| Metamath
Proof Explorer Theorem List (p. 262 of 500) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30900) |
(30901-32423) |
(32424-49930) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | fta1glem1 26101 | Lemma for fta1g 26103. (Contributed by Mario Carneiro, 7-Jun-2016.) |
| ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ 𝐷 = (deg1‘𝑅) & ⊢ 𝑂 = (eval1‘𝑅) & ⊢ 𝑊 = (0g‘𝑅) & ⊢ 0 = (0g‘𝑃) & ⊢ (𝜑 → 𝑅 ∈ IDomn) & ⊢ (𝜑 → 𝐹 ∈ 𝐵) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ − = (-g‘𝑃) & ⊢ 𝐴 = (algSc‘𝑃) & ⊢ 𝐺 = (𝑋 − (𝐴‘𝑇)) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → (𝐷‘𝐹) = (𝑁 + 1)) & ⊢ (𝜑 → 𝑇 ∈ (◡(𝑂‘𝐹) “ {𝑊})) ⇒ ⊢ (𝜑 → (𝐷‘(𝐹(quot1p‘𝑅)𝐺)) = 𝑁) | ||
| Theorem | fta1glem2 26102* | Lemma for fta1g 26103. (Contributed by Mario Carneiro, 12-Jun-2015.) |
| ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ 𝐷 = (deg1‘𝑅) & ⊢ 𝑂 = (eval1‘𝑅) & ⊢ 𝑊 = (0g‘𝑅) & ⊢ 0 = (0g‘𝑃) & ⊢ (𝜑 → 𝑅 ∈ IDomn) & ⊢ (𝜑 → 𝐹 ∈ 𝐵) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ − = (-g‘𝑃) & ⊢ 𝐴 = (algSc‘𝑃) & ⊢ 𝐺 = (𝑋 − (𝐴‘𝑇)) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → (𝐷‘𝐹) = (𝑁 + 1)) & ⊢ (𝜑 → 𝑇 ∈ (◡(𝑂‘𝐹) “ {𝑊})) & ⊢ (𝜑 → ∀𝑔 ∈ 𝐵 ((𝐷‘𝑔) = 𝑁 → (♯‘(◡(𝑂‘𝑔) “ {𝑊})) ≤ (𝐷‘𝑔))) ⇒ ⊢ (𝜑 → (♯‘(◡(𝑂‘𝐹) “ {𝑊})) ≤ (𝐷‘𝐹)) | ||
| Theorem | fta1g 26103 | The one-sided fundamental theorem of algebra. A polynomial of degree 𝑛 has at most 𝑛 roots. Unlike the real fundamental theorem fta 27018, which is only true in ℂ and other algebraically closed fields, this is true in any integral domain. (Contributed by Mario Carneiro, 12-Jun-2015.) |
| ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ 𝐷 = (deg1‘𝑅) & ⊢ 𝑂 = (eval1‘𝑅) & ⊢ 𝑊 = (0g‘𝑅) & ⊢ 0 = (0g‘𝑃) & ⊢ (𝜑 → 𝑅 ∈ IDomn) & ⊢ (𝜑 → 𝐹 ∈ 𝐵) & ⊢ (𝜑 → 𝐹 ≠ 0 ) ⇒ ⊢ (𝜑 → (♯‘(◡(𝑂‘𝐹) “ {𝑊})) ≤ (𝐷‘𝐹)) | ||
| Theorem | fta1blem 26104 | Lemma for fta1b 26105. (Contributed by Mario Carneiro, 14-Jun-2015.) |
| ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ 𝐷 = (deg1‘𝑅) & ⊢ 𝑂 = (eval1‘𝑅) & ⊢ 𝑊 = (0g‘𝑅) & ⊢ 0 = (0g‘𝑃) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ × = (.r‘𝑅) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ · = ( ·𝑠 ‘𝑃) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ (𝜑 → 𝑀 ∈ 𝐾) & ⊢ (𝜑 → 𝑁 ∈ 𝐾) & ⊢ (𝜑 → (𝑀 × 𝑁) = 𝑊) & ⊢ (𝜑 → 𝑀 ≠ 𝑊) & ⊢ (𝜑 → ((𝑀 · 𝑋) ∈ (𝐵 ∖ { 0 }) → (♯‘(◡(𝑂‘(𝑀 · 𝑋)) “ {𝑊})) ≤ (𝐷‘(𝑀 · 𝑋)))) ⇒ ⊢ (𝜑 → 𝑁 = 𝑊) | ||
| Theorem | fta1b 26105* | The assumption that 𝑅 be a domain in fta1g 26103 is necessary. Here we show that the statement is strong enough to prove that 𝑅 is a domain. (Contributed by Mario Carneiro, 12-Jun-2015.) |
| ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ 𝐷 = (deg1‘𝑅) & ⊢ 𝑂 = (eval1‘𝑅) & ⊢ 𝑊 = (0g‘𝑅) & ⊢ 0 = (0g‘𝑃) ⇒ ⊢ (𝑅 ∈ IDomn ↔ (𝑅 ∈ CRing ∧ 𝑅 ∈ NzRing ∧ ∀𝑓 ∈ (𝐵 ∖ { 0 })(♯‘(◡(𝑂‘𝑓) “ {𝑊})) ≤ (𝐷‘𝑓))) | ||
| Theorem | idomrootle 26106* | No element of an integral domain can have more than 𝑁 𝑁-th roots. (Contributed by Stefan O'Rear, 11-Sep-2015.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ ↑ = (.g‘(mulGrp‘𝑅)) ⇒ ⊢ ((𝑅 ∈ IDomn ∧ 𝑋 ∈ 𝐵 ∧ 𝑁 ∈ ℕ) → (♯‘{𝑦 ∈ 𝐵 ∣ (𝑁 ↑ 𝑦) = 𝑋}) ≤ 𝑁) | ||
| Theorem | drnguc1p 26107 | Over a division ring, all nonzero polynomials are unitic. (Contributed by Stefan O'Rear, 29-Mar-2015.) |
| ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ 0 = (0g‘𝑃) & ⊢ 𝐶 = (Unic1p‘𝑅) ⇒ ⊢ ((𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐵 ∧ 𝐹 ≠ 0 ) → 𝐹 ∈ 𝐶) | ||
| Theorem | ig1peu 26108* | There is a unique monic polynomial of minimal degree in any nonzero ideal. (Contributed by Stefan O'Rear, 29-Mar-2015.) (Revised by AV, 25-Sep-2020.) |
| ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑈 = (LIdeal‘𝑃) & ⊢ 0 = (0g‘𝑃) & ⊢ 𝑀 = (Monic1p‘𝑅) & ⊢ 𝐷 = (deg1‘𝑅) ⇒ ⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ { 0 }) → ∃!𝑔 ∈ (𝐼 ∩ 𝑀)(𝐷‘𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < )) | ||
| Theorem | ig1pval 26109* | Substitutions for the polynomial ideal generator function. (Contributed by Stefan O'Rear, 29-Mar-2015.) (Revised by AV, 25-Sep-2020.) |
| ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐺 = (idlGen1p‘𝑅) & ⊢ 0 = (0g‘𝑃) & ⊢ 𝑈 = (LIdeal‘𝑃) & ⊢ 𝐷 = (deg1‘𝑅) & ⊢ 𝑀 = (Monic1p‘𝑅) ⇒ ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑈) → (𝐺‘𝐼) = if(𝐼 = { 0 }, 0 , (℩𝑔 ∈ (𝐼 ∩ 𝑀)(𝐷‘𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < )))) | ||
| Theorem | ig1pval2 26110 | Generator of the zero ideal. (Contributed by Stefan O'Rear, 29-Mar-2015.) (Proof shortened by AV, 25-Sep-2020.) |
| ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐺 = (idlGen1p‘𝑅) & ⊢ 0 = (0g‘𝑃) ⇒ ⊢ (𝑅 ∈ Ring → (𝐺‘{ 0 }) = 0 ) | ||
| Theorem | ig1pval3 26111 | Characterizing properties of the monic generator of a nonzero ideal of polynomials. (Contributed by Stefan O'Rear, 29-Mar-2015.) (Revised by AV, 25-Sep-2020.) |
| ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐺 = (idlGen1p‘𝑅) & ⊢ 0 = (0g‘𝑃) & ⊢ 𝑈 = (LIdeal‘𝑃) & ⊢ 𝐷 = (deg1‘𝑅) & ⊢ 𝑀 = (Monic1p‘𝑅) ⇒ ⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ { 0 }) → ((𝐺‘𝐼) ∈ 𝐼 ∧ (𝐺‘𝐼) ∈ 𝑀 ∧ (𝐷‘(𝐺‘𝐼)) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ))) | ||
| Theorem | ig1pcl 26112 | The monic generator of an ideal is always in the ideal. (Contributed by Stefan O'Rear, 29-Mar-2015.) (Proof shortened by AV, 25-Sep-2020.) |
| ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐺 = (idlGen1p‘𝑅) & ⊢ 𝑈 = (LIdeal‘𝑃) ⇒ ⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈) → (𝐺‘𝐼) ∈ 𝐼) | ||
| Theorem | ig1pdvds 26113 | The monic generator of an ideal divides all elements of the ideal. (Contributed by Stefan O'Rear, 29-Mar-2015.) (Proof shortened by AV, 25-Sep-2020.) |
| ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐺 = (idlGen1p‘𝑅) & ⊢ 𝑈 = (LIdeal‘𝑃) & ⊢ ∥ = (∥r‘𝑃) ⇒ ⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ 𝐼) → (𝐺‘𝐼) ∥ 𝑋) | ||
| Theorem | ig1prsp 26114 | Any ideal of polynomials over a division ring is generated by the ideal's canonical generator. (Contributed by Stefan O'Rear, 29-Mar-2015.) |
| ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐺 = (idlGen1p‘𝑅) & ⊢ 𝑈 = (LIdeal‘𝑃) & ⊢ 𝐾 = (RSpan‘𝑃) ⇒ ⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈) → 𝐼 = (𝐾‘{(𝐺‘𝐼)})) | ||
| Theorem | ply1lpir 26115 | The ring of polynomials over a division ring has the principal ideal property. (Contributed by Stefan O'Rear, 29-Mar-2015.) |
| ⊢ 𝑃 = (Poly1‘𝑅) ⇒ ⊢ (𝑅 ∈ DivRing → 𝑃 ∈ LPIR) | ||
| Theorem | ply1pid 26116 | The polynomials over a field are a PID. (Contributed by Stefan O'Rear, 29-Mar-2015.) |
| ⊢ 𝑃 = (Poly1‘𝑅) ⇒ ⊢ (𝑅 ∈ Field → 𝑃 ∈ PID) | ||
| Syntax | cply 26117 | Extend class notation to include the set of complex polynomials. |
| class Poly | ||
| Syntax | cidp 26118 | Extend class notation to include the identity polynomial. |
| class Xp | ||
| Syntax | ccoe 26119 | Extend class notation to include the coefficient function on polynomials. |
| class coeff | ||
| Syntax | cdgr 26120 | Extend class notation to include the degree function on polynomials. |
| class deg | ||
| Definition | df-ply 26121* | Define the set of polynomials on the complex numbers with coefficients in the given subset. (Contributed by Mario Carneiro, 17-Jul-2014.) |
| ⊢ Poly = (𝑥 ∈ 𝒫 ℂ ↦ {𝑓 ∣ ∃𝑛 ∈ ℕ0 ∃𝑎 ∈ ((𝑥 ∪ {0}) ↑m ℕ0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘)))}) | ||
| Definition | df-idp 26122 | Define the identity polynomial. (Contributed by Mario Carneiro, 17-Jul-2014.) |
| ⊢ Xp = ( I ↾ ℂ) | ||
| Definition | df-coe 26123* | Define the coefficient function for a polynomial. (Contributed by Mario Carneiro, 22-Jul-2014.) |
| ⊢ coeff = (𝑓 ∈ (Poly‘ℂ) ↦ (℩𝑎 ∈ (ℂ ↑m ℕ0)∃𝑛 ∈ ℕ0 ((𝑎 “ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘)))))) | ||
| Definition | df-dgr 26124 | Define the degree of a polynomial. (Contributed by Mario Carneiro, 22-Jul-2014.) |
| ⊢ deg = (𝑓 ∈ (Poly‘ℂ) ↦ sup((◡(coeff‘𝑓) “ (ℂ ∖ {0})), ℕ0, < )) | ||
| Theorem | plyco0 26125* | Two ways to say that a function on the nonnegative integers has finite support. (Contributed by Mario Carneiro, 22-Jul-2014.) |
| ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐴:ℕ0⟶ℂ) → ((𝐴 “ (ℤ≥‘(𝑁 + 1))) = {0} ↔ ∀𝑘 ∈ ℕ0 ((𝐴‘𝑘) ≠ 0 → 𝑘 ≤ 𝑁))) | ||
| Theorem | plyval 26126* | Value of the polynomial set function. (Contributed by Mario Carneiro, 17-Jul-2014.) |
| ⊢ (𝑆 ⊆ ℂ → (Poly‘𝑆) = {𝑓 ∣ ∃𝑛 ∈ ℕ0 ∃𝑎 ∈ ((𝑆 ∪ {0}) ↑m ℕ0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘)))}) | ||
| Theorem | plybss 26127 | Reverse closure of the parameter 𝑆 of the polynomial set function. (Contributed by Mario Carneiro, 22-Jul-2014.) |
| ⊢ (𝐹 ∈ (Poly‘𝑆) → 𝑆 ⊆ ℂ) | ||
| Theorem | elply 26128* | Definition of a polynomial with coefficients in 𝑆. (Contributed by Mario Carneiro, 17-Jul-2014.) |
| ⊢ (𝐹 ∈ (Poly‘𝑆) ↔ (𝑆 ⊆ ℂ ∧ ∃𝑛 ∈ ℕ0 ∃𝑎 ∈ ((𝑆 ∪ {0}) ↑m ℕ0)𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘))))) | ||
| Theorem | elply2 26129* | The coefficient function can be assumed to have zeroes outside 0...𝑛. (Contributed by Mario Carneiro, 20-Jul-2014.) (Revised by Mario Carneiro, 23-Aug-2014.) |
| ⊢ (𝐹 ∈ (Poly‘𝑆) ↔ (𝑆 ⊆ ℂ ∧ ∃𝑛 ∈ ℕ0 ∃𝑎 ∈ ((𝑆 ∪ {0}) ↑m ℕ0)((𝑎 “ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘)))))) | ||
| Theorem | plyun0 26130 | The set of polynomials is unaffected by the addition of zero. (This is built into the definition because all higher powers of a polynomial are effectively zero, so we require that the coefficient field contain zero to simplify some of our closure theorems.) (Contributed by Mario Carneiro, 17-Jul-2014.) |
| ⊢ (Poly‘(𝑆 ∪ {0})) = (Poly‘𝑆) | ||
| Theorem | plyf 26131 | A polynomial is a function on the complex numbers. (Contributed by Mario Carneiro, 22-Jul-2014.) |
| ⊢ (𝐹 ∈ (Poly‘𝑆) → 𝐹:ℂ⟶ℂ) | ||
| Theorem | plyss 26132 | The polynomial set function preserves the subset relation. (Contributed by Mario Carneiro, 17-Jul-2014.) |
| ⊢ ((𝑆 ⊆ 𝑇 ∧ 𝑇 ⊆ ℂ) → (Poly‘𝑆) ⊆ (Poly‘𝑇)) | ||
| Theorem | plyssc 26133 | Every polynomial ring is contained in the ring of polynomials over ℂ. (Contributed by Mario Carneiro, 22-Jul-2014.) |
| ⊢ (Poly‘𝑆) ⊆ (Poly‘ℂ) | ||
| Theorem | elplyr 26134* | Sufficient condition for elementhood in the set of polynomials. (Contributed by Mario Carneiro, 17-Jul-2014.) (Revised by Mario Carneiro, 23-Aug-2014.) |
| ⊢ ((𝑆 ⊆ ℂ ∧ 𝑁 ∈ ℕ0 ∧ 𝐴:ℕ0⟶𝑆) → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴‘𝑘) · (𝑧↑𝑘))) ∈ (Poly‘𝑆)) | ||
| Theorem | elplyd 26135* | Sufficient condition for elementhood in the set of polynomials. (Contributed by Mario Carneiro, 17-Jul-2014.) |
| ⊢ (𝜑 → 𝑆 ⊆ ℂ) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → 𝐴 ∈ 𝑆) ⇒ ⊢ (𝜑 → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(𝐴 · (𝑧↑𝑘))) ∈ (Poly‘𝑆)) | ||
| Theorem | ply1termlem 26136* | Lemma for ply1term 26137. (Contributed by Mario Carneiro, 26-Jul-2014.) |
| ⊢ 𝐹 = (𝑧 ∈ ℂ ↦ (𝐴 · (𝑧↑𝑁))) ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(if(𝑘 = 𝑁, 𝐴, 0) · (𝑧↑𝑘)))) | ||
| Theorem | ply1term 26137* | A one-term polynomial. (Contributed by Mario Carneiro, 17-Jul-2014.) |
| ⊢ 𝐹 = (𝑧 ∈ ℂ ↦ (𝐴 · (𝑧↑𝑁))) ⇒ ⊢ ((𝑆 ⊆ ℂ ∧ 𝐴 ∈ 𝑆 ∧ 𝑁 ∈ ℕ0) → 𝐹 ∈ (Poly‘𝑆)) | ||
| Theorem | plypow 26138* | A power is a polynomial. (Contributed by Mario Carneiro, 17-Jul-2014.) |
| ⊢ ((𝑆 ⊆ ℂ ∧ 1 ∈ 𝑆 ∧ 𝑁 ∈ ℕ0) → (𝑧 ∈ ℂ ↦ (𝑧↑𝑁)) ∈ (Poly‘𝑆)) | ||
| Theorem | plyconst 26139 | A constant function is a polynomial. (Contributed by Mario Carneiro, 17-Jul-2014.) |
| ⊢ ((𝑆 ⊆ ℂ ∧ 𝐴 ∈ 𝑆) → (ℂ × {𝐴}) ∈ (Poly‘𝑆)) | ||
| Theorem | ne0p 26140 | A test to show that a polynomial is nonzero. (Contributed by Mario Carneiro, 23-Jul-2014.) |
| ⊢ ((𝐴 ∈ ℂ ∧ (𝐹‘𝐴) ≠ 0) → 𝐹 ≠ 0𝑝) | ||
| Theorem | ply0 26141 | The zero function is a polynomial. (Contributed by Mario Carneiro, 17-Jul-2014.) |
| ⊢ (𝑆 ⊆ ℂ → 0𝑝 ∈ (Poly‘𝑆)) | ||
| Theorem | plyid 26142 | The identity function is a polynomial. (Contributed by Mario Carneiro, 17-Jul-2014.) |
| ⊢ ((𝑆 ⊆ ℂ ∧ 1 ∈ 𝑆) → Xp ∈ (Poly‘𝑆)) | ||
| Theorem | plyeq0lem 26143* | Lemma for plyeq0 26144. If 𝐴 is the coefficient function for a nonzero polynomial such that 𝑃(𝑧) = Σ𝑘 ∈ ℕ0𝐴(𝑘) · 𝑧↑𝑘 = 0 for every 𝑧 ∈ ℂ and 𝐴(𝑀) is the nonzero leading coefficient, then the function 𝐹(𝑧) = 𝑃(𝑧) / 𝑧↑𝑀 is a sum of powers of 1 / 𝑧, and so the limit of this function as 𝑧 ⇝ +∞ is the constant term, 𝐴(𝑀). But 𝐹(𝑧) = 0 everywhere, so this limit is also equal to zero so that 𝐴(𝑀) = 0, a contradiction. (Contributed by Mario Carneiro, 22-Jul-2014.) |
| ⊢ (𝜑 → 𝑆 ⊆ ℂ) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝐴 ∈ ((𝑆 ∪ {0}) ↑m ℕ0)) & ⊢ (𝜑 → (𝐴 “ (ℤ≥‘(𝑁 + 1))) = {0}) & ⊢ (𝜑 → 0𝑝 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴‘𝑘) · (𝑧↑𝑘)))) & ⊢ 𝑀 = sup((◡𝐴 “ (𝑆 ∖ {0})), ℝ, < ) & ⊢ (𝜑 → (◡𝐴 “ (𝑆 ∖ {0})) ≠ ∅) ⇒ ⊢ ¬ 𝜑 | ||
| Theorem | plyeq0 26144* | If a polynomial is zero at every point (or even just zero at the positive integers), then all the coefficients must be zero. This is the basis for the method of equating coefficients of equal polynomials, and ensures that df-coe 26123 is well-defined. (Contributed by Mario Carneiro, 22-Jul-2014.) |
| ⊢ (𝜑 → 𝑆 ⊆ ℂ) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝐴 ∈ ((𝑆 ∪ {0}) ↑m ℕ0)) & ⊢ (𝜑 → (𝐴 “ (ℤ≥‘(𝑁 + 1))) = {0}) & ⊢ (𝜑 → 0𝑝 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴‘𝑘) · (𝑧↑𝑘)))) ⇒ ⊢ (𝜑 → 𝐴 = (ℕ0 × {0})) | ||
| Theorem | plypf1 26145 | Write the set of complex polynomials in a subring in terms of the abstract polynomial construction. (Contributed by Mario Carneiro, 3-Jul-2015.) (Proof shortened by AV, 29-Sep-2019.) |
| ⊢ 𝑅 = (ℂfld ↾s 𝑆) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐴 = (Base‘𝑃) & ⊢ 𝐸 = (eval1‘ℂfld) ⇒ ⊢ (𝑆 ∈ (SubRing‘ℂfld) → (Poly‘𝑆) = (𝐸 “ 𝐴)) | ||
| Theorem | plyaddlem1 26146* | Derive the coefficient function for the sum of two polynomials. (Contributed by Mario Carneiro, 23-Jul-2014.) |
| ⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) & ⊢ (𝜑 → 𝐺 ∈ (Poly‘𝑆)) & ⊢ (𝜑 → 𝑀 ∈ ℕ0) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) & ⊢ (𝜑 → 𝐵:ℕ0⟶ℂ) & ⊢ (𝜑 → (𝐴 “ (ℤ≥‘(𝑀 + 1))) = {0}) & ⊢ (𝜑 → (𝐵 “ (ℤ≥‘(𝑁 + 1))) = {0}) & ⊢ (𝜑 → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑀)((𝐴‘𝑘) · (𝑧↑𝑘)))) & ⊢ (𝜑 → 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐵‘𝑘) · (𝑧↑𝑘)))) ⇒ ⊢ (𝜑 → (𝐹 ∘f + 𝐺) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...if(𝑀 ≤ 𝑁, 𝑁, 𝑀))(((𝐴 ∘f + 𝐵)‘𝑘) · (𝑧↑𝑘)))) | ||
| Theorem | plymullem1 26147* | Derive the coefficient function for the product of two polynomials. (Contributed by Mario Carneiro, 23-Jul-2014.) |
| ⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) & ⊢ (𝜑 → 𝐺 ∈ (Poly‘𝑆)) & ⊢ (𝜑 → 𝑀 ∈ ℕ0) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) & ⊢ (𝜑 → 𝐵:ℕ0⟶ℂ) & ⊢ (𝜑 → (𝐴 “ (ℤ≥‘(𝑀 + 1))) = {0}) & ⊢ (𝜑 → (𝐵 “ (ℤ≥‘(𝑁 + 1))) = {0}) & ⊢ (𝜑 → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑀)((𝐴‘𝑘) · (𝑧↑𝑘)))) & ⊢ (𝜑 → 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐵‘𝑘) · (𝑧↑𝑘)))) ⇒ ⊢ (𝜑 → (𝐹 ∘f · 𝐺) = (𝑧 ∈ ℂ ↦ Σ𝑛 ∈ (0...(𝑀 + 𝑁))(Σ𝑘 ∈ (0...𝑛)((𝐴‘𝑘) · (𝐵‘(𝑛 − 𝑘))) · (𝑧↑𝑛)))) | ||
| Theorem | plyaddlem 26148* | Lemma for plyadd 26150. (Contributed by Mario Carneiro, 21-Jul-2014.) |
| ⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) & ⊢ (𝜑 → 𝐺 ∈ (Poly‘𝑆)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) & ⊢ (𝜑 → 𝑀 ∈ ℕ0) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝐴 ∈ ((𝑆 ∪ {0}) ↑m ℕ0)) & ⊢ (𝜑 → 𝐵 ∈ ((𝑆 ∪ {0}) ↑m ℕ0)) & ⊢ (𝜑 → (𝐴 “ (ℤ≥‘(𝑀 + 1))) = {0}) & ⊢ (𝜑 → (𝐵 “ (ℤ≥‘(𝑁 + 1))) = {0}) & ⊢ (𝜑 → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑀)((𝐴‘𝑘) · (𝑧↑𝑘)))) & ⊢ (𝜑 → 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐵‘𝑘) · (𝑧↑𝑘)))) ⇒ ⊢ (𝜑 → (𝐹 ∘f + 𝐺) ∈ (Poly‘𝑆)) | ||
| Theorem | plymullem 26149* | Lemma for plymul 26151. (Contributed by Mario Carneiro, 21-Jul-2014.) |
| ⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) & ⊢ (𝜑 → 𝐺 ∈ (Poly‘𝑆)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) & ⊢ (𝜑 → 𝑀 ∈ ℕ0) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝐴 ∈ ((𝑆 ∪ {0}) ↑m ℕ0)) & ⊢ (𝜑 → 𝐵 ∈ ((𝑆 ∪ {0}) ↑m ℕ0)) & ⊢ (𝜑 → (𝐴 “ (ℤ≥‘(𝑀 + 1))) = {0}) & ⊢ (𝜑 → (𝐵 “ (ℤ≥‘(𝑁 + 1))) = {0}) & ⊢ (𝜑 → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑀)((𝐴‘𝑘) · (𝑧↑𝑘)))) & ⊢ (𝜑 → 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐵‘𝑘) · (𝑧↑𝑘)))) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 · 𝑦) ∈ 𝑆) ⇒ ⊢ (𝜑 → (𝐹 ∘f · 𝐺) ∈ (Poly‘𝑆)) | ||
| Theorem | plyadd 26150* | The sum of two polynomials is a polynomial. (Contributed by Mario Carneiro, 21-Jul-2014.) |
| ⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) & ⊢ (𝜑 → 𝐺 ∈ (Poly‘𝑆)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) ⇒ ⊢ (𝜑 → (𝐹 ∘f + 𝐺) ∈ (Poly‘𝑆)) | ||
| Theorem | plymul 26151* | The product of two polynomials is a polynomial. (Contributed by Mario Carneiro, 21-Jul-2014.) |
| ⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) & ⊢ (𝜑 → 𝐺 ∈ (Poly‘𝑆)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 · 𝑦) ∈ 𝑆) ⇒ ⊢ (𝜑 → (𝐹 ∘f · 𝐺) ∈ (Poly‘𝑆)) | ||
| Theorem | plysub 26152* | The difference of two polynomials is a polynomial. (Contributed by Mario Carneiro, 21-Jul-2014.) |
| ⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) & ⊢ (𝜑 → 𝐺 ∈ (Poly‘𝑆)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 · 𝑦) ∈ 𝑆) & ⊢ (𝜑 → -1 ∈ 𝑆) ⇒ ⊢ (𝜑 → (𝐹 ∘f − 𝐺) ∈ (Poly‘𝑆)) | ||
| Theorem | plyaddcl 26153 | The sum of two polynomials is a polynomial. (Contributed by Mario Carneiro, 24-Jul-2014.) |
| ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (𝐹 ∘f + 𝐺) ∈ (Poly‘ℂ)) | ||
| Theorem | plymulcl 26154 | The product of two polynomials is a polynomial. (Contributed by Mario Carneiro, 24-Jul-2014.) |
| ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (𝐹 ∘f · 𝐺) ∈ (Poly‘ℂ)) | ||
| Theorem | plysubcl 26155 | The difference of two polynomials is a polynomial. (Contributed by Mario Carneiro, 24-Jul-2014.) |
| ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (𝐹 ∘f − 𝐺) ∈ (Poly‘ℂ)) | ||
| Theorem | coeval 26156* | Value of the coefficient function. (Contributed by Mario Carneiro, 22-Jul-2014.) |
| ⊢ (𝐹 ∈ (Poly‘𝑆) → (coeff‘𝐹) = (℩𝑎 ∈ (ℂ ↑m ℕ0)∃𝑛 ∈ ℕ0 ((𝑎 “ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘)))))) | ||
| Theorem | coeeulem 26157* | Lemma for coeeu 26158. (Contributed by Mario Carneiro, 22-Jul-2014.) |
| ⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) & ⊢ (𝜑 → 𝐴 ∈ (ℂ ↑m ℕ0)) & ⊢ (𝜑 → 𝐵 ∈ (ℂ ↑m ℕ0)) & ⊢ (𝜑 → 𝑀 ∈ ℕ0) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → (𝐴 “ (ℤ≥‘(𝑀 + 1))) = {0}) & ⊢ (𝜑 → (𝐵 “ (ℤ≥‘(𝑁 + 1))) = {0}) & ⊢ (𝜑 → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑀)((𝐴‘𝑘) · (𝑧↑𝑘)))) & ⊢ (𝜑 → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐵‘𝑘) · (𝑧↑𝑘)))) ⇒ ⊢ (𝜑 → 𝐴 = 𝐵) | ||
| Theorem | coeeu 26158* | Uniqueness of the coefficient function. (Contributed by Mario Carneiro, 22-Jul-2014.) (Revised by Mario Carneiro, 23-Aug-2014.) |
| ⊢ (𝐹 ∈ (Poly‘𝑆) → ∃!𝑎 ∈ (ℂ ↑m ℕ0)∃𝑛 ∈ ℕ0 ((𝑎 “ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘))))) | ||
| Theorem | coelem 26159* | Lemma for properties of the coefficient function. (Contributed by Mario Carneiro, 22-Jul-2014.) (Revised by Mario Carneiro, 23-Aug-2014.) |
| ⊢ (𝐹 ∈ (Poly‘𝑆) → ((coeff‘𝐹) ∈ (ℂ ↑m ℕ0) ∧ ∃𝑛 ∈ ℕ0 (((coeff‘𝐹) “ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)(((coeff‘𝐹)‘𝑘) · (𝑧↑𝑘)))))) | ||
| Theorem | coeeq 26160* | If 𝐴 satisfies the properties of the coefficient function, it must be equal to the coefficient function. (Contributed by Mario Carneiro, 22-Jul-2014.) (Revised by Mario Carneiro, 23-Aug-2014.) |
| ⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) & ⊢ (𝜑 → (𝐴 “ (ℤ≥‘(𝑁 + 1))) = {0}) & ⊢ (𝜑 → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴‘𝑘) · (𝑧↑𝑘)))) ⇒ ⊢ (𝜑 → (coeff‘𝐹) = 𝐴) | ||
| Theorem | dgrval 26161 | Value of the degree function. (Contributed by Mario Carneiro, 22-Jul-2014.) |
| ⊢ 𝐴 = (coeff‘𝐹) ⇒ ⊢ (𝐹 ∈ (Poly‘𝑆) → (deg‘𝐹) = sup((◡𝐴 “ (ℂ ∖ {0})), ℕ0, < )) | ||
| Theorem | dgrlem 26162* | Lemma for dgrcl 26166 and similar theorems. (Contributed by Mario Carneiro, 22-Jul-2014.) |
| ⊢ 𝐴 = (coeff‘𝐹) ⇒ ⊢ (𝐹 ∈ (Poly‘𝑆) → (𝐴:ℕ0⟶(𝑆 ∪ {0}) ∧ ∃𝑛 ∈ ℤ ∀𝑥 ∈ (◡𝐴 “ (ℂ ∖ {0}))𝑥 ≤ 𝑛)) | ||
| Theorem | coef 26163 | The domain and codomain of the coefficient function. (Contributed by Mario Carneiro, 22-Jul-2014.) |
| ⊢ 𝐴 = (coeff‘𝐹) ⇒ ⊢ (𝐹 ∈ (Poly‘𝑆) → 𝐴:ℕ0⟶(𝑆 ∪ {0})) | ||
| Theorem | coef2 26164 | The domain and codomain of the coefficient function. (Contributed by Mario Carneiro, 22-Jul-2014.) |
| ⊢ 𝐴 = (coeff‘𝐹) ⇒ ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 0 ∈ 𝑆) → 𝐴:ℕ0⟶𝑆) | ||
| Theorem | coef3 26165 | The domain and codomain of the coefficient function. (Contributed by Mario Carneiro, 22-Jul-2014.) |
| ⊢ 𝐴 = (coeff‘𝐹) ⇒ ⊢ (𝐹 ∈ (Poly‘𝑆) → 𝐴:ℕ0⟶ℂ) | ||
| Theorem | dgrcl 26166 | The degree of any polynomial is a nonnegative integer. (Contributed by Mario Carneiro, 22-Jul-2014.) |
| ⊢ (𝐹 ∈ (Poly‘𝑆) → (deg‘𝐹) ∈ ℕ0) | ||
| Theorem | dgrub 26167 | If the 𝑀-th coefficient of 𝐹 is nonzero, then the degree of 𝐹 is at least 𝑀. (Contributed by Mario Carneiro, 22-Jul-2014.) |
| ⊢ 𝐴 = (coeff‘𝐹) & ⊢ 𝑁 = (deg‘𝐹) ⇒ ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴‘𝑀) ≠ 0) → 𝑀 ≤ 𝑁) | ||
| Theorem | dgrub2 26168 | All the coefficients above the degree of 𝐹 are zero. (Contributed by Mario Carneiro, 23-Jul-2014.) |
| ⊢ 𝐴 = (coeff‘𝐹) & ⊢ 𝑁 = (deg‘𝐹) ⇒ ⊢ (𝐹 ∈ (Poly‘𝑆) → (𝐴 “ (ℤ≥‘(𝑁 + 1))) = {0}) | ||
| Theorem | dgrlb 26169 | If all the coefficients above 𝑀 are zero, then the degree of 𝐹 is at most 𝑀. (Contributed by Mario Carneiro, 22-Jul-2014.) |
| ⊢ 𝐴 = (coeff‘𝐹) & ⊢ 𝑁 = (deg‘𝐹) ⇒ ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴 “ (ℤ≥‘(𝑀 + 1))) = {0}) → 𝑁 ≤ 𝑀) | ||
| Theorem | coeidlem 26170* | Lemma for coeid 26171. (Contributed by Mario Carneiro, 22-Jul-2014.) |
| ⊢ 𝐴 = (coeff‘𝐹) & ⊢ 𝑁 = (deg‘𝐹) & ⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) & ⊢ (𝜑 → 𝑀 ∈ ℕ0) & ⊢ (𝜑 → 𝐵 ∈ ((𝑆 ∪ {0}) ↑m ℕ0)) & ⊢ (𝜑 → (𝐵 “ (ℤ≥‘(𝑀 + 1))) = {0}) & ⊢ (𝜑 → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑀)((𝐵‘𝑘) · (𝑧↑𝑘)))) ⇒ ⊢ (𝜑 → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴‘𝑘) · (𝑧↑𝑘)))) | ||
| Theorem | coeid 26171* | Reconstruct a polynomial as an explicit sum of the coefficient function up to the degree of the polynomial. (Contributed by Mario Carneiro, 22-Jul-2014.) |
| ⊢ 𝐴 = (coeff‘𝐹) & ⊢ 𝑁 = (deg‘𝐹) ⇒ ⊢ (𝐹 ∈ (Poly‘𝑆) → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴‘𝑘) · (𝑧↑𝑘)))) | ||
| Theorem | coeid2 26172* | Reconstruct a polynomial as an explicit sum of the coefficient function up to the degree of the polynomial. (Contributed by Mario Carneiro, 22-Jul-2014.) |
| ⊢ 𝐴 = (coeff‘𝐹) & ⊢ 𝑁 = (deg‘𝐹) ⇒ ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑋 ∈ ℂ) → (𝐹‘𝑋) = Σ𝑘 ∈ (0...𝑁)((𝐴‘𝑘) · (𝑋↑𝑘))) | ||
| Theorem | coeid3 26173* | Reconstruct a polynomial as an explicit sum of the coefficient function up to at least the degree of the polynomial. (Contributed by Mario Carneiro, 22-Jul-2014.) |
| ⊢ 𝐴 = (coeff‘𝐹) & ⊢ 𝑁 = (deg‘𝐹) ⇒ ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ (ℤ≥‘𝑁) ∧ 𝑋 ∈ ℂ) → (𝐹‘𝑋) = Σ𝑘 ∈ (0...𝑀)((𝐴‘𝑘) · (𝑋↑𝑘))) | ||
| Theorem | plyco 26174* | The composition of two polynomials is a polynomial. (Contributed by Mario Carneiro, 23-Jul-2014.) (Revised by Mario Carneiro, 23-Aug-2014.) |
| ⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) & ⊢ (𝜑 → 𝐺 ∈ (Poly‘𝑆)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 · 𝑦) ∈ 𝑆) ⇒ ⊢ (𝜑 → (𝐹 ∘ 𝐺) ∈ (Poly‘𝑆)) | ||
| Theorem | coeeq2 26175* | Compute the coefficient function given a sum expression for the polynomial. (Contributed by Mario Carneiro, 24-Jul-2014.) |
| ⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(𝐴 · (𝑧↑𝑘)))) ⇒ ⊢ (𝜑 → (coeff‘𝐹) = (𝑘 ∈ ℕ0 ↦ if(𝑘 ≤ 𝑁, 𝐴, 0))) | ||
| Theorem | dgrle 26176* | Given an explicit expression for a polynomial, the degree is at most the highest term in the sum. (Contributed by Mario Carneiro, 24-Jul-2014.) |
| ⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(𝐴 · (𝑧↑𝑘)))) ⇒ ⊢ (𝜑 → (deg‘𝐹) ≤ 𝑁) | ||
| Theorem | dgreq 26177* | If the highest term in a polynomial expression is nonzero, then the polynomial's degree is completely determined. (Contributed by Mario Carneiro, 24-Jul-2014.) |
| ⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) & ⊢ (𝜑 → (𝐴 “ (ℤ≥‘(𝑁 + 1))) = {0}) & ⊢ (𝜑 → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴‘𝑘) · (𝑧↑𝑘)))) & ⊢ (𝜑 → (𝐴‘𝑁) ≠ 0) ⇒ ⊢ (𝜑 → (deg‘𝐹) = 𝑁) | ||
| Theorem | 0dgr 26178 | A constant function has degree 0. (Contributed by Mario Carneiro, 24-Jul-2014.) |
| ⊢ (𝐴 ∈ ℂ → (deg‘(ℂ × {𝐴})) = 0) | ||
| Theorem | 0dgrb 26179 | A function has degree zero iff it is a constant function. (Contributed by Mario Carneiro, 23-Jul-2014.) |
| ⊢ (𝐹 ∈ (Poly‘𝑆) → ((deg‘𝐹) = 0 ↔ 𝐹 = (ℂ × {(𝐹‘0)}))) | ||
| Theorem | dgrnznn 26180 | A nonzero polynomial with a root has positive degree. (Contributed by Stefan O'Rear, 25-Nov-2014.) |
| ⊢ (((𝑃 ∈ (Poly‘𝑆) ∧ 𝑃 ≠ 0𝑝) ∧ (𝐴 ∈ ℂ ∧ (𝑃‘𝐴) = 0)) → (deg‘𝑃) ∈ ℕ) | ||
| Theorem | coefv0 26181 | The result of evaluating a polynomial at zero is the constant term. (Contributed by Mario Carneiro, 24-Jul-2014.) |
| ⊢ 𝐴 = (coeff‘𝐹) ⇒ ⊢ (𝐹 ∈ (Poly‘𝑆) → (𝐹‘0) = (𝐴‘0)) | ||
| Theorem | coeaddlem 26182 | Lemma for coeadd 26184 and dgradd 26201. (Contributed by Mario Carneiro, 24-Jul-2014.) |
| ⊢ 𝐴 = (coeff‘𝐹) & ⊢ 𝐵 = (coeff‘𝐺) & ⊢ 𝑀 = (deg‘𝐹) & ⊢ 𝑁 = (deg‘𝐺) ⇒ ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → ((coeff‘(𝐹 ∘f + 𝐺)) = (𝐴 ∘f + 𝐵) ∧ (deg‘(𝐹 ∘f + 𝐺)) ≤ if(𝑀 ≤ 𝑁, 𝑁, 𝑀))) | ||
| Theorem | coemullem 26183* | Lemma for coemul 26185 and dgrmul 26204. (Contributed by Mario Carneiro, 24-Jul-2014.) |
| ⊢ 𝐴 = (coeff‘𝐹) & ⊢ 𝐵 = (coeff‘𝐺) & ⊢ 𝑀 = (deg‘𝐹) & ⊢ 𝑁 = (deg‘𝐺) ⇒ ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → ((coeff‘(𝐹 ∘f · 𝐺)) = (𝑛 ∈ ℕ0 ↦ Σ𝑘 ∈ (0...𝑛)((𝐴‘𝑘) · (𝐵‘(𝑛 − 𝑘)))) ∧ (deg‘(𝐹 ∘f · 𝐺)) ≤ (𝑀 + 𝑁))) | ||
| Theorem | coeadd 26184 | The coefficient function of a sum is the sum of coefficients. (Contributed by Mario Carneiro, 24-Jul-2014.) |
| ⊢ 𝐴 = (coeff‘𝐹) & ⊢ 𝐵 = (coeff‘𝐺) ⇒ ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (coeff‘(𝐹 ∘f + 𝐺)) = (𝐴 ∘f + 𝐵)) | ||
| Theorem | coemul 26185* | A coefficient of a product of polynomials. (Contributed by Mario Carneiro, 24-Jul-2014.) |
| ⊢ 𝐴 = (coeff‘𝐹) & ⊢ 𝐵 = (coeff‘𝐺) ⇒ ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝑁 ∈ ℕ0) → ((coeff‘(𝐹 ∘f · 𝐺))‘𝑁) = Σ𝑘 ∈ (0...𝑁)((𝐴‘𝑘) · (𝐵‘(𝑁 − 𝑘)))) | ||
| Theorem | coe11 26186 | The coefficient function is one-to-one, so if the coefficients are equal then the functions are equal and vice-versa. (Contributed by Mario Carneiro, 24-Jul-2014.) (Revised by Mario Carneiro, 23-Aug-2014.) |
| ⊢ 𝐴 = (coeff‘𝐹) & ⊢ 𝐵 = (coeff‘𝐺) ⇒ ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (𝐹 = 𝐺 ↔ 𝐴 = 𝐵)) | ||
| Theorem | coemulhi 26187 | The leading coefficient of a product of polynomials. (Contributed by Mario Carneiro, 24-Jul-2014.) |
| ⊢ 𝐴 = (coeff‘𝐹) & ⊢ 𝐵 = (coeff‘𝐺) & ⊢ 𝑀 = (deg‘𝐹) & ⊢ 𝑁 = (deg‘𝐺) ⇒ ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → ((coeff‘(𝐹 ∘f · 𝐺))‘(𝑀 + 𝑁)) = ((𝐴‘𝑀) · (𝐵‘𝑁))) | ||
| Theorem | coemulc 26188 | The coefficient function is linear under scalar multiplication. (Contributed by Mario Carneiro, 24-Jul-2014.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) → (coeff‘((ℂ × {𝐴}) ∘f · 𝐹)) = ((ℕ0 × {𝐴}) ∘f · (coeff‘𝐹))) | ||
| Theorem | coe0 26189 | The coefficients of the zero polynomial are zero. (Contributed by Mario Carneiro, 22-Jul-2014.) |
| ⊢ (coeff‘0𝑝) = (ℕ0 × {0}) | ||
| Theorem | coesub 26190 | The coefficient function of a sum is the sum of coefficients. (Contributed by Mario Carneiro, 24-Jul-2014.) |
| ⊢ 𝐴 = (coeff‘𝐹) & ⊢ 𝐵 = (coeff‘𝐺) ⇒ ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (coeff‘(𝐹 ∘f − 𝐺)) = (𝐴 ∘f − 𝐵)) | ||
| Theorem | coe1termlem 26191* | The coefficient function of a monomial. (Contributed by Mario Carneiro, 26-Jul-2014.) (Revised by Mario Carneiro, 23-Aug-2014.) |
| ⊢ 𝐹 = (𝑧 ∈ ℂ ↦ (𝐴 · (𝑧↑𝑁))) ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ((coeff‘𝐹) = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 𝑁, 𝐴, 0)) ∧ (𝐴 ≠ 0 → (deg‘𝐹) = 𝑁))) | ||
| Theorem | coe1term 26192* | The coefficient function of a monomial. (Contributed by Mario Carneiro, 26-Jul-2014.) |
| ⊢ 𝐹 = (𝑧 ∈ ℂ ↦ (𝐴 · (𝑧↑𝑁))) ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0) → ((coeff‘𝐹)‘𝑀) = if(𝑀 = 𝑁, 𝐴, 0)) | ||
| Theorem | dgr1term 26193* | The degree of a monomial. (Contributed by Mario Carneiro, 26-Jul-2014.) |
| ⊢ 𝐹 = (𝑧 ∈ ℂ ↦ (𝐴 · (𝑧↑𝑁))) ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ ℕ0) → (deg‘𝐹) = 𝑁) | ||
| Theorem | plycn 26194 | A polynomial is a continuous function. (Contributed by Mario Carneiro, 23-Jul-2014.) Avoid ax-mulf 11093. (Revised by GG, 16-Mar-2025.) |
| ⊢ (𝐹 ∈ (Poly‘𝑆) → 𝐹 ∈ (ℂ–cn→ℂ)) | ||
| Theorem | plycnOLD 26195 | Obsolete version of plycn 26194 as of 10-Apr-2025. (Contributed by Mario Carneiro, 23-Jul-2014.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (𝐹 ∈ (Poly‘𝑆) → 𝐹 ∈ (ℂ–cn→ℂ)) | ||
| Theorem | dgr0 26196 | The degree of the zero polynomial is zero. Note: this differs from some other definitions of the degree of the zero polynomial, such as -1, -∞ or undefined. But it is convenient for us to define it this way, so that we have dgrcl 26166, dgreq0 26199 and coeid 26171 without having to special-case zero, although plydivalg 26235 is a little more complicated as a result. (Contributed by Mario Carneiro, 22-Jul-2014.) |
| ⊢ (deg‘0𝑝) = 0 | ||
| Theorem | coeidp 26197 | The coefficients of the identity function. (Contributed by Mario Carneiro, 28-Jul-2014.) |
| ⊢ (𝐴 ∈ ℕ0 → ((coeff‘Xp)‘𝐴) = if(𝐴 = 1, 1, 0)) | ||
| Theorem | dgrid 26198 | The degree of the identity function. (Contributed by Mario Carneiro, 26-Jul-2014.) |
| ⊢ (deg‘Xp) = 1 | ||
| Theorem | dgreq0 26199 | The leading coefficient of a polynomial is nonzero, unless the entire polynomial is zero. (Contributed by Mario Carneiro, 22-Jul-2014.) (Proof shortened by Fan Zheng, 21-Jun-2016.) |
| ⊢ 𝑁 = (deg‘𝐹) & ⊢ 𝐴 = (coeff‘𝐹) ⇒ ⊢ (𝐹 ∈ (Poly‘𝑆) → (𝐹 = 0𝑝 ↔ (𝐴‘𝑁) = 0)) | ||
| Theorem | dgrlt 26200 | Two ways to say that the degree of 𝐹 is strictly less than 𝑁. (Contributed by Mario Carneiro, 25-Jul-2014.) |
| ⊢ 𝑁 = (deg‘𝐹) & ⊢ 𝐴 = (coeff‘𝐹) ⇒ ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0) → ((𝐹 = 0𝑝 ∨ 𝑁 < 𝑀) ↔ (𝑁 ≤ 𝑀 ∧ (𝐴‘𝑀) = 0))) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |