘𝑍) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ 𝐺 = (DChr‘𝑁) & ⊢ 𝐷 = (Base‘𝐺) & ⊢ 1 = (0g‘𝐺) & ⊢ 𝑊 = {𝑦 ∈ (𝐷 ∖ { 1 }) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿‘𝑚)) / 𝑚) = 0} & ⊢ 𝑈 = (Unit‘𝑍) & ⊢ (𝜑 → 𝐴 ∈ 𝑈) & ⊢ 𝑇 = (◡𝐿 “ {𝐴}) & ⊢ ((𝜑 ∧ 𝑓 ∈ 𝑊) → 𝐴 = (1r‘𝑍)) ⇒ ⊢ (𝜑 → (𝑥 ∈ ℝ+ ↦ (((ϕ‘𝑁) · Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · (1 − (♯‘𝑊))))) ∈ 𝑂(1)) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |