![]() |
Metamath
Proof Explorer Theorem List (p. 262 of 489) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-30950) |
![]() (30951-32473) |
![]() (32474-48899) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | ftc1lem5 26101* | Lemma for ftc1 26103. (Contributed by Mario Carneiro, 14-Aug-2014.) (Revised by Mario Carneiro, 28-Dec-2016.) |
⊢ 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ ∫(𝐴(,)𝑥)(𝐹‘𝑡) d𝑡) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ≤ 𝐵) & ⊢ (𝜑 → (𝐴(,)𝐵) ⊆ 𝐷) & ⊢ (𝜑 → 𝐷 ⊆ ℝ) & ⊢ (𝜑 → 𝐹 ∈ 𝐿1) & ⊢ (𝜑 → 𝐶 ∈ (𝐴(,)𝐵)) & ⊢ (𝜑 → 𝐹 ∈ ((𝐾 CnP 𝐿)‘𝐶)) & ⊢ 𝐽 = (𝐿 ↾t ℝ) & ⊢ 𝐾 = (𝐿 ↾t 𝐷) & ⊢ 𝐿 = (TopOpen‘ℂfld) & ⊢ 𝐻 = (𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝐶}) ↦ (((𝐺‘𝑧) − (𝐺‘𝐶)) / (𝑧 − 𝐶))) & ⊢ (𝜑 → 𝐸 ∈ ℝ+) & ⊢ (𝜑 → 𝑅 ∈ ℝ+) & ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → ((abs‘(𝑦 − 𝐶)) < 𝑅 → (abs‘((𝐹‘𝑦) − (𝐹‘𝐶))) < 𝐸)) & ⊢ (𝜑 → 𝑋 ∈ (𝐴[,]𝐵)) & ⊢ (𝜑 → (abs‘(𝑋 − 𝐶)) < 𝑅) ⇒ ⊢ ((𝜑 ∧ 𝑋 ≠ 𝐶) → (abs‘((𝐻‘𝑋) − (𝐹‘𝐶))) < 𝐸) | ||
Theorem | ftc1lem6 26102* | Lemma for ftc1 26103. (Contributed by Mario Carneiro, 14-Aug-2014.) (Proof shortened by Mario Carneiro, 28-Dec-2016.) |
⊢ 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ ∫(𝐴(,)𝑥)(𝐹‘𝑡) d𝑡) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ≤ 𝐵) & ⊢ (𝜑 → (𝐴(,)𝐵) ⊆ 𝐷) & ⊢ (𝜑 → 𝐷 ⊆ ℝ) & ⊢ (𝜑 → 𝐹 ∈ 𝐿1) & ⊢ (𝜑 → 𝐶 ∈ (𝐴(,)𝐵)) & ⊢ (𝜑 → 𝐹 ∈ ((𝐾 CnP 𝐿)‘𝐶)) & ⊢ 𝐽 = (𝐿 ↾t ℝ) & ⊢ 𝐾 = (𝐿 ↾t 𝐷) & ⊢ 𝐿 = (TopOpen‘ℂfld) & ⊢ 𝐻 = (𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝐶}) ↦ (((𝐺‘𝑧) − (𝐺‘𝐶)) / (𝑧 − 𝐶))) ⇒ ⊢ (𝜑 → (𝐹‘𝐶) ∈ (𝐻 limℂ 𝐶)) | ||
Theorem | ftc1 26103* | The Fundamental Theorem of Calculus, part one. The function formed by varying the right endpoint of an integral is differentiable at 𝐶 with derivative 𝐹(𝐶) if the original function is continuous at 𝐶. This is part of Metamath 100 proof #15. (Contributed by Mario Carneiro, 1-Sep-2014.) |
⊢ 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ ∫(𝐴(,)𝑥)(𝐹‘𝑡) d𝑡) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ≤ 𝐵) & ⊢ (𝜑 → (𝐴(,)𝐵) ⊆ 𝐷) & ⊢ (𝜑 → 𝐷 ⊆ ℝ) & ⊢ (𝜑 → 𝐹 ∈ 𝐿1) & ⊢ (𝜑 → 𝐶 ∈ (𝐴(,)𝐵)) & ⊢ (𝜑 → 𝐹 ∈ ((𝐾 CnP 𝐿)‘𝐶)) & ⊢ 𝐽 = (𝐿 ↾t ℝ) & ⊢ 𝐾 = (𝐿 ↾t 𝐷) & ⊢ 𝐿 = (TopOpen‘ℂfld) ⇒ ⊢ (𝜑 → 𝐶(ℝ D 𝐺)(𝐹‘𝐶)) | ||
Theorem | ftc1cn 26104* | Strengthen the assumptions of ftc1 26103 to when the function 𝐹 is continuous on the entire interval (𝐴, 𝐵); in this case we can calculate D 𝐺 exactly. (Contributed by Mario Carneiro, 1-Sep-2014.) |
⊢ 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ ∫(𝐴(,)𝑥)(𝐹‘𝑡) d𝑡) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ≤ 𝐵) & ⊢ (𝜑 → 𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ)) & ⊢ (𝜑 → 𝐹 ∈ 𝐿1) ⇒ ⊢ (𝜑 → (ℝ D 𝐺) = 𝐹) | ||
Theorem | ftc2 26105* | The Fundamental Theorem of Calculus, part two. If 𝐹 is a function continuous on [𝐴, 𝐵] and continuously differentiable on (𝐴, 𝐵), then the integral of the derivative of 𝐹 is equal to 𝐹(𝐵) − 𝐹(𝐴). This is part of Metamath 100 proof #15. (Contributed by Mario Carneiro, 2-Sep-2014.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ≤ 𝐵) & ⊢ (𝜑 → (ℝ D 𝐹) ∈ ((𝐴(,)𝐵)–cn→ℂ)) & ⊢ (𝜑 → (ℝ D 𝐹) ∈ 𝐿1) & ⊢ (𝜑 → 𝐹 ∈ ((𝐴[,]𝐵)–cn→ℂ)) ⇒ ⊢ (𝜑 → ∫(𝐴(,)𝐵)((ℝ D 𝐹)‘𝑡) d𝑡 = ((𝐹‘𝐵) − (𝐹‘𝐴))) | ||
Theorem | ftc2ditglem 26106* | Lemma for ftc2ditg 26107. (Contributed by Mario Carneiro, 3-Sep-2014.) |
⊢ (𝜑 → 𝑋 ∈ ℝ) & ⊢ (𝜑 → 𝑌 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ∈ (𝑋[,]𝑌)) & ⊢ (𝜑 → 𝐵 ∈ (𝑋[,]𝑌)) & ⊢ (𝜑 → (ℝ D 𝐹) ∈ ((𝑋(,)𝑌)–cn→ℂ)) & ⊢ (𝜑 → (ℝ D 𝐹) ∈ 𝐿1) & ⊢ (𝜑 → 𝐹 ∈ ((𝑋[,]𝑌)–cn→ℂ)) ⇒ ⊢ ((𝜑 ∧ 𝐴 ≤ 𝐵) → ⨜[𝐴 → 𝐵]((ℝ D 𝐹)‘𝑡) d𝑡 = ((𝐹‘𝐵) − (𝐹‘𝐴))) | ||
Theorem | ftc2ditg 26107* | Directed integral analogue of ftc2 26105. (Contributed by Mario Carneiro, 3-Sep-2014.) |
⊢ (𝜑 → 𝑋 ∈ ℝ) & ⊢ (𝜑 → 𝑌 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ∈ (𝑋[,]𝑌)) & ⊢ (𝜑 → 𝐵 ∈ (𝑋[,]𝑌)) & ⊢ (𝜑 → (ℝ D 𝐹) ∈ ((𝑋(,)𝑌)–cn→ℂ)) & ⊢ (𝜑 → (ℝ D 𝐹) ∈ 𝐿1) & ⊢ (𝜑 → 𝐹 ∈ ((𝑋[,]𝑌)–cn→ℂ)) ⇒ ⊢ (𝜑 → ⨜[𝐴 → 𝐵]((ℝ D 𝐹)‘𝑡) d𝑡 = ((𝐹‘𝐵) − (𝐹‘𝐴))) | ||
Theorem | itgparts 26108* | Integration by parts. If 𝐵(𝑥) is the derivative of 𝐴(𝑥) and 𝐷(𝑥) is the derivative of 𝐶(𝑥), and 𝐸 = (𝐴 · 𝐵)(𝑋) and 𝐹 = (𝐴 · 𝐵)(𝑌), then under suitable integrability and differentiability assumptions, the integral of 𝐴 · 𝐷 from 𝑋 to 𝑌 is equal to 𝐹 − 𝐸 minus the integral of 𝐵 · 𝐶. (Contributed by Mario Carneiro, 3-Sep-2014.) |
⊢ (𝜑 → 𝑋 ∈ ℝ) & ⊢ (𝜑 → 𝑌 ∈ ℝ) & ⊢ (𝜑 → 𝑋 ≤ 𝑌) & ⊢ (𝜑 → (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴) ∈ ((𝑋[,]𝑌)–cn→ℂ)) & ⊢ (𝜑 → (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐶) ∈ ((𝑋[,]𝑌)–cn→ℂ)) & ⊢ (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐵) ∈ ((𝑋(,)𝑌)–cn→ℂ)) & ⊢ (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐷) ∈ ((𝑋(,)𝑌)–cn→ℂ)) & ⊢ (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ (𝐴 · 𝐷)) ∈ 𝐿1) & ⊢ (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ (𝐵 · 𝐶)) ∈ 𝐿1) & ⊢ (𝜑 → (ℝ D (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)) = (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐵)) & ⊢ (𝜑 → (ℝ D (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐶)) = (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐷)) & ⊢ ((𝜑 ∧ 𝑥 = 𝑋) → (𝐴 · 𝐶) = 𝐸) & ⊢ ((𝜑 ∧ 𝑥 = 𝑌) → (𝐴 · 𝐶) = 𝐹) ⇒ ⊢ (𝜑 → ∫(𝑋(,)𝑌)(𝐴 · 𝐷) d𝑥 = ((𝐹 − 𝐸) − ∫(𝑋(,)𝑌)(𝐵 · 𝐶) d𝑥)) | ||
Theorem | itgsubstlem 26109* | Lemma for itgsubst 26110. (Contributed by Mario Carneiro, 12-Sep-2014.) |
⊢ (𝜑 → 𝑋 ∈ ℝ) & ⊢ (𝜑 → 𝑌 ∈ ℝ) & ⊢ (𝜑 → 𝑋 ≤ 𝑌) & ⊢ (𝜑 → 𝑍 ∈ ℝ*) & ⊢ (𝜑 → 𝑊 ∈ ℝ*) & ⊢ (𝜑 → (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴) ∈ ((𝑋[,]𝑌)–cn→(𝑍(,)𝑊))) & ⊢ (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐵) ∈ (((𝑋(,)𝑌)–cn→ℂ) ∩ 𝐿1)) & ⊢ (𝜑 → (𝑢 ∈ (𝑍(,)𝑊) ↦ 𝐶) ∈ ((𝑍(,)𝑊)–cn→ℂ)) & ⊢ (𝜑 → (ℝ D (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)) = (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐵)) & ⊢ (𝑢 = 𝐴 → 𝐶 = 𝐸) & ⊢ (𝑥 = 𝑋 → 𝐴 = 𝐾) & ⊢ (𝑥 = 𝑌 → 𝐴 = 𝐿) & ⊢ (𝜑 → 𝑀 ∈ (𝑍(,)𝑊)) & ⊢ (𝜑 → 𝑁 ∈ (𝑍(,)𝑊)) & ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋[,]𝑌)) → 𝐴 ∈ (𝑀(,)𝑁)) ⇒ ⊢ (𝜑 → ⨜[𝐾 → 𝐿]𝐶 d𝑢 = ⨜[𝑋 → 𝑌](𝐸 · 𝐵) d𝑥) | ||
Theorem | itgsubst 26110* | Integration by 𝑢-substitution. If 𝐴(𝑥) is a continuous, differentiable function from [𝑋, 𝑌] to (𝑍, 𝑊), whose derivative is continuous and integrable, and 𝐶(𝑢) is a continuous function on (𝑍, 𝑊), then the integral of 𝐶(𝑢) from 𝐾 = 𝐴(𝑋) to 𝐿 = 𝐴(𝑌) is equal to the integral of 𝐶(𝐴(𝑥)) D 𝐴(𝑥) from 𝑋 to 𝑌. In this part of the proof we discharge the assumptions in itgsubstlem 26109, which use the fact that (𝑍, 𝑊) is open to shrink the interval a little to (𝑀, 𝑁) where 𝑍 < 𝑀 < 𝑁 < 𝑊- this is possible because 𝐴(𝑥) is a continuous function on a closed interval, so its range is in fact a closed interval, and we have some wiggle room on the edges. (Contributed by Mario Carneiro, 7-Sep-2014.) |
⊢ (𝜑 → 𝑋 ∈ ℝ) & ⊢ (𝜑 → 𝑌 ∈ ℝ) & ⊢ (𝜑 → 𝑋 ≤ 𝑌) & ⊢ (𝜑 → 𝑍 ∈ ℝ*) & ⊢ (𝜑 → 𝑊 ∈ ℝ*) & ⊢ (𝜑 → (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴) ∈ ((𝑋[,]𝑌)–cn→(𝑍(,)𝑊))) & ⊢ (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐵) ∈ (((𝑋(,)𝑌)–cn→ℂ) ∩ 𝐿1)) & ⊢ (𝜑 → (𝑢 ∈ (𝑍(,)𝑊) ↦ 𝐶) ∈ ((𝑍(,)𝑊)–cn→ℂ)) & ⊢ (𝜑 → (ℝ D (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)) = (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐵)) & ⊢ (𝑢 = 𝐴 → 𝐶 = 𝐸) & ⊢ (𝑥 = 𝑋 → 𝐴 = 𝐾) & ⊢ (𝑥 = 𝑌 → 𝐴 = 𝐿) ⇒ ⊢ (𝜑 → ⨜[𝐾 → 𝐿]𝐶 d𝑢 = ⨜[𝑋 → 𝑌](𝐸 · 𝐵) d𝑥) | ||
Theorem | itgpowd 26111* | The integral of a monomial on a closed bounded interval of the real line. Co-authors TA and MC. (Contributed by Jon Pennant, 31-May-2019.) (Revised by Thierry Arnoux, 14-Jun-2019.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ≤ 𝐵) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) ⇒ ⊢ (𝜑 → ∫(𝐴[,]𝐵)(𝑥↑𝑁) d𝑥 = (((𝐵↑(𝑁 + 1)) − (𝐴↑(𝑁 + 1))) / (𝑁 + 1))) | ||
Syntax | cmdg 26112 | Multivariate polynomial degree. |
class mDeg | ||
Syntax | cdg1 26113 | Univariate polynomial degree. |
class deg1 | ||
Definition | df-mdeg 26114* | Define the degree of a polynomial. Note (SO): as an experiment I am using a definition which makes the degree of the zero polynomial -∞, contrary to the convention used in df-dgr 26250. (Contributed by Stefan O'Rear, 19-Mar-2015.) (Revised by AV, 25-Jun-2019.) |
⊢ mDeg = (𝑖 ∈ V, 𝑟 ∈ V ↦ (𝑓 ∈ (Base‘(𝑖 mPoly 𝑟)) ↦ sup(ran (ℎ ∈ (𝑓 supp (0g‘𝑟)) ↦ (ℂfld Σg ℎ)), ℝ*, < ))) | ||
Definition | df-deg1 26115 | Define the degree of a univariate polynomial. (Contributed by Stefan O'Rear, 23-Mar-2015.) |
⊢ deg1 = (𝑟 ∈ V ↦ (1o mDeg 𝑟)) | ||
Theorem | reldmmdeg 26116 | Multivariate degree is a binary operation. (Contributed by Stefan O'Rear, 28-Mar-2015.) |
⊢ Rel dom mDeg | ||
Theorem | tdeglem1 26117* | Functionality of the total degree helper function. (Contributed by Stefan O'Rear, 19-Mar-2015.) (Proof shortened by AV, 27-Jul-2019.) Remove sethood antecedent. (Revised by SN, 7-Aug-2024.) |
⊢ 𝐴 = {𝑚 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑚 “ ℕ) ∈ Fin} & ⊢ 𝐻 = (ℎ ∈ 𝐴 ↦ (ℂfld Σg ℎ)) ⇒ ⊢ 𝐻:𝐴⟶ℕ0 | ||
Theorem | tdeglem3 26118* | Additivity of the total degree helper function. (Contributed by Stefan O'Rear, 26-Mar-2015.) (Proof shortened by AV, 27-Jul-2019.) Remove a sethood antecedent. (Revised by SN, 7-Aug-2024.) |
⊢ 𝐴 = {𝑚 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑚 “ ℕ) ∈ Fin} & ⊢ 𝐻 = (ℎ ∈ 𝐴 ↦ (ℂfld Σg ℎ)) ⇒ ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴) → (𝐻‘(𝑋 ∘f + 𝑌)) = ((𝐻‘𝑋) + (𝐻‘𝑌))) | ||
Theorem | tdeglem4 26119* | There is only one multi-index with total degree 0. (Contributed by Stefan O'Rear, 29-Mar-2015.) Remove a sethood antecedent. (Revised by SN, 7-Aug-2024.) |
⊢ 𝐴 = {𝑚 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑚 “ ℕ) ∈ Fin} & ⊢ 𝐻 = (ℎ ∈ 𝐴 ↦ (ℂfld Σg ℎ)) ⇒ ⊢ (𝑋 ∈ 𝐴 → ((𝐻‘𝑋) = 0 ↔ 𝑋 = (𝐼 × {0}))) | ||
Theorem | tdeglem2 26120 | Simplification of total degree for the univariate case. (Contributed by Stefan O'Rear, 23-Mar-2015.) |
⊢ (ℎ ∈ (ℕ0 ↑m 1o) ↦ (ℎ‘∅)) = (ℎ ∈ (ℕ0 ↑m 1o) ↦ (ℂfld Σg ℎ)) | ||
Theorem | mdegfval 26121* | Value of the multivariate degree function. (Contributed by Stefan O'Rear, 19-Mar-2015.) (Revised by AV, 25-Jun-2019.) |
⊢ 𝐷 = (𝐼 mDeg 𝑅) & ⊢ 𝑃 = (𝐼 mPoly 𝑅) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝐴 = {𝑚 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑚 “ ℕ) ∈ Fin} & ⊢ 𝐻 = (ℎ ∈ 𝐴 ↦ (ℂfld Σg ℎ)) ⇒ ⊢ 𝐷 = (𝑓 ∈ 𝐵 ↦ sup((𝐻 “ (𝑓 supp 0 )), ℝ*, < )) | ||
Theorem | mdegval 26122* | Value of the multivariate degree function at some particular polynomial. (Contributed by Stefan O'Rear, 19-Mar-2015.) (Revised by AV, 25-Jun-2019.) |
⊢ 𝐷 = (𝐼 mDeg 𝑅) & ⊢ 𝑃 = (𝐼 mPoly 𝑅) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝐴 = {𝑚 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑚 “ ℕ) ∈ Fin} & ⊢ 𝐻 = (ℎ ∈ 𝐴 ↦ (ℂfld Σg ℎ)) ⇒ ⊢ (𝐹 ∈ 𝐵 → (𝐷‘𝐹) = sup((𝐻 “ (𝐹 supp 0 )), ℝ*, < )) | ||
Theorem | mdegleb 26123* | Property of being of limited degree. (Contributed by Stefan O'Rear, 19-Mar-2015.) |
⊢ 𝐷 = (𝐼 mDeg 𝑅) & ⊢ 𝑃 = (𝐼 mPoly 𝑅) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝐴 = {𝑚 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑚 “ ℕ) ∈ Fin} & ⊢ 𝐻 = (ℎ ∈ 𝐴 ↦ (ℂfld Σg ℎ)) ⇒ ⊢ ((𝐹 ∈ 𝐵 ∧ 𝐺 ∈ ℝ*) → ((𝐷‘𝐹) ≤ 𝐺 ↔ ∀𝑥 ∈ 𝐴 (𝐺 < (𝐻‘𝑥) → (𝐹‘𝑥) = 0 ))) | ||
Theorem | mdeglt 26124* | If there is an upper limit on the degree of a polynomial that is lower than the degree of some exponent bag, then that exponent bag is unrepresented in the polynomial. (Contributed by Stefan O'Rear, 26-Mar-2015.) (Proof shortened by AV, 27-Jul-2019.) |
⊢ 𝐷 = (𝐼 mDeg 𝑅) & ⊢ 𝑃 = (𝐼 mPoly 𝑅) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝐴 = {𝑚 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑚 “ ℕ) ∈ Fin} & ⊢ 𝐻 = (ℎ ∈ 𝐴 ↦ (ℂfld Σg ℎ)) & ⊢ (𝜑 → 𝐹 ∈ 𝐵) & ⊢ (𝜑 → 𝑋 ∈ 𝐴) & ⊢ (𝜑 → (𝐷‘𝐹) < (𝐻‘𝑋)) ⇒ ⊢ (𝜑 → (𝐹‘𝑋) = 0 ) | ||
Theorem | mdegldg 26125* | A nonzero polynomial has some coefficient which witnesses its degree. (Contributed by Stefan O'Rear, 23-Mar-2015.) |
⊢ 𝐷 = (𝐼 mDeg 𝑅) & ⊢ 𝑃 = (𝐼 mPoly 𝑅) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝐴 = {𝑚 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑚 “ ℕ) ∈ Fin} & ⊢ 𝐻 = (ℎ ∈ 𝐴 ↦ (ℂfld Σg ℎ)) & ⊢ 𝑌 = (0g‘𝑃) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐹 ≠ 𝑌) → ∃𝑥 ∈ 𝐴 ((𝐹‘𝑥) ≠ 0 ∧ (𝐻‘𝑥) = (𝐷‘𝐹))) | ||
Theorem | mdegxrcl 26126 | Closure of polynomial degree in the extended reals. (Contributed by Stefan O'Rear, 19-Mar-2015.) (Proof shortened by AV, 27-Jul-2019.) |
⊢ 𝐷 = (𝐼 mDeg 𝑅) & ⊢ 𝑃 = (𝐼 mPoly 𝑅) & ⊢ 𝐵 = (Base‘𝑃) ⇒ ⊢ (𝐹 ∈ 𝐵 → (𝐷‘𝐹) ∈ ℝ*) | ||
Theorem | mdegxrf 26127 | Functionality of polynomial degree in the extended reals. (Contributed by Stefan O'Rear, 19-Mar-2015.) (Proof shortened by AV, 27-Jul-2019.) |
⊢ 𝐷 = (𝐼 mDeg 𝑅) & ⊢ 𝑃 = (𝐼 mPoly 𝑅) & ⊢ 𝐵 = (Base‘𝑃) ⇒ ⊢ 𝐷:𝐵⟶ℝ* | ||
Theorem | mdegcl 26128 | Sharp closure for multivariate polynomials. (Contributed by Stefan O'Rear, 23-Mar-2015.) |
⊢ 𝐷 = (𝐼 mDeg 𝑅) & ⊢ 𝑃 = (𝐼 mPoly 𝑅) & ⊢ 𝐵 = (Base‘𝑃) ⇒ ⊢ (𝐹 ∈ 𝐵 → (𝐷‘𝐹) ∈ (ℕ0 ∪ {-∞})) | ||
Theorem | mdeg0 26129 | Degree of the zero polynomial. (Contributed by Stefan O'Rear, 20-Mar-2015.) (Proof shortened by AV, 27-Jul-2019.) |
⊢ 𝐷 = (𝐼 mDeg 𝑅) & ⊢ 𝑃 = (𝐼 mPoly 𝑅) & ⊢ 0 = (0g‘𝑃) ⇒ ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring) → (𝐷‘ 0 ) = -∞) | ||
Theorem | mdegnn0cl 26130 | Degree of a nonzero polynomial. (Contributed by Stefan O'Rear, 23-Mar-2015.) |
⊢ 𝐷 = (𝐼 mDeg 𝑅) & ⊢ 𝑃 = (𝐼 mPoly 𝑅) & ⊢ 0 = (0g‘𝑃) & ⊢ 𝐵 = (Base‘𝑃) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐹 ≠ 0 ) → (𝐷‘𝐹) ∈ ℕ0) | ||
Theorem | degltlem1 26131 | Theorem on arithmetic of extended reals useful for degrees. (Contributed by Stefan O'Rear, 23-Mar-2015.) |
⊢ ((𝑋 ∈ (ℕ0 ∪ {-∞}) ∧ 𝑌 ∈ ℤ) → (𝑋 < 𝑌 ↔ 𝑋 ≤ (𝑌 − 1))) | ||
Theorem | degltp1le 26132 | Theorem on arithmetic of extended reals useful for degrees. (Contributed by Stefan O'Rear, 1-Apr-2015.) |
⊢ ((𝑋 ∈ (ℕ0 ∪ {-∞}) ∧ 𝑌 ∈ ℤ) → (𝑋 < (𝑌 + 1) ↔ 𝑋 ≤ 𝑌)) | ||
Theorem | mdegaddle 26133 | The degree of a sum is at most the maximum of the degrees of the factors. (Contributed by Stefan O'Rear, 26-Mar-2015.) |
⊢ 𝑌 = (𝐼 mPoly 𝑅) & ⊢ 𝐷 = (𝐼 mDeg 𝑅) & ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ 𝐵 = (Base‘𝑌) & ⊢ + = (+g‘𝑌) & ⊢ (𝜑 → 𝐹 ∈ 𝐵) & ⊢ (𝜑 → 𝐺 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝐷‘(𝐹 + 𝐺)) ≤ if((𝐷‘𝐹) ≤ (𝐷‘𝐺), (𝐷‘𝐺), (𝐷‘𝐹))) | ||
Theorem | mdegvscale 26134 | The degree of a scalar multiple of a polynomial is at most the degree of the original polynomial. (Contributed by Stefan O'Rear, 26-Mar-2015.) |
⊢ 𝑌 = (𝐼 mPoly 𝑅) & ⊢ 𝐷 = (𝐼 mDeg 𝑅) & ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ 𝐵 = (Base‘𝑌) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ · = ( ·𝑠 ‘𝑌) & ⊢ (𝜑 → 𝐹 ∈ 𝐾) & ⊢ (𝜑 → 𝐺 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝐷‘(𝐹 · 𝐺)) ≤ (𝐷‘𝐺)) | ||
Theorem | mdegvsca 26135 | The degree of a scalar multiple of a polynomial is exactly the degree of the original polynomial when the multiple is a nonzero-divisor. (Contributed by Stefan O'Rear, 28-Mar-2015.) (Proof shortened by AV, 27-Jul-2019.) |
⊢ 𝑌 = (𝐼 mPoly 𝑅) & ⊢ 𝐷 = (𝐼 mDeg 𝑅) & ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ 𝐵 = (Base‘𝑌) & ⊢ 𝐸 = (RLReg‘𝑅) & ⊢ · = ( ·𝑠 ‘𝑌) & ⊢ (𝜑 → 𝐹 ∈ 𝐸) & ⊢ (𝜑 → 𝐺 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝐷‘(𝐹 · 𝐺)) = (𝐷‘𝐺)) | ||
Theorem | mdegle0 26136 | A polynomial has nonpositive degree iff it is a constant. (Contributed by Stefan O'Rear, 29-Mar-2015.) |
⊢ 𝑌 = (𝐼 mPoly 𝑅) & ⊢ 𝐷 = (𝐼 mDeg 𝑅) & ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ 𝐵 = (Base‘𝑌) & ⊢ 𝐴 = (algSc‘𝑌) & ⊢ (𝜑 → 𝐹 ∈ 𝐵) ⇒ ⊢ (𝜑 → ((𝐷‘𝐹) ≤ 0 ↔ 𝐹 = (𝐴‘(𝐹‘(𝐼 × {0}))))) | ||
Theorem | mdegmullem 26137* | Lemma for mdegmulle2 26138. (Contributed by Stefan O'Rear, 26-Mar-2015.) |
⊢ 𝑌 = (𝐼 mPoly 𝑅) & ⊢ 𝐷 = (𝐼 mDeg 𝑅) & ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ 𝐵 = (Base‘𝑌) & ⊢ · = (.r‘𝑌) & ⊢ (𝜑 → 𝐹 ∈ 𝐵) & ⊢ (𝜑 → 𝐺 ∈ 𝐵) & ⊢ (𝜑 → 𝐽 ∈ ℕ0) & ⊢ (𝜑 → 𝐾 ∈ ℕ0) & ⊢ (𝜑 → (𝐷‘𝐹) ≤ 𝐽) & ⊢ (𝜑 → (𝐷‘𝐺) ≤ 𝐾) & ⊢ 𝐴 = {𝑎 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑎 “ ℕ) ∈ Fin} & ⊢ 𝐻 = (𝑏 ∈ 𝐴 ↦ (ℂfld Σg 𝑏)) ⇒ ⊢ (𝜑 → (𝐷‘(𝐹 · 𝐺)) ≤ (𝐽 + 𝐾)) | ||
Theorem | mdegmulle2 26138 | The multivariate degree of a product of polynomials is at most the sum of the degrees of the polynomials. (Contributed by Stefan O'Rear, 26-Mar-2015.) |
⊢ 𝑌 = (𝐼 mPoly 𝑅) & ⊢ 𝐷 = (𝐼 mDeg 𝑅) & ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ 𝐵 = (Base‘𝑌) & ⊢ · = (.r‘𝑌) & ⊢ (𝜑 → 𝐹 ∈ 𝐵) & ⊢ (𝜑 → 𝐺 ∈ 𝐵) & ⊢ (𝜑 → 𝐽 ∈ ℕ0) & ⊢ (𝜑 → 𝐾 ∈ ℕ0) & ⊢ (𝜑 → (𝐷‘𝐹) ≤ 𝐽) & ⊢ (𝜑 → (𝐷‘𝐺) ≤ 𝐾) ⇒ ⊢ (𝜑 → (𝐷‘(𝐹 · 𝐺)) ≤ (𝐽 + 𝐾)) | ||
Theorem | deg1fval 26139 | Relate univariate polynomial degree to multivariate. (Contributed by Stefan O'Rear, 23-Mar-2015.) (Revised by Mario Carneiro, 7-Oct-2015.) |
⊢ 𝐷 = (deg1‘𝑅) ⇒ ⊢ 𝐷 = (1o mDeg 𝑅) | ||
Theorem | deg1xrf 26140 | Functionality of univariate polynomial degree, weak range. (Contributed by Stefan O'Rear, 23-Mar-2015.) |
⊢ 𝐷 = (deg1‘𝑅) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐵 = (Base‘𝑃) ⇒ ⊢ 𝐷:𝐵⟶ℝ* | ||
Theorem | deg1xrcl 26141 | Closure of univariate polynomial degree in extended reals. (Contributed by Stefan O'Rear, 23-Mar-2015.) |
⊢ 𝐷 = (deg1‘𝑅) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐵 = (Base‘𝑃) ⇒ ⊢ (𝐹 ∈ 𝐵 → (𝐷‘𝐹) ∈ ℝ*) | ||
Theorem | deg1cl 26142 | Sharp closure of univariate polynomial degree. (Contributed by Stefan O'Rear, 23-Mar-2015.) |
⊢ 𝐷 = (deg1‘𝑅) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐵 = (Base‘𝑃) ⇒ ⊢ (𝐹 ∈ 𝐵 → (𝐷‘𝐹) ∈ (ℕ0 ∪ {-∞})) | ||
Theorem | mdegpropd 26143* | Property deduction for polynomial degree. (Contributed by Stefan O'Rear, 28-Mar-2015.) (Proof shortened by AV, 27-Jul-2019.) |
⊢ (𝜑 → 𝐵 = (Base‘𝑅)) & ⊢ (𝜑 → 𝐵 = (Base‘𝑆)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝑅)𝑦) = (𝑥(+g‘𝑆)𝑦)) ⇒ ⊢ (𝜑 → (𝐼 mDeg 𝑅) = (𝐼 mDeg 𝑆)) | ||
Theorem | deg1fvi 26144 | Univariate polynomial degree respects protection. (Contributed by Stefan O'Rear, 28-Mar-2015.) |
⊢ (deg1‘𝑅) = (deg1‘( I ‘𝑅)) | ||
Theorem | deg1propd 26145* | Property deduction for polynomial degree. (Contributed by Stefan O'Rear, 28-Mar-2015.) |
⊢ (𝜑 → 𝐵 = (Base‘𝑅)) & ⊢ (𝜑 → 𝐵 = (Base‘𝑆)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝑅)𝑦) = (𝑥(+g‘𝑆)𝑦)) ⇒ ⊢ (𝜑 → (deg1‘𝑅) = (deg1‘𝑆)) | ||
Theorem | deg1z 26146 | Degree of the zero univariate polynomial. (Contributed by Stefan O'Rear, 23-Mar-2015.) |
⊢ 𝐷 = (deg1‘𝑅) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 0 = (0g‘𝑃) ⇒ ⊢ (𝑅 ∈ Ring → (𝐷‘ 0 ) = -∞) | ||
Theorem | deg1nn0cl 26147 | Degree of a nonzero univariate polynomial. (Contributed by Stefan O'Rear, 23-Mar-2015.) (Revised by Mario Carneiro, 7-Oct-2015.) |
⊢ 𝐷 = (deg1‘𝑅) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 0 = (0g‘𝑃) & ⊢ 𝐵 = (Base‘𝑃) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐹 ≠ 0 ) → (𝐷‘𝐹) ∈ ℕ0) | ||
Theorem | deg1n0ima 26148 | Degree image of a set of polynomials which does not include zero. (Contributed by Stefan O'Rear, 28-Mar-2015.) |
⊢ 𝐷 = (deg1‘𝑅) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 0 = (0g‘𝑃) & ⊢ 𝐵 = (Base‘𝑃) ⇒ ⊢ (𝑅 ∈ Ring → (𝐷 “ (𝐵 ∖ { 0 })) ⊆ ℕ0) | ||
Theorem | deg1nn0clb 26149 | A polynomial is nonzero iff it has definite degree. (Contributed by Stefan O'Rear, 23-Mar-2015.) |
⊢ 𝐷 = (deg1‘𝑅) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 0 = (0g‘𝑃) & ⊢ 𝐵 = (Base‘𝑃) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵) → (𝐹 ≠ 0 ↔ (𝐷‘𝐹) ∈ ℕ0)) | ||
Theorem | deg1lt0 26150 | A polynomial is zero iff it has negative degree. (Contributed by Stefan O'Rear, 1-Apr-2015.) |
⊢ 𝐷 = (deg1‘𝑅) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 0 = (0g‘𝑃) & ⊢ 𝐵 = (Base‘𝑃) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵) → ((𝐷‘𝐹) < 0 ↔ 𝐹 = 0 )) | ||
Theorem | deg1ldg 26151 | A nonzero univariate polynomial always has a nonzero leading coefficient. (Contributed by Stefan O'Rear, 23-Mar-2015.) |
⊢ 𝐷 = (deg1‘𝑅) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 0 = (0g‘𝑃) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ 𝑌 = (0g‘𝑅) & ⊢ 𝐴 = (coe1‘𝐹) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐹 ≠ 0 ) → (𝐴‘(𝐷‘𝐹)) ≠ 𝑌) | ||
Theorem | deg1ldgn 26152 | An index at which a polynomial is zero, cannot be its degree. (Contributed by Stefan O'Rear, 23-Mar-2015.) |
⊢ 𝐷 = (deg1‘𝑅) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 0 = (0g‘𝑃) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ 𝑌 = (0g‘𝑅) & ⊢ 𝐴 = (coe1‘𝐹) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝐹 ∈ 𝐵) & ⊢ (𝜑 → 𝑋 ∈ ℕ0) & ⊢ (𝜑 → (𝐴‘𝑋) = 𝑌) ⇒ ⊢ (𝜑 → (𝐷‘𝐹) ≠ 𝑋) | ||
Theorem | deg1ldgdomn 26153 | A nonzero univariate polynomial over a domain always has a nonzero-divisor leading coefficient. (Contributed by Stefan O'Rear, 28-Mar-2015.) |
⊢ 𝐷 = (deg1‘𝑅) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 0 = (0g‘𝑃) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ 𝐸 = (RLReg‘𝑅) & ⊢ 𝐴 = (coe1‘𝐹) ⇒ ⊢ ((𝑅 ∈ Domn ∧ 𝐹 ∈ 𝐵 ∧ 𝐹 ≠ 0 ) → (𝐴‘(𝐷‘𝐹)) ∈ 𝐸) | ||
Theorem | deg1leb 26154* | Property of being of limited degree. (Contributed by Stefan O'Rear, 23-Mar-2015.) |
⊢ 𝐷 = (deg1‘𝑅) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝐴 = (coe1‘𝐹) ⇒ ⊢ ((𝐹 ∈ 𝐵 ∧ 𝐺 ∈ ℝ*) → ((𝐷‘𝐹) ≤ 𝐺 ↔ ∀𝑥 ∈ ℕ0 (𝐺 < 𝑥 → (𝐴‘𝑥) = 0 ))) | ||
Theorem | deg1val 26155 | Value of the univariate degree as a supremum. (Contributed by Stefan O'Rear, 29-Mar-2015.) (Revised by AV, 25-Jul-2019.) |
⊢ 𝐷 = (deg1‘𝑅) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝐴 = (coe1‘𝐹) ⇒ ⊢ (𝐹 ∈ 𝐵 → (𝐷‘𝐹) = sup((𝐴 supp 0 ), ℝ*, < )) | ||
Theorem | deg1lt 26156 | If the degree of a univariate polynomial is less than some index, then that coefficient must be zero. (Contributed by Stefan O'Rear, 23-Mar-2015.) |
⊢ 𝐷 = (deg1‘𝑅) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝐴 = (coe1‘𝐹) ⇒ ⊢ ((𝐹 ∈ 𝐵 ∧ 𝐺 ∈ ℕ0 ∧ (𝐷‘𝐹) < 𝐺) → (𝐴‘𝐺) = 0 ) | ||
Theorem | deg1ge 26157 | Conversely, a nonzero coefficient sets a lower bound on the degree. (Contributed by Stefan O'Rear, 23-Mar-2015.) |
⊢ 𝐷 = (deg1‘𝑅) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝐴 = (coe1‘𝐹) ⇒ ⊢ ((𝐹 ∈ 𝐵 ∧ 𝐺 ∈ ℕ0 ∧ (𝐴‘𝐺) ≠ 0 ) → 𝐺 ≤ (𝐷‘𝐹)) | ||
Theorem | coe1mul3 26158 | The coefficient vector of multiplication in the univariate polynomial ring, at indices high enough that at most one component can be active in the sum. (Contributed by Stefan O'Rear, 25-Mar-2015.) |
⊢ 𝑌 = (Poly1‘𝑅) & ⊢ ∙ = (.r‘𝑌) & ⊢ · = (.r‘𝑅) & ⊢ 𝐵 = (Base‘𝑌) & ⊢ 𝐷 = (deg1‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝐹 ∈ 𝐵) & ⊢ (𝜑 → 𝐼 ∈ ℕ0) & ⊢ (𝜑 → (𝐷‘𝐹) ≤ 𝐼) & ⊢ (𝜑 → 𝐺 ∈ 𝐵) & ⊢ (𝜑 → 𝐽 ∈ ℕ0) & ⊢ (𝜑 → (𝐷‘𝐺) ≤ 𝐽) ⇒ ⊢ (𝜑 → ((coe1‘(𝐹 ∙ 𝐺))‘(𝐼 + 𝐽)) = (((coe1‘𝐹)‘𝐼) · ((coe1‘𝐺)‘𝐽))) | ||
Theorem | coe1mul4 26159 | Value of the "leading" coefficient of a product of two nonzero polynomials. This will fail to actually be the leading coefficient only if it is zero (requiring the basic ring to contain zero divisors). (Contributed by Stefan O'Rear, 25-Mar-2015.) |
⊢ 𝑌 = (Poly1‘𝑅) & ⊢ ∙ = (.r‘𝑌) & ⊢ · = (.r‘𝑅) & ⊢ 𝐵 = (Base‘𝑌) & ⊢ 𝐷 = (deg1‘𝑅) & ⊢ 0 = (0g‘𝑌) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝐹 ∈ 𝐵) & ⊢ (𝜑 → 𝐹 ≠ 0 ) & ⊢ (𝜑 → 𝐺 ∈ 𝐵) & ⊢ (𝜑 → 𝐺 ≠ 0 ) ⇒ ⊢ (𝜑 → ((coe1‘(𝐹 ∙ 𝐺))‘((𝐷‘𝐹) + (𝐷‘𝐺))) = (((coe1‘𝐹)‘(𝐷‘𝐹)) · ((coe1‘𝐺)‘(𝐷‘𝐺)))) | ||
Theorem | deg1addle 26160 | The degree of a sum is at most the maximum of the degrees of the factors. (Contributed by Stefan O'Rear, 26-Mar-2015.) |
⊢ 𝑌 = (Poly1‘𝑅) & ⊢ 𝐷 = (deg1‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ 𝐵 = (Base‘𝑌) & ⊢ + = (+g‘𝑌) & ⊢ (𝜑 → 𝐹 ∈ 𝐵) & ⊢ (𝜑 → 𝐺 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝐷‘(𝐹 + 𝐺)) ≤ if((𝐷‘𝐹) ≤ (𝐷‘𝐺), (𝐷‘𝐺), (𝐷‘𝐹))) | ||
Theorem | deg1addle2 26161 | If both factors have degree bounded by 𝐿, then the sum of the polynomials also has degree bounded by 𝐿. (Contributed by Stefan O'Rear, 1-Apr-2015.) |
⊢ 𝑌 = (Poly1‘𝑅) & ⊢ 𝐷 = (deg1‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ 𝐵 = (Base‘𝑌) & ⊢ + = (+g‘𝑌) & ⊢ (𝜑 → 𝐹 ∈ 𝐵) & ⊢ (𝜑 → 𝐺 ∈ 𝐵) & ⊢ (𝜑 → 𝐿 ∈ ℝ*) & ⊢ (𝜑 → (𝐷‘𝐹) ≤ 𝐿) & ⊢ (𝜑 → (𝐷‘𝐺) ≤ 𝐿) ⇒ ⊢ (𝜑 → (𝐷‘(𝐹 + 𝐺)) ≤ 𝐿) | ||
Theorem | deg1add 26162 | Exact degree of a sum of two polynomials of unequal degree. (Contributed by Stefan O'Rear, 28-Mar-2015.) |
⊢ 𝑌 = (Poly1‘𝑅) & ⊢ 𝐷 = (deg1‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ 𝐵 = (Base‘𝑌) & ⊢ + = (+g‘𝑌) & ⊢ (𝜑 → 𝐹 ∈ 𝐵) & ⊢ (𝜑 → 𝐺 ∈ 𝐵) & ⊢ (𝜑 → (𝐷‘𝐺) < (𝐷‘𝐹)) ⇒ ⊢ (𝜑 → (𝐷‘(𝐹 + 𝐺)) = (𝐷‘𝐹)) | ||
Theorem | deg1vscale 26163 | The degree of a scalar times a polynomial is at most the degree of the original polynomial. (Contributed by Stefan O'Rear, 26-Mar-2015.) |
⊢ 𝑌 = (Poly1‘𝑅) & ⊢ 𝐷 = (deg1‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ 𝐵 = (Base‘𝑌) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ · = ( ·𝑠 ‘𝑌) & ⊢ (𝜑 → 𝐹 ∈ 𝐾) & ⊢ (𝜑 → 𝐺 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝐷‘(𝐹 · 𝐺)) ≤ (𝐷‘𝐺)) | ||
Theorem | deg1vsca 26164 | The degree of a scalar times a polynomial is exactly the degree of the original polynomial when the scalar is not a zero divisor. (Contributed by Stefan O'Rear, 28-Mar-2015.) |
⊢ 𝑌 = (Poly1‘𝑅) & ⊢ 𝐷 = (deg1‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ 𝐵 = (Base‘𝑌) & ⊢ 𝐸 = (RLReg‘𝑅) & ⊢ · = ( ·𝑠 ‘𝑌) & ⊢ (𝜑 → 𝐹 ∈ 𝐸) & ⊢ (𝜑 → 𝐺 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝐷‘(𝐹 · 𝐺)) = (𝐷‘𝐺)) | ||
Theorem | deg1invg 26165 | The degree of the negated polynomial is the same as the original. (Contributed by Stefan O'Rear, 28-Mar-2015.) |
⊢ 𝑌 = (Poly1‘𝑅) & ⊢ 𝐷 = (deg1‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ 𝐵 = (Base‘𝑌) & ⊢ 𝑁 = (invg‘𝑌) & ⊢ (𝜑 → 𝐹 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝐷‘(𝑁‘𝐹)) = (𝐷‘𝐹)) | ||
Theorem | deg1suble 26166 | The degree of a difference of polynomials is bounded by the maximum of degrees. (Contributed by Stefan O'Rear, 26-Mar-2015.) |
⊢ 𝑌 = (Poly1‘𝑅) & ⊢ 𝐷 = (deg1‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ 𝐵 = (Base‘𝑌) & ⊢ − = (-g‘𝑌) & ⊢ (𝜑 → 𝐹 ∈ 𝐵) & ⊢ (𝜑 → 𝐺 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝐷‘(𝐹 − 𝐺)) ≤ if((𝐷‘𝐹) ≤ (𝐷‘𝐺), (𝐷‘𝐺), (𝐷‘𝐹))) | ||
Theorem | deg1sub 26167 | Exact degree of a difference of two polynomials of unequal degree. (Contributed by Stefan O'Rear, 28-Mar-2015.) |
⊢ 𝑌 = (Poly1‘𝑅) & ⊢ 𝐷 = (deg1‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ 𝐵 = (Base‘𝑌) & ⊢ − = (-g‘𝑌) & ⊢ (𝜑 → 𝐹 ∈ 𝐵) & ⊢ (𝜑 → 𝐺 ∈ 𝐵) & ⊢ (𝜑 → (𝐷‘𝐺) < (𝐷‘𝐹)) ⇒ ⊢ (𝜑 → (𝐷‘(𝐹 − 𝐺)) = (𝐷‘𝐹)) | ||
Theorem | deg1mulle2 26168 | Produce a bound on the product of two univariate polynomials given bounds on the factors. (Contributed by Stefan O'Rear, 26-Mar-2015.) |
⊢ 𝑌 = (Poly1‘𝑅) & ⊢ 𝐷 = (deg1‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ 𝐵 = (Base‘𝑌) & ⊢ · = (.r‘𝑌) & ⊢ (𝜑 → 𝐹 ∈ 𝐵) & ⊢ (𝜑 → 𝐺 ∈ 𝐵) & ⊢ (𝜑 → 𝐽 ∈ ℕ0) & ⊢ (𝜑 → 𝐾 ∈ ℕ0) & ⊢ (𝜑 → (𝐷‘𝐹) ≤ 𝐽) & ⊢ (𝜑 → (𝐷‘𝐺) ≤ 𝐾) ⇒ ⊢ (𝜑 → (𝐷‘(𝐹 · 𝐺)) ≤ (𝐽 + 𝐾)) | ||
Theorem | deg1sublt 26169 | Subtraction of two polynomials limited to the same degree with the same leading coefficient gives a polynomial with a smaller degree. (Contributed by Stefan O'Rear, 26-Mar-2015.) |
⊢ 𝐷 = (deg1‘𝑅) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ − = (-g‘𝑃) & ⊢ (𝜑 → 𝐿 ∈ ℕ0) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝐹 ∈ 𝐵) & ⊢ (𝜑 → (𝐷‘𝐹) ≤ 𝐿) & ⊢ (𝜑 → 𝐺 ∈ 𝐵) & ⊢ (𝜑 → (𝐷‘𝐺) ≤ 𝐿) & ⊢ 𝐴 = (coe1‘𝐹) & ⊢ 𝐶 = (coe1‘𝐺) & ⊢ (𝜑 → ((coe1‘𝐹)‘𝐿) = ((coe1‘𝐺)‘𝐿)) ⇒ ⊢ (𝜑 → (𝐷‘(𝐹 − 𝐺)) < 𝐿) | ||
Theorem | deg1le0 26170 | A polynomial has nonpositive degree iff it is a constant. (Contributed by Stefan O'Rear, 29-Mar-2015.) |
⊢ 𝐷 = (deg1‘𝑅) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ 𝐴 = (algSc‘𝑃) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵) → ((𝐷‘𝐹) ≤ 0 ↔ 𝐹 = (𝐴‘((coe1‘𝐹)‘0)))) | ||
Theorem | deg1sclle 26171 | A scalar polynomial has nonpositive degree. (Contributed by Stefan O'Rear, 29-Mar-2015.) |
⊢ 𝐷 = (deg1‘𝑅) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ 𝐴 = (algSc‘𝑃) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐾) → (𝐷‘(𝐴‘𝐹)) ≤ 0) | ||
Theorem | deg1scl 26172 | A nonzero scalar polynomial has zero degree. (Contributed by Stefan O'Rear, 29-Mar-2015.) |
⊢ 𝐷 = (deg1‘𝑅) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ 𝐴 = (algSc‘𝑃) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐾 ∧ 𝐹 ≠ 0 ) → (𝐷‘(𝐴‘𝐹)) = 0) | ||
Theorem | deg1mul2 26173 | Degree of multiplication of two nonzero polynomials when the first leads with a nonzero-divisor coefficient. (Contributed by Stefan O'Rear, 26-Mar-2015.) |
⊢ 𝐷 = (deg1‘𝑅) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐸 = (RLReg‘𝑅) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ · = (.r‘𝑃) & ⊢ 0 = (0g‘𝑃) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝐹 ∈ 𝐵) & ⊢ (𝜑 → 𝐹 ≠ 0 ) & ⊢ (𝜑 → ((coe1‘𝐹)‘(𝐷‘𝐹)) ∈ 𝐸) & ⊢ (𝜑 → 𝐺 ∈ 𝐵) & ⊢ (𝜑 → 𝐺 ≠ 0 ) ⇒ ⊢ (𝜑 → (𝐷‘(𝐹 · 𝐺)) = ((𝐷‘𝐹) + (𝐷‘𝐺))) | ||
Theorem | deg1mul 26174 | Degree of multiplication of two nonzero polynomials in a domain. (Contributed by metakunt, 6-May-2025.) |
⊢ 𝐷 = (deg1‘𝑅) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ · = (.r‘𝑃) & ⊢ 0 = (0g‘𝑃) & ⊢ (𝜑 → 𝑅 ∈ Domn) & ⊢ (𝜑 → 𝐹 ∈ 𝐵) & ⊢ (𝜑 → 𝐹 ≠ 0 ) & ⊢ (𝜑 → 𝐺 ∈ 𝐵) & ⊢ (𝜑 → 𝐺 ≠ 0 ) ⇒ ⊢ (𝜑 → (𝐷‘(𝐹 · 𝐺)) = ((𝐷‘𝐹) + (𝐷‘𝐺))) | ||
Theorem | deg1mul3 26175 | Degree of multiplication of a polynomial on the left by a nonzero-dividing scalar. (Contributed by Stefan O'Rear, 29-Mar-2015.) (Proof shortened by AV, 25-Jul-2019.) |
⊢ 𝐷 = (deg1‘𝑅) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐸 = (RLReg‘𝑅) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ · = (.r‘𝑃) & ⊢ 𝐴 = (algSc‘𝑃) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐸 ∧ 𝐺 ∈ 𝐵) → (𝐷‘((𝐴‘𝐹) · 𝐺)) = (𝐷‘𝐺)) | ||
Theorem | deg1mul3le 26176 | Degree of multiplication of a polynomial on the left by a scalar. (Contributed by Stefan O'Rear, 1-Apr-2015.) |
⊢ 𝐷 = (deg1‘𝑅) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ · = (.r‘𝑃) & ⊢ 𝐴 = (algSc‘𝑃) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐾 ∧ 𝐺 ∈ 𝐵) → (𝐷‘((𝐴‘𝐹) · 𝐺)) ≤ (𝐷‘𝐺)) | ||
Theorem | deg1tmle 26177 | Limiting degree of a polynomial term. (Contributed by Stefan O'Rear, 27-Mar-2015.) |
⊢ 𝐷 = (deg1‘𝑅) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ · = ( ·𝑠 ‘𝑃) & ⊢ 𝑁 = (mulGrp‘𝑃) & ⊢ ↑ = (.g‘𝑁) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐹 ∈ ℕ0) → (𝐷‘(𝐶 · (𝐹 ↑ 𝑋))) ≤ 𝐹) | ||
Theorem | deg1tm 26178 | Exact degree of a polynomial term. (Contributed by Stefan O'Rear, 27-Mar-2015.) |
⊢ 𝐷 = (deg1‘𝑅) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ · = ( ·𝑠 ‘𝑃) & ⊢ 𝑁 = (mulGrp‘𝑃) & ⊢ ↑ = (.g‘𝑁) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ (𝐶 ∈ 𝐾 ∧ 𝐶 ≠ 0 ) ∧ 𝐹 ∈ ℕ0) → (𝐷‘(𝐶 · (𝐹 ↑ 𝑋))) = 𝐹) | ||
Theorem | deg1pwle 26179 | Limiting degree of a variable power. (Contributed by Stefan O'Rear, 1-Apr-2015.) |
⊢ 𝐷 = (deg1‘𝑅) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ 𝑁 = (mulGrp‘𝑃) & ⊢ ↑ = (.g‘𝑁) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ ℕ0) → (𝐷‘(𝐹 ↑ 𝑋)) ≤ 𝐹) | ||
Theorem | deg1pw 26180 | Exact degree of a variable power over a nontrivial ring. (Contributed by Stefan O'Rear, 1-Apr-2015.) |
⊢ 𝐷 = (deg1‘𝑅) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ 𝑁 = (mulGrp‘𝑃) & ⊢ ↑ = (.g‘𝑁) ⇒ ⊢ ((𝑅 ∈ NzRing ∧ 𝐹 ∈ ℕ0) → (𝐷‘(𝐹 ↑ 𝑋)) = 𝐹) | ||
Theorem | ply1nz 26181 | Univariate polynomials over a nonzero ring are a nonzero ring. (Contributed by Stefan O'Rear, 29-Mar-2015.) |
⊢ 𝑃 = (Poly1‘𝑅) ⇒ ⊢ (𝑅 ∈ NzRing → 𝑃 ∈ NzRing) | ||
Theorem | ply1nzb 26182 | Univariate polynomials are nonzero iff the base is nonzero. Or in contraposition, the univariate polynomials over the zero ring are also zero. (Contributed by Mario Carneiro, 13-Jun-2015.) |
⊢ 𝑃 = (Poly1‘𝑅) ⇒ ⊢ (𝑅 ∈ Ring → (𝑅 ∈ NzRing ↔ 𝑃 ∈ NzRing)) | ||
Theorem | ply1domn 26183 | Corollary of deg1mul2 26173: the univariate polynomials over a domain are a domain. This is true for multivariate but with a much more complicated proof. (Contributed by Stefan O'Rear, 28-Mar-2015.) |
⊢ 𝑃 = (Poly1‘𝑅) ⇒ ⊢ (𝑅 ∈ Domn → 𝑃 ∈ Domn) | ||
Theorem | ply1idom 26184 | The ring of univariate polynomials over an integral domain is itself an integral domain. (Contributed by Stefan O'Rear, 29-Mar-2015.) |
⊢ 𝑃 = (Poly1‘𝑅) ⇒ ⊢ (𝑅 ∈ IDomn → 𝑃 ∈ IDomn) | ||
Syntax | cmn1 26185 | Monic polynomials. |
class Monic1p | ||
Syntax | cuc1p 26186 | Unitic polynomials. |
class Unic1p | ||
Syntax | cq1p 26187 | Univariate polynomial quotient. |
class quot1p | ||
Syntax | cr1p 26188 | Univariate polynomial remainder. |
class rem1p | ||
Syntax | cig1p 26189 | Univariate polynomial ideal generator. |
class idlGen1p | ||
Definition | df-mon1 26190* | Define the set of monic univariate polynomials. (Contributed by Stefan O'Rear, 28-Mar-2015.) |
⊢ Monic1p = (𝑟 ∈ V ↦ {𝑓 ∈ (Base‘(Poly1‘𝑟)) ∣ (𝑓 ≠ (0g‘(Poly1‘𝑟)) ∧ ((coe1‘𝑓)‘((deg1‘𝑟)‘𝑓)) = (1r‘𝑟))}) | ||
Definition | df-uc1p 26191* | Define the set of unitic univariate polynomials, as the polynomials with an invertible leading coefficient. This is not a standard concept but is useful to us as the set of polynomials which can be used as the divisor in the polynomial division theorem ply1divalg 26197. (Contributed by Stefan O'Rear, 28-Mar-2015.) |
⊢ Unic1p = (𝑟 ∈ V ↦ {𝑓 ∈ (Base‘(Poly1‘𝑟)) ∣ (𝑓 ≠ (0g‘(Poly1‘𝑟)) ∧ ((coe1‘𝑓)‘((deg1‘𝑟)‘𝑓)) ∈ (Unit‘𝑟))}) | ||
Definition | df-q1p 26192* | Define the quotient of two univariate polynomials, which is guaranteed to exist and be unique by ply1divalg 26197. We actually use the reversed version for better harmony with our divisibility df-dvdsr 20383. (Contributed by Stefan O'Rear, 28-Mar-2015.) |
⊢ quot1p = (𝑟 ∈ V ↦ ⦋(Poly1‘𝑟) / 𝑝⦌⦋(Base‘𝑝) / 𝑏⦌(𝑓 ∈ 𝑏, 𝑔 ∈ 𝑏 ↦ (℩𝑞 ∈ 𝑏 ((deg1‘𝑟)‘(𝑓(-g‘𝑝)(𝑞(.r‘𝑝)𝑔))) < ((deg1‘𝑟)‘𝑔)))) | ||
Definition | df-r1p 26193* | Define the remainder after dividing two univariate polynomials. (Contributed by Stefan O'Rear, 28-Mar-2015.) |
⊢ rem1p = (𝑟 ∈ V ↦ ⦋(Base‘(Poly1‘𝑟)) / 𝑏⦌(𝑓 ∈ 𝑏, 𝑔 ∈ 𝑏 ↦ (𝑓(-g‘(Poly1‘𝑟))((𝑓(quot1p‘𝑟)𝑔)(.r‘(Poly1‘𝑟))𝑔)))) | ||
Definition | df-ig1p 26194* | Define a choice function for generators of ideals over a division ring; this is the unique monic polynomial of minimal degree in the ideal. (Contributed by Stefan O'Rear, 29-Mar-2015.) (Revised by AV, 25-Sep-2020.) |
⊢ idlGen1p = (𝑟 ∈ V ↦ (𝑖 ∈ (LIdeal‘(Poly1‘𝑟)) ↦ if(𝑖 = {(0g‘(Poly1‘𝑟))}, (0g‘(Poly1‘𝑟)), (℩𝑔 ∈ (𝑖 ∩ (Monic1p‘𝑟))((deg1‘𝑟)‘𝑔) = inf(((deg1‘𝑟) “ (𝑖 ∖ {(0g‘(Poly1‘𝑟))})), ℝ, < ))))) | ||
Theorem | ply1divmo 26195* | Uniqueness of a quotient in a polynomial division. For polynomials 𝐹, 𝐺 such that 𝐺 ≠ 0 and the leading coefficient of 𝐺 is not a zero divisor, there is at most one polynomial 𝑞 which satisfies 𝐹 = (𝐺 · 𝑞) + 𝑟 where the degree of 𝑟 is less than the degree of 𝐺. (Contributed by Stefan O'Rear, 26-Mar-2015.) (Revised by NM, 17-Jun-2017.) |
⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐷 = (deg1‘𝑅) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ − = (-g‘𝑃) & ⊢ 0 = (0g‘𝑃) & ⊢ ∙ = (.r‘𝑃) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝐹 ∈ 𝐵) & ⊢ (𝜑 → 𝐺 ∈ 𝐵) & ⊢ (𝜑 → 𝐺 ≠ 0 ) & ⊢ (𝜑 → ((coe1‘𝐺)‘(𝐷‘𝐺)) ∈ 𝐸) & ⊢ 𝐸 = (RLReg‘𝑅) ⇒ ⊢ (𝜑 → ∃*𝑞 ∈ 𝐵 (𝐷‘(𝐹 − (𝐺 ∙ 𝑞))) < (𝐷‘𝐺)) | ||
Theorem | ply1divex 26196* | Lemma for ply1divalg 26197: existence part. (Contributed by Stefan O'Rear, 27-Mar-2015.) |
⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐷 = (deg1‘𝑅) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ − = (-g‘𝑃) & ⊢ 0 = (0g‘𝑃) & ⊢ ∙ = (.r‘𝑃) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝐹 ∈ 𝐵) & ⊢ (𝜑 → 𝐺 ∈ 𝐵) & ⊢ (𝜑 → 𝐺 ≠ 0 ) & ⊢ 1 = (1r‘𝑅) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ (𝜑 → 𝐼 ∈ 𝐾) & ⊢ (𝜑 → (((coe1‘𝐺)‘(𝐷‘𝐺)) · 𝐼) = 1 ) ⇒ ⊢ (𝜑 → ∃𝑞 ∈ 𝐵 (𝐷‘(𝐹 − (𝐺 ∙ 𝑞))) < (𝐷‘𝐺)) | ||
Theorem | ply1divalg 26197* | The division algorithm for univariate polynomials over a ring. For polynomials 𝐹, 𝐺 such that 𝐺 ≠ 0 and the leading coefficient of 𝐺 is a unit, there are unique polynomials 𝑞 and 𝑟 = 𝐹 − (𝐺 · 𝑞) such that the degree of 𝑟 is less than the degree of 𝐺. (Contributed by Stefan O'Rear, 27-Mar-2015.) |
⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐷 = (deg1‘𝑅) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ − = (-g‘𝑃) & ⊢ 0 = (0g‘𝑃) & ⊢ ∙ = (.r‘𝑃) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝐹 ∈ 𝐵) & ⊢ (𝜑 → 𝐺 ∈ 𝐵) & ⊢ (𝜑 → 𝐺 ≠ 0 ) & ⊢ (𝜑 → ((coe1‘𝐺)‘(𝐷‘𝐺)) ∈ 𝑈) & ⊢ 𝑈 = (Unit‘𝑅) ⇒ ⊢ (𝜑 → ∃!𝑞 ∈ 𝐵 (𝐷‘(𝐹 − (𝐺 ∙ 𝑞))) < (𝐷‘𝐺)) | ||
Theorem | ply1divalg2 26198* | Reverse the order of multiplication in ply1divalg 26197 via the opposite ring. (Contributed by Stefan O'Rear, 28-Mar-2015.) |
⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐷 = (deg1‘𝑅) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ − = (-g‘𝑃) & ⊢ 0 = (0g‘𝑃) & ⊢ ∙ = (.r‘𝑃) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝐹 ∈ 𝐵) & ⊢ (𝜑 → 𝐺 ∈ 𝐵) & ⊢ (𝜑 → 𝐺 ≠ 0 ) & ⊢ (𝜑 → ((coe1‘𝐺)‘(𝐷‘𝐺)) ∈ 𝑈) & ⊢ 𝑈 = (Unit‘𝑅) ⇒ ⊢ (𝜑 → ∃!𝑞 ∈ 𝐵 (𝐷‘(𝐹 − (𝑞 ∙ 𝐺))) < (𝐷‘𝐺)) | ||
Theorem | uc1pval 26199* | Value of the set of unitic polynomials. (Contributed by Stefan O'Rear, 28-Mar-2015.) |
⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ 0 = (0g‘𝑃) & ⊢ 𝐷 = (deg1‘𝑅) & ⊢ 𝐶 = (Unic1p‘𝑅) & ⊢ 𝑈 = (Unit‘𝑅) ⇒ ⊢ 𝐶 = {𝑓 ∈ 𝐵 ∣ (𝑓 ≠ 0 ∧ ((coe1‘𝑓)‘(𝐷‘𝑓)) ∈ 𝑈)} | ||
Theorem | isuc1p 26200 | Being a unitic polynomial. (Contributed by Stefan O'Rear, 28-Mar-2015.) |
⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ 0 = (0g‘𝑃) & ⊢ 𝐷 = (deg1‘𝑅) & ⊢ 𝐶 = (Unic1p‘𝑅) & ⊢ 𝑈 = (Unit‘𝑅) ⇒ ⊢ (𝐹 ∈ 𝐶 ↔ (𝐹 ∈ 𝐵 ∧ 𝐹 ≠ 0 ∧ ((coe1‘𝐹)‘(𝐷‘𝐹)) ∈ 𝑈)) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |