| Metamath
Proof Explorer Theorem List (p. 262 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30847) |
(30848-32370) |
(32371-49794) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | elply2 26101* | The coefficient function can be assumed to have zeroes outside 0...𝑛. (Contributed by Mario Carneiro, 20-Jul-2014.) (Revised by Mario Carneiro, 23-Aug-2014.) |
| ⊢ (𝐹 ∈ (Poly‘𝑆) ↔ (𝑆 ⊆ ℂ ∧ ∃𝑛 ∈ ℕ0 ∃𝑎 ∈ ((𝑆 ∪ {0}) ↑m ℕ0)((𝑎 “ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘)))))) | ||
| Theorem | plyun0 26102 | The set of polynomials is unaffected by the addition of zero. (This is built into the definition because all higher powers of a polynomial are effectively zero, so we require that the coefficient field contain zero to simplify some of our closure theorems.) (Contributed by Mario Carneiro, 17-Jul-2014.) |
| ⊢ (Poly‘(𝑆 ∪ {0})) = (Poly‘𝑆) | ||
| Theorem | plyf 26103 | A polynomial is a function on the complex numbers. (Contributed by Mario Carneiro, 22-Jul-2014.) |
| ⊢ (𝐹 ∈ (Poly‘𝑆) → 𝐹:ℂ⟶ℂ) | ||
| Theorem | plyss 26104 | The polynomial set function preserves the subset relation. (Contributed by Mario Carneiro, 17-Jul-2014.) |
| ⊢ ((𝑆 ⊆ 𝑇 ∧ 𝑇 ⊆ ℂ) → (Poly‘𝑆) ⊆ (Poly‘𝑇)) | ||
| Theorem | plyssc 26105 | Every polynomial ring is contained in the ring of polynomials over ℂ. (Contributed by Mario Carneiro, 22-Jul-2014.) |
| ⊢ (Poly‘𝑆) ⊆ (Poly‘ℂ) | ||
| Theorem | elplyr 26106* | Sufficient condition for elementhood in the set of polynomials. (Contributed by Mario Carneiro, 17-Jul-2014.) (Revised by Mario Carneiro, 23-Aug-2014.) |
| ⊢ ((𝑆 ⊆ ℂ ∧ 𝑁 ∈ ℕ0 ∧ 𝐴:ℕ0⟶𝑆) → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴‘𝑘) · (𝑧↑𝑘))) ∈ (Poly‘𝑆)) | ||
| Theorem | elplyd 26107* | Sufficient condition for elementhood in the set of polynomials. (Contributed by Mario Carneiro, 17-Jul-2014.) |
| ⊢ (𝜑 → 𝑆 ⊆ ℂ) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → 𝐴 ∈ 𝑆) ⇒ ⊢ (𝜑 → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(𝐴 · (𝑧↑𝑘))) ∈ (Poly‘𝑆)) | ||
| Theorem | ply1termlem 26108* | Lemma for ply1term 26109. (Contributed by Mario Carneiro, 26-Jul-2014.) |
| ⊢ 𝐹 = (𝑧 ∈ ℂ ↦ (𝐴 · (𝑧↑𝑁))) ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(if(𝑘 = 𝑁, 𝐴, 0) · (𝑧↑𝑘)))) | ||
| Theorem | ply1term 26109* | A one-term polynomial. (Contributed by Mario Carneiro, 17-Jul-2014.) |
| ⊢ 𝐹 = (𝑧 ∈ ℂ ↦ (𝐴 · (𝑧↑𝑁))) ⇒ ⊢ ((𝑆 ⊆ ℂ ∧ 𝐴 ∈ 𝑆 ∧ 𝑁 ∈ ℕ0) → 𝐹 ∈ (Poly‘𝑆)) | ||
| Theorem | plypow 26110* | A power is a polynomial. (Contributed by Mario Carneiro, 17-Jul-2014.) |
| ⊢ ((𝑆 ⊆ ℂ ∧ 1 ∈ 𝑆 ∧ 𝑁 ∈ ℕ0) → (𝑧 ∈ ℂ ↦ (𝑧↑𝑁)) ∈ (Poly‘𝑆)) | ||
| Theorem | plyconst 26111 | A constant function is a polynomial. (Contributed by Mario Carneiro, 17-Jul-2014.) |
| ⊢ ((𝑆 ⊆ ℂ ∧ 𝐴 ∈ 𝑆) → (ℂ × {𝐴}) ∈ (Poly‘𝑆)) | ||
| Theorem | ne0p 26112 | A test to show that a polynomial is nonzero. (Contributed by Mario Carneiro, 23-Jul-2014.) |
| ⊢ ((𝐴 ∈ ℂ ∧ (𝐹‘𝐴) ≠ 0) → 𝐹 ≠ 0𝑝) | ||
| Theorem | ply0 26113 | The zero function is a polynomial. (Contributed by Mario Carneiro, 17-Jul-2014.) |
| ⊢ (𝑆 ⊆ ℂ → 0𝑝 ∈ (Poly‘𝑆)) | ||
| Theorem | plyid 26114 | The identity function is a polynomial. (Contributed by Mario Carneiro, 17-Jul-2014.) |
| ⊢ ((𝑆 ⊆ ℂ ∧ 1 ∈ 𝑆) → Xp ∈ (Poly‘𝑆)) | ||
| Theorem | plyeq0lem 26115* | Lemma for plyeq0 26116. If 𝐴 is the coefficient function for a nonzero polynomial such that 𝑃(𝑧) = Σ𝑘 ∈ ℕ0𝐴(𝑘) · 𝑧↑𝑘 = 0 for every 𝑧 ∈ ℂ and 𝐴(𝑀) is the nonzero leading coefficient, then the function 𝐹(𝑧) = 𝑃(𝑧) / 𝑧↑𝑀 is a sum of powers of 1 / 𝑧, and so the limit of this function as 𝑧 ⇝ +∞ is the constant term, 𝐴(𝑀). But 𝐹(𝑧) = 0 everywhere, so this limit is also equal to zero so that 𝐴(𝑀) = 0, a contradiction. (Contributed by Mario Carneiro, 22-Jul-2014.) |
| ⊢ (𝜑 → 𝑆 ⊆ ℂ) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝐴 ∈ ((𝑆 ∪ {0}) ↑m ℕ0)) & ⊢ (𝜑 → (𝐴 “ (ℤ≥‘(𝑁 + 1))) = {0}) & ⊢ (𝜑 → 0𝑝 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴‘𝑘) · (𝑧↑𝑘)))) & ⊢ 𝑀 = sup((◡𝐴 “ (𝑆 ∖ {0})), ℝ, < ) & ⊢ (𝜑 → (◡𝐴 “ (𝑆 ∖ {0})) ≠ ∅) ⇒ ⊢ ¬ 𝜑 | ||
| Theorem | plyeq0 26116* | If a polynomial is zero at every point (or even just zero at the positive integers), then all the coefficients must be zero. This is the basis for the method of equating coefficients of equal polynomials, and ensures that df-coe 26095 is well-defined. (Contributed by Mario Carneiro, 22-Jul-2014.) |
| ⊢ (𝜑 → 𝑆 ⊆ ℂ) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝐴 ∈ ((𝑆 ∪ {0}) ↑m ℕ0)) & ⊢ (𝜑 → (𝐴 “ (ℤ≥‘(𝑁 + 1))) = {0}) & ⊢ (𝜑 → 0𝑝 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴‘𝑘) · (𝑧↑𝑘)))) ⇒ ⊢ (𝜑 → 𝐴 = (ℕ0 × {0})) | ||
| Theorem | plypf1 26117 | Write the set of complex polynomials in a subring in terms of the abstract polynomial construction. (Contributed by Mario Carneiro, 3-Jul-2015.) (Proof shortened by AV, 29-Sep-2019.) |
| ⊢ 𝑅 = (ℂfld ↾s 𝑆) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐴 = (Base‘𝑃) & ⊢ 𝐸 = (eval1‘ℂfld) ⇒ ⊢ (𝑆 ∈ (SubRing‘ℂfld) → (Poly‘𝑆) = (𝐸 “ 𝐴)) | ||
| Theorem | plyaddlem1 26118* | Derive the coefficient function for the sum of two polynomials. (Contributed by Mario Carneiro, 23-Jul-2014.) |
| ⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) & ⊢ (𝜑 → 𝐺 ∈ (Poly‘𝑆)) & ⊢ (𝜑 → 𝑀 ∈ ℕ0) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) & ⊢ (𝜑 → 𝐵:ℕ0⟶ℂ) & ⊢ (𝜑 → (𝐴 “ (ℤ≥‘(𝑀 + 1))) = {0}) & ⊢ (𝜑 → (𝐵 “ (ℤ≥‘(𝑁 + 1))) = {0}) & ⊢ (𝜑 → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑀)((𝐴‘𝑘) · (𝑧↑𝑘)))) & ⊢ (𝜑 → 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐵‘𝑘) · (𝑧↑𝑘)))) ⇒ ⊢ (𝜑 → (𝐹 ∘f + 𝐺) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...if(𝑀 ≤ 𝑁, 𝑁, 𝑀))(((𝐴 ∘f + 𝐵)‘𝑘) · (𝑧↑𝑘)))) | ||
| Theorem | plymullem1 26119* | Derive the coefficient function for the product of two polynomials. (Contributed by Mario Carneiro, 23-Jul-2014.) |
| ⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) & ⊢ (𝜑 → 𝐺 ∈ (Poly‘𝑆)) & ⊢ (𝜑 → 𝑀 ∈ ℕ0) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) & ⊢ (𝜑 → 𝐵:ℕ0⟶ℂ) & ⊢ (𝜑 → (𝐴 “ (ℤ≥‘(𝑀 + 1))) = {0}) & ⊢ (𝜑 → (𝐵 “ (ℤ≥‘(𝑁 + 1))) = {0}) & ⊢ (𝜑 → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑀)((𝐴‘𝑘) · (𝑧↑𝑘)))) & ⊢ (𝜑 → 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐵‘𝑘) · (𝑧↑𝑘)))) ⇒ ⊢ (𝜑 → (𝐹 ∘f · 𝐺) = (𝑧 ∈ ℂ ↦ Σ𝑛 ∈ (0...(𝑀 + 𝑁))(Σ𝑘 ∈ (0...𝑛)((𝐴‘𝑘) · (𝐵‘(𝑛 − 𝑘))) · (𝑧↑𝑛)))) | ||
| Theorem | plyaddlem 26120* | Lemma for plyadd 26122. (Contributed by Mario Carneiro, 21-Jul-2014.) |
| ⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) & ⊢ (𝜑 → 𝐺 ∈ (Poly‘𝑆)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) & ⊢ (𝜑 → 𝑀 ∈ ℕ0) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝐴 ∈ ((𝑆 ∪ {0}) ↑m ℕ0)) & ⊢ (𝜑 → 𝐵 ∈ ((𝑆 ∪ {0}) ↑m ℕ0)) & ⊢ (𝜑 → (𝐴 “ (ℤ≥‘(𝑀 + 1))) = {0}) & ⊢ (𝜑 → (𝐵 “ (ℤ≥‘(𝑁 + 1))) = {0}) & ⊢ (𝜑 → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑀)((𝐴‘𝑘) · (𝑧↑𝑘)))) & ⊢ (𝜑 → 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐵‘𝑘) · (𝑧↑𝑘)))) ⇒ ⊢ (𝜑 → (𝐹 ∘f + 𝐺) ∈ (Poly‘𝑆)) | ||
| Theorem | plymullem 26121* | Lemma for plymul 26123. (Contributed by Mario Carneiro, 21-Jul-2014.) |
| ⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) & ⊢ (𝜑 → 𝐺 ∈ (Poly‘𝑆)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) & ⊢ (𝜑 → 𝑀 ∈ ℕ0) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝐴 ∈ ((𝑆 ∪ {0}) ↑m ℕ0)) & ⊢ (𝜑 → 𝐵 ∈ ((𝑆 ∪ {0}) ↑m ℕ0)) & ⊢ (𝜑 → (𝐴 “ (ℤ≥‘(𝑀 + 1))) = {0}) & ⊢ (𝜑 → (𝐵 “ (ℤ≥‘(𝑁 + 1))) = {0}) & ⊢ (𝜑 → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑀)((𝐴‘𝑘) · (𝑧↑𝑘)))) & ⊢ (𝜑 → 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐵‘𝑘) · (𝑧↑𝑘)))) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 · 𝑦) ∈ 𝑆) ⇒ ⊢ (𝜑 → (𝐹 ∘f · 𝐺) ∈ (Poly‘𝑆)) | ||
| Theorem | plyadd 26122* | The sum of two polynomials is a polynomial. (Contributed by Mario Carneiro, 21-Jul-2014.) |
| ⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) & ⊢ (𝜑 → 𝐺 ∈ (Poly‘𝑆)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) ⇒ ⊢ (𝜑 → (𝐹 ∘f + 𝐺) ∈ (Poly‘𝑆)) | ||
| Theorem | plymul 26123* | The product of two polynomials is a polynomial. (Contributed by Mario Carneiro, 21-Jul-2014.) |
| ⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) & ⊢ (𝜑 → 𝐺 ∈ (Poly‘𝑆)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 · 𝑦) ∈ 𝑆) ⇒ ⊢ (𝜑 → (𝐹 ∘f · 𝐺) ∈ (Poly‘𝑆)) | ||
| Theorem | plysub 26124* | The difference of two polynomials is a polynomial. (Contributed by Mario Carneiro, 21-Jul-2014.) |
| ⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) & ⊢ (𝜑 → 𝐺 ∈ (Poly‘𝑆)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 · 𝑦) ∈ 𝑆) & ⊢ (𝜑 → -1 ∈ 𝑆) ⇒ ⊢ (𝜑 → (𝐹 ∘f − 𝐺) ∈ (Poly‘𝑆)) | ||
| Theorem | plyaddcl 26125 | The sum of two polynomials is a polynomial. (Contributed by Mario Carneiro, 24-Jul-2014.) |
| ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (𝐹 ∘f + 𝐺) ∈ (Poly‘ℂ)) | ||
| Theorem | plymulcl 26126 | The product of two polynomials is a polynomial. (Contributed by Mario Carneiro, 24-Jul-2014.) |
| ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (𝐹 ∘f · 𝐺) ∈ (Poly‘ℂ)) | ||
| Theorem | plysubcl 26127 | The difference of two polynomials is a polynomial. (Contributed by Mario Carneiro, 24-Jul-2014.) |
| ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (𝐹 ∘f − 𝐺) ∈ (Poly‘ℂ)) | ||
| Theorem | coeval 26128* | Value of the coefficient function. (Contributed by Mario Carneiro, 22-Jul-2014.) |
| ⊢ (𝐹 ∈ (Poly‘𝑆) → (coeff‘𝐹) = (℩𝑎 ∈ (ℂ ↑m ℕ0)∃𝑛 ∈ ℕ0 ((𝑎 “ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘)))))) | ||
| Theorem | coeeulem 26129* | Lemma for coeeu 26130. (Contributed by Mario Carneiro, 22-Jul-2014.) |
| ⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) & ⊢ (𝜑 → 𝐴 ∈ (ℂ ↑m ℕ0)) & ⊢ (𝜑 → 𝐵 ∈ (ℂ ↑m ℕ0)) & ⊢ (𝜑 → 𝑀 ∈ ℕ0) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → (𝐴 “ (ℤ≥‘(𝑀 + 1))) = {0}) & ⊢ (𝜑 → (𝐵 “ (ℤ≥‘(𝑁 + 1))) = {0}) & ⊢ (𝜑 → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑀)((𝐴‘𝑘) · (𝑧↑𝑘)))) & ⊢ (𝜑 → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐵‘𝑘) · (𝑧↑𝑘)))) ⇒ ⊢ (𝜑 → 𝐴 = 𝐵) | ||
| Theorem | coeeu 26130* | Uniqueness of the coefficient function. (Contributed by Mario Carneiro, 22-Jul-2014.) (Revised by Mario Carneiro, 23-Aug-2014.) |
| ⊢ (𝐹 ∈ (Poly‘𝑆) → ∃!𝑎 ∈ (ℂ ↑m ℕ0)∃𝑛 ∈ ℕ0 ((𝑎 “ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘))))) | ||
| Theorem | coelem 26131* | Lemma for properties of the coefficient function. (Contributed by Mario Carneiro, 22-Jul-2014.) (Revised by Mario Carneiro, 23-Aug-2014.) |
| ⊢ (𝐹 ∈ (Poly‘𝑆) → ((coeff‘𝐹) ∈ (ℂ ↑m ℕ0) ∧ ∃𝑛 ∈ ℕ0 (((coeff‘𝐹) “ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)(((coeff‘𝐹)‘𝑘) · (𝑧↑𝑘)))))) | ||
| Theorem | coeeq 26132* | If 𝐴 satisfies the properties of the coefficient function, it must be equal to the coefficient function. (Contributed by Mario Carneiro, 22-Jul-2014.) (Revised by Mario Carneiro, 23-Aug-2014.) |
| ⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) & ⊢ (𝜑 → (𝐴 “ (ℤ≥‘(𝑁 + 1))) = {0}) & ⊢ (𝜑 → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴‘𝑘) · (𝑧↑𝑘)))) ⇒ ⊢ (𝜑 → (coeff‘𝐹) = 𝐴) | ||
| Theorem | dgrval 26133 | Value of the degree function. (Contributed by Mario Carneiro, 22-Jul-2014.) |
| ⊢ 𝐴 = (coeff‘𝐹) ⇒ ⊢ (𝐹 ∈ (Poly‘𝑆) → (deg‘𝐹) = sup((◡𝐴 “ (ℂ ∖ {0})), ℕ0, < )) | ||
| Theorem | dgrlem 26134* | Lemma for dgrcl 26138 and similar theorems. (Contributed by Mario Carneiro, 22-Jul-2014.) |
| ⊢ 𝐴 = (coeff‘𝐹) ⇒ ⊢ (𝐹 ∈ (Poly‘𝑆) → (𝐴:ℕ0⟶(𝑆 ∪ {0}) ∧ ∃𝑛 ∈ ℤ ∀𝑥 ∈ (◡𝐴 “ (ℂ ∖ {0}))𝑥 ≤ 𝑛)) | ||
| Theorem | coef 26135 | The domain and codomain of the coefficient function. (Contributed by Mario Carneiro, 22-Jul-2014.) |
| ⊢ 𝐴 = (coeff‘𝐹) ⇒ ⊢ (𝐹 ∈ (Poly‘𝑆) → 𝐴:ℕ0⟶(𝑆 ∪ {0})) | ||
| Theorem | coef2 26136 | The domain and codomain of the coefficient function. (Contributed by Mario Carneiro, 22-Jul-2014.) |
| ⊢ 𝐴 = (coeff‘𝐹) ⇒ ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 0 ∈ 𝑆) → 𝐴:ℕ0⟶𝑆) | ||
| Theorem | coef3 26137 | The domain and codomain of the coefficient function. (Contributed by Mario Carneiro, 22-Jul-2014.) |
| ⊢ 𝐴 = (coeff‘𝐹) ⇒ ⊢ (𝐹 ∈ (Poly‘𝑆) → 𝐴:ℕ0⟶ℂ) | ||
| Theorem | dgrcl 26138 | The degree of any polynomial is a nonnegative integer. (Contributed by Mario Carneiro, 22-Jul-2014.) |
| ⊢ (𝐹 ∈ (Poly‘𝑆) → (deg‘𝐹) ∈ ℕ0) | ||
| Theorem | dgrub 26139 | If the 𝑀-th coefficient of 𝐹 is nonzero, then the degree of 𝐹 is at least 𝑀. (Contributed by Mario Carneiro, 22-Jul-2014.) |
| ⊢ 𝐴 = (coeff‘𝐹) & ⊢ 𝑁 = (deg‘𝐹) ⇒ ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴‘𝑀) ≠ 0) → 𝑀 ≤ 𝑁) | ||
| Theorem | dgrub2 26140 | All the coefficients above the degree of 𝐹 are zero. (Contributed by Mario Carneiro, 23-Jul-2014.) |
| ⊢ 𝐴 = (coeff‘𝐹) & ⊢ 𝑁 = (deg‘𝐹) ⇒ ⊢ (𝐹 ∈ (Poly‘𝑆) → (𝐴 “ (ℤ≥‘(𝑁 + 1))) = {0}) | ||
| Theorem | dgrlb 26141 | If all the coefficients above 𝑀 are zero, then the degree of 𝐹 is at most 𝑀. (Contributed by Mario Carneiro, 22-Jul-2014.) |
| ⊢ 𝐴 = (coeff‘𝐹) & ⊢ 𝑁 = (deg‘𝐹) ⇒ ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴 “ (ℤ≥‘(𝑀 + 1))) = {0}) → 𝑁 ≤ 𝑀) | ||
| Theorem | coeidlem 26142* | Lemma for coeid 26143. (Contributed by Mario Carneiro, 22-Jul-2014.) |
| ⊢ 𝐴 = (coeff‘𝐹) & ⊢ 𝑁 = (deg‘𝐹) & ⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) & ⊢ (𝜑 → 𝑀 ∈ ℕ0) & ⊢ (𝜑 → 𝐵 ∈ ((𝑆 ∪ {0}) ↑m ℕ0)) & ⊢ (𝜑 → (𝐵 “ (ℤ≥‘(𝑀 + 1))) = {0}) & ⊢ (𝜑 → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑀)((𝐵‘𝑘) · (𝑧↑𝑘)))) ⇒ ⊢ (𝜑 → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴‘𝑘) · (𝑧↑𝑘)))) | ||
| Theorem | coeid 26143* | Reconstruct a polynomial as an explicit sum of the coefficient function up to the degree of the polynomial. (Contributed by Mario Carneiro, 22-Jul-2014.) |
| ⊢ 𝐴 = (coeff‘𝐹) & ⊢ 𝑁 = (deg‘𝐹) ⇒ ⊢ (𝐹 ∈ (Poly‘𝑆) → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴‘𝑘) · (𝑧↑𝑘)))) | ||
| Theorem | coeid2 26144* | Reconstruct a polynomial as an explicit sum of the coefficient function up to the degree of the polynomial. (Contributed by Mario Carneiro, 22-Jul-2014.) |
| ⊢ 𝐴 = (coeff‘𝐹) & ⊢ 𝑁 = (deg‘𝐹) ⇒ ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑋 ∈ ℂ) → (𝐹‘𝑋) = Σ𝑘 ∈ (0...𝑁)((𝐴‘𝑘) · (𝑋↑𝑘))) | ||
| Theorem | coeid3 26145* | Reconstruct a polynomial as an explicit sum of the coefficient function up to at least the degree of the polynomial. (Contributed by Mario Carneiro, 22-Jul-2014.) |
| ⊢ 𝐴 = (coeff‘𝐹) & ⊢ 𝑁 = (deg‘𝐹) ⇒ ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ (ℤ≥‘𝑁) ∧ 𝑋 ∈ ℂ) → (𝐹‘𝑋) = Σ𝑘 ∈ (0...𝑀)((𝐴‘𝑘) · (𝑋↑𝑘))) | ||
| Theorem | plyco 26146* | The composition of two polynomials is a polynomial. (Contributed by Mario Carneiro, 23-Jul-2014.) (Revised by Mario Carneiro, 23-Aug-2014.) |
| ⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) & ⊢ (𝜑 → 𝐺 ∈ (Poly‘𝑆)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 · 𝑦) ∈ 𝑆) ⇒ ⊢ (𝜑 → (𝐹 ∘ 𝐺) ∈ (Poly‘𝑆)) | ||
| Theorem | coeeq2 26147* | Compute the coefficient function given a sum expression for the polynomial. (Contributed by Mario Carneiro, 24-Jul-2014.) |
| ⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(𝐴 · (𝑧↑𝑘)))) ⇒ ⊢ (𝜑 → (coeff‘𝐹) = (𝑘 ∈ ℕ0 ↦ if(𝑘 ≤ 𝑁, 𝐴, 0))) | ||
| Theorem | dgrle 26148* | Given an explicit expression for a polynomial, the degree is at most the highest term in the sum. (Contributed by Mario Carneiro, 24-Jul-2014.) |
| ⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(𝐴 · (𝑧↑𝑘)))) ⇒ ⊢ (𝜑 → (deg‘𝐹) ≤ 𝑁) | ||
| Theorem | dgreq 26149* | If the highest term in a polynomial expression is nonzero, then the polynomial's degree is completely determined. (Contributed by Mario Carneiro, 24-Jul-2014.) |
| ⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) & ⊢ (𝜑 → (𝐴 “ (ℤ≥‘(𝑁 + 1))) = {0}) & ⊢ (𝜑 → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴‘𝑘) · (𝑧↑𝑘)))) & ⊢ (𝜑 → (𝐴‘𝑁) ≠ 0) ⇒ ⊢ (𝜑 → (deg‘𝐹) = 𝑁) | ||
| Theorem | 0dgr 26150 | A constant function has degree 0. (Contributed by Mario Carneiro, 24-Jul-2014.) |
| ⊢ (𝐴 ∈ ℂ → (deg‘(ℂ × {𝐴})) = 0) | ||
| Theorem | 0dgrb 26151 | A function has degree zero iff it is a constant function. (Contributed by Mario Carneiro, 23-Jul-2014.) |
| ⊢ (𝐹 ∈ (Poly‘𝑆) → ((deg‘𝐹) = 0 ↔ 𝐹 = (ℂ × {(𝐹‘0)}))) | ||
| Theorem | dgrnznn 26152 | A nonzero polynomial with a root has positive degree. (Contributed by Stefan O'Rear, 25-Nov-2014.) |
| ⊢ (((𝑃 ∈ (Poly‘𝑆) ∧ 𝑃 ≠ 0𝑝) ∧ (𝐴 ∈ ℂ ∧ (𝑃‘𝐴) = 0)) → (deg‘𝑃) ∈ ℕ) | ||
| Theorem | coefv0 26153 | The result of evaluating a polynomial at zero is the constant term. (Contributed by Mario Carneiro, 24-Jul-2014.) |
| ⊢ 𝐴 = (coeff‘𝐹) ⇒ ⊢ (𝐹 ∈ (Poly‘𝑆) → (𝐹‘0) = (𝐴‘0)) | ||
| Theorem | coeaddlem 26154 | Lemma for coeadd 26156 and dgradd 26173. (Contributed by Mario Carneiro, 24-Jul-2014.) |
| ⊢ 𝐴 = (coeff‘𝐹) & ⊢ 𝐵 = (coeff‘𝐺) & ⊢ 𝑀 = (deg‘𝐹) & ⊢ 𝑁 = (deg‘𝐺) ⇒ ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → ((coeff‘(𝐹 ∘f + 𝐺)) = (𝐴 ∘f + 𝐵) ∧ (deg‘(𝐹 ∘f + 𝐺)) ≤ if(𝑀 ≤ 𝑁, 𝑁, 𝑀))) | ||
| Theorem | coemullem 26155* | Lemma for coemul 26157 and dgrmul 26176. (Contributed by Mario Carneiro, 24-Jul-2014.) |
| ⊢ 𝐴 = (coeff‘𝐹) & ⊢ 𝐵 = (coeff‘𝐺) & ⊢ 𝑀 = (deg‘𝐹) & ⊢ 𝑁 = (deg‘𝐺) ⇒ ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → ((coeff‘(𝐹 ∘f · 𝐺)) = (𝑛 ∈ ℕ0 ↦ Σ𝑘 ∈ (0...𝑛)((𝐴‘𝑘) · (𝐵‘(𝑛 − 𝑘)))) ∧ (deg‘(𝐹 ∘f · 𝐺)) ≤ (𝑀 + 𝑁))) | ||
| Theorem | coeadd 26156 | The coefficient function of a sum is the sum of coefficients. (Contributed by Mario Carneiro, 24-Jul-2014.) |
| ⊢ 𝐴 = (coeff‘𝐹) & ⊢ 𝐵 = (coeff‘𝐺) ⇒ ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (coeff‘(𝐹 ∘f + 𝐺)) = (𝐴 ∘f + 𝐵)) | ||
| Theorem | coemul 26157* | A coefficient of a product of polynomials. (Contributed by Mario Carneiro, 24-Jul-2014.) |
| ⊢ 𝐴 = (coeff‘𝐹) & ⊢ 𝐵 = (coeff‘𝐺) ⇒ ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝑁 ∈ ℕ0) → ((coeff‘(𝐹 ∘f · 𝐺))‘𝑁) = Σ𝑘 ∈ (0...𝑁)((𝐴‘𝑘) · (𝐵‘(𝑁 − 𝑘)))) | ||
| Theorem | coe11 26158 | The coefficient function is one-to-one, so if the coefficients are equal then the functions are equal and vice-versa. (Contributed by Mario Carneiro, 24-Jul-2014.) (Revised by Mario Carneiro, 23-Aug-2014.) |
| ⊢ 𝐴 = (coeff‘𝐹) & ⊢ 𝐵 = (coeff‘𝐺) ⇒ ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (𝐹 = 𝐺 ↔ 𝐴 = 𝐵)) | ||
| Theorem | coemulhi 26159 | The leading coefficient of a product of polynomials. (Contributed by Mario Carneiro, 24-Jul-2014.) |
| ⊢ 𝐴 = (coeff‘𝐹) & ⊢ 𝐵 = (coeff‘𝐺) & ⊢ 𝑀 = (deg‘𝐹) & ⊢ 𝑁 = (deg‘𝐺) ⇒ ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → ((coeff‘(𝐹 ∘f · 𝐺))‘(𝑀 + 𝑁)) = ((𝐴‘𝑀) · (𝐵‘𝑁))) | ||
| Theorem | coemulc 26160 | The coefficient function is linear under scalar multiplication. (Contributed by Mario Carneiro, 24-Jul-2014.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) → (coeff‘((ℂ × {𝐴}) ∘f · 𝐹)) = ((ℕ0 × {𝐴}) ∘f · (coeff‘𝐹))) | ||
| Theorem | coe0 26161 | The coefficients of the zero polynomial are zero. (Contributed by Mario Carneiro, 22-Jul-2014.) |
| ⊢ (coeff‘0𝑝) = (ℕ0 × {0}) | ||
| Theorem | coesub 26162 | The coefficient function of a sum is the sum of coefficients. (Contributed by Mario Carneiro, 24-Jul-2014.) |
| ⊢ 𝐴 = (coeff‘𝐹) & ⊢ 𝐵 = (coeff‘𝐺) ⇒ ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (coeff‘(𝐹 ∘f − 𝐺)) = (𝐴 ∘f − 𝐵)) | ||
| Theorem | coe1termlem 26163* | The coefficient function of a monomial. (Contributed by Mario Carneiro, 26-Jul-2014.) (Revised by Mario Carneiro, 23-Aug-2014.) |
| ⊢ 𝐹 = (𝑧 ∈ ℂ ↦ (𝐴 · (𝑧↑𝑁))) ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ((coeff‘𝐹) = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 𝑁, 𝐴, 0)) ∧ (𝐴 ≠ 0 → (deg‘𝐹) = 𝑁))) | ||
| Theorem | coe1term 26164* | The coefficient function of a monomial. (Contributed by Mario Carneiro, 26-Jul-2014.) |
| ⊢ 𝐹 = (𝑧 ∈ ℂ ↦ (𝐴 · (𝑧↑𝑁))) ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0) → ((coeff‘𝐹)‘𝑀) = if(𝑀 = 𝑁, 𝐴, 0)) | ||
| Theorem | dgr1term 26165* | The degree of a monomial. (Contributed by Mario Carneiro, 26-Jul-2014.) |
| ⊢ 𝐹 = (𝑧 ∈ ℂ ↦ (𝐴 · (𝑧↑𝑁))) ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ ℕ0) → (deg‘𝐹) = 𝑁) | ||
| Theorem | plycn 26166 | A polynomial is a continuous function. (Contributed by Mario Carneiro, 23-Jul-2014.) Avoid ax-mulf 11148. (Revised by GG, 16-Mar-2025.) |
| ⊢ (𝐹 ∈ (Poly‘𝑆) → 𝐹 ∈ (ℂ–cn→ℂ)) | ||
| Theorem | plycnOLD 26167 | Obsolete version of plycn 26166 as of 10-Apr-2025. (Contributed by Mario Carneiro, 23-Jul-2014.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (𝐹 ∈ (Poly‘𝑆) → 𝐹 ∈ (ℂ–cn→ℂ)) | ||
| Theorem | dgr0 26168 | The degree of the zero polynomial is zero. Note: this differs from some other definitions of the degree of the zero polynomial, such as -1, -∞ or undefined. But it is convenient for us to define it this way, so that we have dgrcl 26138, dgreq0 26171 and coeid 26143 without having to special-case zero, although plydivalg 26207 is a little more complicated as a result. (Contributed by Mario Carneiro, 22-Jul-2014.) |
| ⊢ (deg‘0𝑝) = 0 | ||
| Theorem | coeidp 26169 | The coefficients of the identity function. (Contributed by Mario Carneiro, 28-Jul-2014.) |
| ⊢ (𝐴 ∈ ℕ0 → ((coeff‘Xp)‘𝐴) = if(𝐴 = 1, 1, 0)) | ||
| Theorem | dgrid 26170 | The degree of the identity function. (Contributed by Mario Carneiro, 26-Jul-2014.) |
| ⊢ (deg‘Xp) = 1 | ||
| Theorem | dgreq0 26171 | The leading coefficient of a polynomial is nonzero, unless the entire polynomial is zero. (Contributed by Mario Carneiro, 22-Jul-2014.) (Proof shortened by Fan Zheng, 21-Jun-2016.) |
| ⊢ 𝑁 = (deg‘𝐹) & ⊢ 𝐴 = (coeff‘𝐹) ⇒ ⊢ (𝐹 ∈ (Poly‘𝑆) → (𝐹 = 0𝑝 ↔ (𝐴‘𝑁) = 0)) | ||
| Theorem | dgrlt 26172 | Two ways to say that the degree of 𝐹 is strictly less than 𝑁. (Contributed by Mario Carneiro, 25-Jul-2014.) |
| ⊢ 𝑁 = (deg‘𝐹) & ⊢ 𝐴 = (coeff‘𝐹) ⇒ ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0) → ((𝐹 = 0𝑝 ∨ 𝑁 < 𝑀) ↔ (𝑁 ≤ 𝑀 ∧ (𝐴‘𝑀) = 0))) | ||
| Theorem | dgradd 26173 | The degree of a sum of polynomials is at most the maximum of the degrees. (Contributed by Mario Carneiro, 24-Jul-2014.) |
| ⊢ 𝑀 = (deg‘𝐹) & ⊢ 𝑁 = (deg‘𝐺) ⇒ ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (deg‘(𝐹 ∘f + 𝐺)) ≤ if(𝑀 ≤ 𝑁, 𝑁, 𝑀)) | ||
| Theorem | dgradd2 26174 | The degree of a sum of polynomials of unequal degrees is the degree of the larger polynomial. (Contributed by Mario Carneiro, 24-Jul-2014.) |
| ⊢ 𝑀 = (deg‘𝐹) & ⊢ 𝑁 = (deg‘𝐺) ⇒ ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝑀 < 𝑁) → (deg‘(𝐹 ∘f + 𝐺)) = 𝑁) | ||
| Theorem | dgrmul2 26175 | The degree of a product of polynomials is at most the sum of degrees. (Contributed by Mario Carneiro, 24-Jul-2014.) |
| ⊢ 𝑀 = (deg‘𝐹) & ⊢ 𝑁 = (deg‘𝐺) ⇒ ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (deg‘(𝐹 ∘f · 𝐺)) ≤ (𝑀 + 𝑁)) | ||
| Theorem | dgrmul 26176 | The degree of a product of nonzero polynomials is the sum of degrees. (Contributed by Mario Carneiro, 24-Jul-2014.) |
| ⊢ 𝑀 = (deg‘𝐹) & ⊢ 𝑁 = (deg‘𝐺) ⇒ ⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐹 ≠ 0𝑝) ∧ (𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝)) → (deg‘(𝐹 ∘f · 𝐺)) = (𝑀 + 𝑁)) | ||
| Theorem | dgrmulc 26177 | Scalar multiplication by a nonzero constant does not change the degree of a function. (Contributed by Mario Carneiro, 24-Jul-2014.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐹 ∈ (Poly‘𝑆)) → (deg‘((ℂ × {𝐴}) ∘f · 𝐹)) = (deg‘𝐹)) | ||
| Theorem | dgrsub 26178 | The degree of a difference of polynomials is at most the maximum of the degrees. (Contributed by Mario Carneiro, 26-Jul-2014.) |
| ⊢ 𝑀 = (deg‘𝐹) & ⊢ 𝑁 = (deg‘𝐺) ⇒ ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (deg‘(𝐹 ∘f − 𝐺)) ≤ if(𝑀 ≤ 𝑁, 𝑁, 𝑀)) | ||
| Theorem | dgrcolem1 26179* | The degree of a composition of a monomial with a polynomial. (Contributed by Mario Carneiro, 15-Sep-2014.) |
| ⊢ 𝑁 = (deg‘𝐺) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐺 ∈ (Poly‘𝑆)) ⇒ ⊢ (𝜑 → (deg‘(𝑥 ∈ ℂ ↦ ((𝐺‘𝑥)↑𝑀))) = (𝑀 · 𝑁)) | ||
| Theorem | dgrcolem2 26180* | Lemma for dgrco 26181. (Contributed by Mario Carneiro, 15-Sep-2014.) |
| ⊢ 𝑀 = (deg‘𝐹) & ⊢ 𝑁 = (deg‘𝐺) & ⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) & ⊢ (𝜑 → 𝐺 ∈ (Poly‘𝑆)) & ⊢ 𝐴 = (coeff‘𝐹) & ⊢ (𝜑 → 𝐷 ∈ ℕ0) & ⊢ (𝜑 → 𝑀 = (𝐷 + 1)) & ⊢ (𝜑 → ∀𝑓 ∈ (Poly‘ℂ)((deg‘𝑓) ≤ 𝐷 → (deg‘(𝑓 ∘ 𝐺)) = ((deg‘𝑓) · 𝑁))) ⇒ ⊢ (𝜑 → (deg‘(𝐹 ∘ 𝐺)) = (𝑀 · 𝑁)) | ||
| Theorem | dgrco 26181 | The degree of a composition of two polynomials is the product of the degrees. (Contributed by Mario Carneiro, 15-Sep-2014.) |
| ⊢ 𝑀 = (deg‘𝐹) & ⊢ 𝑁 = (deg‘𝐺) & ⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) & ⊢ (𝜑 → 𝐺 ∈ (Poly‘𝑆)) ⇒ ⊢ (𝜑 → (deg‘(𝐹 ∘ 𝐺)) = (𝑀 · 𝑁)) | ||
| Theorem | plycjlem 26182* | Lemma for plycj 26183 and coecj 26184. (Contributed by Mario Carneiro, 24-Jul-2014.) |
| ⊢ 𝑁 = (deg‘𝐹) & ⊢ 𝐺 = ((∗ ∘ 𝐹) ∘ ∗) & ⊢ 𝐴 = (coeff‘𝐹) ⇒ ⊢ (𝐹 ∈ (Poly‘𝑆) → 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(((∗ ∘ 𝐴)‘𝑘) · (𝑧↑𝑘)))) | ||
| Theorem | plycj 26183* | The double conjugation of a polynomial is a polynomial. (The single conjugation is not because our definition of polynomial includes only holomorphic functions, i.e. no dependence on (∗‘𝑧) independently of 𝑧.) (Contributed by Mario Carneiro, 24-Jul-2014.) |
| ⊢ 𝐺 = ((∗ ∘ 𝐹) ∘ ∗) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → (∗‘𝑥) ∈ 𝑆) & ⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) ⇒ ⊢ (𝜑 → 𝐺 ∈ (Poly‘𝑆)) | ||
| Theorem | coecj 26184 | Double conjugation of a polynomial causes the coefficients to be conjugated. (Contributed by Mario Carneiro, 24-Jul-2014.) |
| ⊢ 𝐺 = ((∗ ∘ 𝐹) ∘ ∗) & ⊢ 𝐴 = (coeff‘𝐹) ⇒ ⊢ (𝐹 ∈ (Poly‘𝑆) → (coeff‘𝐺) = (∗ ∘ 𝐴)) | ||
| Theorem | plycjOLD 26185* | Obsolete version of plycj 26183 as of 22-Sep-2025. The double conjugation of a polynomial is a polynomial. (The single conjugation is not because our definition of polynomial includes only holomorphic functions, i.e. no dependence on (∗‘𝑧) independently of 𝑧.) (Contributed by Mario Carneiro, 24-Jul-2014.) (New usage is discouraged.) (Proof modification is discouraged.) |
| ⊢ 𝑁 = (deg‘𝐹) & ⊢ 𝐺 = ((∗ ∘ 𝐹) ∘ ∗) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → (∗‘𝑥) ∈ 𝑆) & ⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) ⇒ ⊢ (𝜑 → 𝐺 ∈ (Poly‘𝑆)) | ||
| Theorem | coecjOLD 26186 | Obsolete version of coecj 26184 as of 22-Sep-2025. Double conjugation of a polynomial causes the coefficients to be conjugated. (Contributed by Mario Carneiro, 24-Jul-2014.) (New usage is discouraged.) (Proof modification is discouraged.) |
| ⊢ 𝑁 = (deg‘𝐹) & ⊢ 𝐺 = ((∗ ∘ 𝐹) ∘ ∗) & ⊢ 𝐴 = (coeff‘𝐹) ⇒ ⊢ (𝐹 ∈ (Poly‘𝑆) → (coeff‘𝐺) = (∗ ∘ 𝐴)) | ||
| Theorem | plyrecj 26187 | A polynomial with real coefficients distributes under conjugation. (Contributed by Mario Carneiro, 24-Jul-2014.) |
| ⊢ ((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) → (∗‘(𝐹‘𝐴)) = (𝐹‘(∗‘𝐴))) | ||
| Theorem | plymul0or 26188 | Polynomial multiplication has no zero divisors. (Contributed by Mario Carneiro, 26-Jul-2014.) |
| ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → ((𝐹 ∘f · 𝐺) = 0𝑝 ↔ (𝐹 = 0𝑝 ∨ 𝐺 = 0𝑝))) | ||
| Theorem | ofmulrt 26189 | The set of roots of a product is the union of the roots of the terms. (Contributed by Mario Carneiro, 28-Jul-2014.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) → (◡(𝐹 ∘f · 𝐺) “ {0}) = ((◡𝐹 “ {0}) ∪ (◡𝐺 “ {0}))) | ||
| Theorem | plyreres 26190 | Real-coefficient polynomials restrict to real functions. (Contributed by Stefan O'Rear, 16-Nov-2014.) |
| ⊢ (𝐹 ∈ (Poly‘ℝ) → (𝐹 ↾ ℝ):ℝ⟶ℝ) | ||
| Theorem | dvply1 26191* | Derivative of a polynomial, explicit sum version. (Contributed by Stefan O'Rear, 13-Nov-2014.) (Revised by Mario Carneiro, 11-Feb-2015.) |
| ⊢ (𝜑 → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴‘𝑘) · (𝑧↑𝑘)))) & ⊢ (𝜑 → 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(𝑁 − 1))((𝐵‘𝑘) · (𝑧↑𝑘)))) & ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) & ⊢ 𝐵 = (𝑘 ∈ ℕ0 ↦ ((𝑘 + 1) · (𝐴‘(𝑘 + 1)))) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) ⇒ ⊢ (𝜑 → (ℂ D 𝐹) = 𝐺) | ||
| Theorem | dvply2g 26192 | The derivative of a polynomial with coefficients in a subring is a polynomial with coefficients in the same ring. (Contributed by Mario Carneiro, 1-Jan-2017.) Avoid ax-mulf 11148. (Revised by GG, 30-Apr-2025.) |
| ⊢ ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) → (ℂ D 𝐹) ∈ (Poly‘𝑆)) | ||
| Theorem | dvply2gOLD 26193 | Obsolete version of dvply2g 26192 as of 30-Apr-2025. (Contributed by Mario Carneiro, 1-Jan-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) → (ℂ D 𝐹) ∈ (Poly‘𝑆)) | ||
| Theorem | dvply2 26194 | The derivative of a polynomial is a polynomial. (Contributed by Stefan O'Rear, 14-Nov-2014.) (Proof shortened by Mario Carneiro, 1-Jan-2017.) |
| ⊢ (𝐹 ∈ (Poly‘𝑆) → (ℂ D 𝐹) ∈ (Poly‘ℂ)) | ||
| Theorem | dvnply2 26195 | Polynomials have polynomials as derivatives of all orders. (Contributed by Mario Carneiro, 1-Jan-2017.) |
| ⊢ ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆) ∧ 𝑁 ∈ ℕ0) → ((ℂ D𝑛 𝐹)‘𝑁) ∈ (Poly‘𝑆)) | ||
| Theorem | dvnply 26196 | Polynomials have polynomials as derivatives of all orders. (Contributed by Stefan O'Rear, 15-Nov-2014.) (Revised by Mario Carneiro, 1-Jan-2017.) |
| ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑁 ∈ ℕ0) → ((ℂ D𝑛 𝐹)‘𝑁) ∈ (Poly‘ℂ)) | ||
| Theorem | plycpn 26197 | Polynomials are smooth. (Contributed by Stefan O'Rear, 16-Nov-2014.) (Revised by Mario Carneiro, 11-Feb-2015.) |
| ⊢ (𝐹 ∈ (Poly‘𝑆) → 𝐹 ∈ ∩ ran (𝓑C𝑛‘ℂ)) | ||
| Syntax | cquot 26198 | Extend class notation to include the quotient of a polynomial division. |
| class quot | ||
| Definition | df-quot 26199* | Define the quotient function on polynomials. This is the 𝑞 of the expression 𝑓 = 𝑔 · 𝑞 + 𝑟 in the division algorithm. (Contributed by Mario Carneiro, 23-Jul-2014.) |
| ⊢ quot = (𝑓 ∈ (Poly‘ℂ), 𝑔 ∈ ((Poly‘ℂ) ∖ {0𝑝}) ↦ (℩𝑞 ∈ (Poly‘ℂ)[(𝑓 ∘f − (𝑔 ∘f · 𝑞)) / 𝑟](𝑟 = 0𝑝 ∨ (deg‘𝑟) < (deg‘𝑔)))) | ||
| Theorem | quotval 26200* | Value of the quotient function. (Contributed by Mario Carneiro, 23-Jul-2014.) |
| ⊢ 𝑅 = (𝐹 ∘f − (𝐺 ∘f · 𝑞)) ⇒ ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → (𝐹 quot 𝐺) = (℩𝑞 ∈ (Poly‘ℂ)(𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺)))) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |