| Metamath
Proof Explorer Theorem List (p. 262 of 499) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30893) |
(30894-32416) |
(32417-49836) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | fta1blem 26101 | Lemma for fta1b 26102. (Contributed by Mario Carneiro, 14-Jun-2015.) |
| ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ 𝐷 = (deg1‘𝑅) & ⊢ 𝑂 = (eval1‘𝑅) & ⊢ 𝑊 = (0g‘𝑅) & ⊢ 0 = (0g‘𝑃) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ × = (.r‘𝑅) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ · = ( ·𝑠 ‘𝑃) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ (𝜑 → 𝑀 ∈ 𝐾) & ⊢ (𝜑 → 𝑁 ∈ 𝐾) & ⊢ (𝜑 → (𝑀 × 𝑁) = 𝑊) & ⊢ (𝜑 → 𝑀 ≠ 𝑊) & ⊢ (𝜑 → ((𝑀 · 𝑋) ∈ (𝐵 ∖ { 0 }) → (♯‘(◡(𝑂‘(𝑀 · 𝑋)) “ {𝑊})) ≤ (𝐷‘(𝑀 · 𝑋)))) ⇒ ⊢ (𝜑 → 𝑁 = 𝑊) | ||
| Theorem | fta1b 26102* | The assumption that 𝑅 be a domain in fta1g 26100 is necessary. Here we show that the statement is strong enough to prove that 𝑅 is a domain. (Contributed by Mario Carneiro, 12-Jun-2015.) |
| ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ 𝐷 = (deg1‘𝑅) & ⊢ 𝑂 = (eval1‘𝑅) & ⊢ 𝑊 = (0g‘𝑅) & ⊢ 0 = (0g‘𝑃) ⇒ ⊢ (𝑅 ∈ IDomn ↔ (𝑅 ∈ CRing ∧ 𝑅 ∈ NzRing ∧ ∀𝑓 ∈ (𝐵 ∖ { 0 })(♯‘(◡(𝑂‘𝑓) “ {𝑊})) ≤ (𝐷‘𝑓))) | ||
| Theorem | idomrootle 26103* | No element of an integral domain can have more than 𝑁 𝑁-th roots. (Contributed by Stefan O'Rear, 11-Sep-2015.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ ↑ = (.g‘(mulGrp‘𝑅)) ⇒ ⊢ ((𝑅 ∈ IDomn ∧ 𝑋 ∈ 𝐵 ∧ 𝑁 ∈ ℕ) → (♯‘{𝑦 ∈ 𝐵 ∣ (𝑁 ↑ 𝑦) = 𝑋}) ≤ 𝑁) | ||
| Theorem | drnguc1p 26104 | Over a division ring, all nonzero polynomials are unitic. (Contributed by Stefan O'Rear, 29-Mar-2015.) |
| ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ 0 = (0g‘𝑃) & ⊢ 𝐶 = (Unic1p‘𝑅) ⇒ ⊢ ((𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐵 ∧ 𝐹 ≠ 0 ) → 𝐹 ∈ 𝐶) | ||
| Theorem | ig1peu 26105* | There is a unique monic polynomial of minimal degree in any nonzero ideal. (Contributed by Stefan O'Rear, 29-Mar-2015.) (Revised by AV, 25-Sep-2020.) |
| ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑈 = (LIdeal‘𝑃) & ⊢ 0 = (0g‘𝑃) & ⊢ 𝑀 = (Monic1p‘𝑅) & ⊢ 𝐷 = (deg1‘𝑅) ⇒ ⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ { 0 }) → ∃!𝑔 ∈ (𝐼 ∩ 𝑀)(𝐷‘𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < )) | ||
| Theorem | ig1pval 26106* | Substitutions for the polynomial ideal generator function. (Contributed by Stefan O'Rear, 29-Mar-2015.) (Revised by AV, 25-Sep-2020.) |
| ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐺 = (idlGen1p‘𝑅) & ⊢ 0 = (0g‘𝑃) & ⊢ 𝑈 = (LIdeal‘𝑃) & ⊢ 𝐷 = (deg1‘𝑅) & ⊢ 𝑀 = (Monic1p‘𝑅) ⇒ ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑈) → (𝐺‘𝐼) = if(𝐼 = { 0 }, 0 , (℩𝑔 ∈ (𝐼 ∩ 𝑀)(𝐷‘𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < )))) | ||
| Theorem | ig1pval2 26107 | Generator of the zero ideal. (Contributed by Stefan O'Rear, 29-Mar-2015.) (Proof shortened by AV, 25-Sep-2020.) |
| ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐺 = (idlGen1p‘𝑅) & ⊢ 0 = (0g‘𝑃) ⇒ ⊢ (𝑅 ∈ Ring → (𝐺‘{ 0 }) = 0 ) | ||
| Theorem | ig1pval3 26108 | Characterizing properties of the monic generator of a nonzero ideal of polynomials. (Contributed by Stefan O'Rear, 29-Mar-2015.) (Revised by AV, 25-Sep-2020.) |
| ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐺 = (idlGen1p‘𝑅) & ⊢ 0 = (0g‘𝑃) & ⊢ 𝑈 = (LIdeal‘𝑃) & ⊢ 𝐷 = (deg1‘𝑅) & ⊢ 𝑀 = (Monic1p‘𝑅) ⇒ ⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ { 0 }) → ((𝐺‘𝐼) ∈ 𝐼 ∧ (𝐺‘𝐼) ∈ 𝑀 ∧ (𝐷‘(𝐺‘𝐼)) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ))) | ||
| Theorem | ig1pcl 26109 | The monic generator of an ideal is always in the ideal. (Contributed by Stefan O'Rear, 29-Mar-2015.) (Proof shortened by AV, 25-Sep-2020.) |
| ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐺 = (idlGen1p‘𝑅) & ⊢ 𝑈 = (LIdeal‘𝑃) ⇒ ⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈) → (𝐺‘𝐼) ∈ 𝐼) | ||
| Theorem | ig1pdvds 26110 | The monic generator of an ideal divides all elements of the ideal. (Contributed by Stefan O'Rear, 29-Mar-2015.) (Proof shortened by AV, 25-Sep-2020.) |
| ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐺 = (idlGen1p‘𝑅) & ⊢ 𝑈 = (LIdeal‘𝑃) & ⊢ ∥ = (∥r‘𝑃) ⇒ ⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ 𝐼) → (𝐺‘𝐼) ∥ 𝑋) | ||
| Theorem | ig1prsp 26111 | Any ideal of polynomials over a division ring is generated by the ideal's canonical generator. (Contributed by Stefan O'Rear, 29-Mar-2015.) |
| ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐺 = (idlGen1p‘𝑅) & ⊢ 𝑈 = (LIdeal‘𝑃) & ⊢ 𝐾 = (RSpan‘𝑃) ⇒ ⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈) → 𝐼 = (𝐾‘{(𝐺‘𝐼)})) | ||
| Theorem | ply1lpir 26112 | The ring of polynomials over a division ring has the principal ideal property. (Contributed by Stefan O'Rear, 29-Mar-2015.) |
| ⊢ 𝑃 = (Poly1‘𝑅) ⇒ ⊢ (𝑅 ∈ DivRing → 𝑃 ∈ LPIR) | ||
| Theorem | ply1pid 26113 | The polynomials over a field are a PID. (Contributed by Stefan O'Rear, 29-Mar-2015.) |
| ⊢ 𝑃 = (Poly1‘𝑅) ⇒ ⊢ (𝑅 ∈ Field → 𝑃 ∈ PID) | ||
| Syntax | cply 26114 | Extend class notation to include the set of complex polynomials. |
| class Poly | ||
| Syntax | cidp 26115 | Extend class notation to include the identity polynomial. |
| class Xp | ||
| Syntax | ccoe 26116 | Extend class notation to include the coefficient function on polynomials. |
| class coeff | ||
| Syntax | cdgr 26117 | Extend class notation to include the degree function on polynomials. |
| class deg | ||
| Definition | df-ply 26118* | Define the set of polynomials on the complex numbers with coefficients in the given subset. (Contributed by Mario Carneiro, 17-Jul-2014.) |
| ⊢ Poly = (𝑥 ∈ 𝒫 ℂ ↦ {𝑓 ∣ ∃𝑛 ∈ ℕ0 ∃𝑎 ∈ ((𝑥 ∪ {0}) ↑m ℕ0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘)))}) | ||
| Definition | df-idp 26119 | Define the identity polynomial. (Contributed by Mario Carneiro, 17-Jul-2014.) |
| ⊢ Xp = ( I ↾ ℂ) | ||
| Definition | df-coe 26120* | Define the coefficient function for a polynomial. (Contributed by Mario Carneiro, 22-Jul-2014.) |
| ⊢ coeff = (𝑓 ∈ (Poly‘ℂ) ↦ (℩𝑎 ∈ (ℂ ↑m ℕ0)∃𝑛 ∈ ℕ0 ((𝑎 “ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘)))))) | ||
| Definition | df-dgr 26121 | Define the degree of a polynomial. (Contributed by Mario Carneiro, 22-Jul-2014.) |
| ⊢ deg = (𝑓 ∈ (Poly‘ℂ) ↦ sup((◡(coeff‘𝑓) “ (ℂ ∖ {0})), ℕ0, < )) | ||
| Theorem | plyco0 26122* | Two ways to say that a function on the nonnegative integers has finite support. (Contributed by Mario Carneiro, 22-Jul-2014.) |
| ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐴:ℕ0⟶ℂ) → ((𝐴 “ (ℤ≥‘(𝑁 + 1))) = {0} ↔ ∀𝑘 ∈ ℕ0 ((𝐴‘𝑘) ≠ 0 → 𝑘 ≤ 𝑁))) | ||
| Theorem | plyval 26123* | Value of the polynomial set function. (Contributed by Mario Carneiro, 17-Jul-2014.) |
| ⊢ (𝑆 ⊆ ℂ → (Poly‘𝑆) = {𝑓 ∣ ∃𝑛 ∈ ℕ0 ∃𝑎 ∈ ((𝑆 ∪ {0}) ↑m ℕ0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘)))}) | ||
| Theorem | plybss 26124 | Reverse closure of the parameter 𝑆 of the polynomial set function. (Contributed by Mario Carneiro, 22-Jul-2014.) |
| ⊢ (𝐹 ∈ (Poly‘𝑆) → 𝑆 ⊆ ℂ) | ||
| Theorem | elply 26125* | Definition of a polynomial with coefficients in 𝑆. (Contributed by Mario Carneiro, 17-Jul-2014.) |
| ⊢ (𝐹 ∈ (Poly‘𝑆) ↔ (𝑆 ⊆ ℂ ∧ ∃𝑛 ∈ ℕ0 ∃𝑎 ∈ ((𝑆 ∪ {0}) ↑m ℕ0)𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘))))) | ||
| Theorem | elply2 26126* | The coefficient function can be assumed to have zeroes outside 0...𝑛. (Contributed by Mario Carneiro, 20-Jul-2014.) (Revised by Mario Carneiro, 23-Aug-2014.) |
| ⊢ (𝐹 ∈ (Poly‘𝑆) ↔ (𝑆 ⊆ ℂ ∧ ∃𝑛 ∈ ℕ0 ∃𝑎 ∈ ((𝑆 ∪ {0}) ↑m ℕ0)((𝑎 “ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘)))))) | ||
| Theorem | plyun0 26127 | The set of polynomials is unaffected by the addition of zero. (This is built into the definition because all higher powers of a polynomial are effectively zero, so we require that the coefficient field contain zero to simplify some of our closure theorems.) (Contributed by Mario Carneiro, 17-Jul-2014.) |
| ⊢ (Poly‘(𝑆 ∪ {0})) = (Poly‘𝑆) | ||
| Theorem | plyf 26128 | A polynomial is a function on the complex numbers. (Contributed by Mario Carneiro, 22-Jul-2014.) |
| ⊢ (𝐹 ∈ (Poly‘𝑆) → 𝐹:ℂ⟶ℂ) | ||
| Theorem | plyss 26129 | The polynomial set function preserves the subset relation. (Contributed by Mario Carneiro, 17-Jul-2014.) |
| ⊢ ((𝑆 ⊆ 𝑇 ∧ 𝑇 ⊆ ℂ) → (Poly‘𝑆) ⊆ (Poly‘𝑇)) | ||
| Theorem | plyssc 26130 | Every polynomial ring is contained in the ring of polynomials over ℂ. (Contributed by Mario Carneiro, 22-Jul-2014.) |
| ⊢ (Poly‘𝑆) ⊆ (Poly‘ℂ) | ||
| Theorem | elplyr 26131* | Sufficient condition for elementhood in the set of polynomials. (Contributed by Mario Carneiro, 17-Jul-2014.) (Revised by Mario Carneiro, 23-Aug-2014.) |
| ⊢ ((𝑆 ⊆ ℂ ∧ 𝑁 ∈ ℕ0 ∧ 𝐴:ℕ0⟶𝑆) → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴‘𝑘) · (𝑧↑𝑘))) ∈ (Poly‘𝑆)) | ||
| Theorem | elplyd 26132* | Sufficient condition for elementhood in the set of polynomials. (Contributed by Mario Carneiro, 17-Jul-2014.) |
| ⊢ (𝜑 → 𝑆 ⊆ ℂ) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → 𝐴 ∈ 𝑆) ⇒ ⊢ (𝜑 → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(𝐴 · (𝑧↑𝑘))) ∈ (Poly‘𝑆)) | ||
| Theorem | ply1termlem 26133* | Lemma for ply1term 26134. (Contributed by Mario Carneiro, 26-Jul-2014.) |
| ⊢ 𝐹 = (𝑧 ∈ ℂ ↦ (𝐴 · (𝑧↑𝑁))) ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(if(𝑘 = 𝑁, 𝐴, 0) · (𝑧↑𝑘)))) | ||
| Theorem | ply1term 26134* | A one-term polynomial. (Contributed by Mario Carneiro, 17-Jul-2014.) |
| ⊢ 𝐹 = (𝑧 ∈ ℂ ↦ (𝐴 · (𝑧↑𝑁))) ⇒ ⊢ ((𝑆 ⊆ ℂ ∧ 𝐴 ∈ 𝑆 ∧ 𝑁 ∈ ℕ0) → 𝐹 ∈ (Poly‘𝑆)) | ||
| Theorem | plypow 26135* | A power is a polynomial. (Contributed by Mario Carneiro, 17-Jul-2014.) |
| ⊢ ((𝑆 ⊆ ℂ ∧ 1 ∈ 𝑆 ∧ 𝑁 ∈ ℕ0) → (𝑧 ∈ ℂ ↦ (𝑧↑𝑁)) ∈ (Poly‘𝑆)) | ||
| Theorem | plyconst 26136 | A constant function is a polynomial. (Contributed by Mario Carneiro, 17-Jul-2014.) |
| ⊢ ((𝑆 ⊆ ℂ ∧ 𝐴 ∈ 𝑆) → (ℂ × {𝐴}) ∈ (Poly‘𝑆)) | ||
| Theorem | ne0p 26137 | A test to show that a polynomial is nonzero. (Contributed by Mario Carneiro, 23-Jul-2014.) |
| ⊢ ((𝐴 ∈ ℂ ∧ (𝐹‘𝐴) ≠ 0) → 𝐹 ≠ 0𝑝) | ||
| Theorem | ply0 26138 | The zero function is a polynomial. (Contributed by Mario Carneiro, 17-Jul-2014.) |
| ⊢ (𝑆 ⊆ ℂ → 0𝑝 ∈ (Poly‘𝑆)) | ||
| Theorem | plyid 26139 | The identity function is a polynomial. (Contributed by Mario Carneiro, 17-Jul-2014.) |
| ⊢ ((𝑆 ⊆ ℂ ∧ 1 ∈ 𝑆) → Xp ∈ (Poly‘𝑆)) | ||
| Theorem | plyeq0lem 26140* | Lemma for plyeq0 26141. If 𝐴 is the coefficient function for a nonzero polynomial such that 𝑃(𝑧) = Σ𝑘 ∈ ℕ0𝐴(𝑘) · 𝑧↑𝑘 = 0 for every 𝑧 ∈ ℂ and 𝐴(𝑀) is the nonzero leading coefficient, then the function 𝐹(𝑧) = 𝑃(𝑧) / 𝑧↑𝑀 is a sum of powers of 1 / 𝑧, and so the limit of this function as 𝑧 ⇝ +∞ is the constant term, 𝐴(𝑀). But 𝐹(𝑧) = 0 everywhere, so this limit is also equal to zero so that 𝐴(𝑀) = 0, a contradiction. (Contributed by Mario Carneiro, 22-Jul-2014.) |
| ⊢ (𝜑 → 𝑆 ⊆ ℂ) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝐴 ∈ ((𝑆 ∪ {0}) ↑m ℕ0)) & ⊢ (𝜑 → (𝐴 “ (ℤ≥‘(𝑁 + 1))) = {0}) & ⊢ (𝜑 → 0𝑝 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴‘𝑘) · (𝑧↑𝑘)))) & ⊢ 𝑀 = sup((◡𝐴 “ (𝑆 ∖ {0})), ℝ, < ) & ⊢ (𝜑 → (◡𝐴 “ (𝑆 ∖ {0})) ≠ ∅) ⇒ ⊢ ¬ 𝜑 | ||
| Theorem | plyeq0 26141* | If a polynomial is zero at every point (or even just zero at the positive integers), then all the coefficients must be zero. This is the basis for the method of equating coefficients of equal polynomials, and ensures that df-coe 26120 is well-defined. (Contributed by Mario Carneiro, 22-Jul-2014.) |
| ⊢ (𝜑 → 𝑆 ⊆ ℂ) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝐴 ∈ ((𝑆 ∪ {0}) ↑m ℕ0)) & ⊢ (𝜑 → (𝐴 “ (ℤ≥‘(𝑁 + 1))) = {0}) & ⊢ (𝜑 → 0𝑝 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴‘𝑘) · (𝑧↑𝑘)))) ⇒ ⊢ (𝜑 → 𝐴 = (ℕ0 × {0})) | ||
| Theorem | plypf1 26142 | Write the set of complex polynomials in a subring in terms of the abstract polynomial construction. (Contributed by Mario Carneiro, 3-Jul-2015.) (Proof shortened by AV, 29-Sep-2019.) |
| ⊢ 𝑅 = (ℂfld ↾s 𝑆) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐴 = (Base‘𝑃) & ⊢ 𝐸 = (eval1‘ℂfld) ⇒ ⊢ (𝑆 ∈ (SubRing‘ℂfld) → (Poly‘𝑆) = (𝐸 “ 𝐴)) | ||
| Theorem | plyaddlem1 26143* | Derive the coefficient function for the sum of two polynomials. (Contributed by Mario Carneiro, 23-Jul-2014.) |
| ⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) & ⊢ (𝜑 → 𝐺 ∈ (Poly‘𝑆)) & ⊢ (𝜑 → 𝑀 ∈ ℕ0) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) & ⊢ (𝜑 → 𝐵:ℕ0⟶ℂ) & ⊢ (𝜑 → (𝐴 “ (ℤ≥‘(𝑀 + 1))) = {0}) & ⊢ (𝜑 → (𝐵 “ (ℤ≥‘(𝑁 + 1))) = {0}) & ⊢ (𝜑 → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑀)((𝐴‘𝑘) · (𝑧↑𝑘)))) & ⊢ (𝜑 → 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐵‘𝑘) · (𝑧↑𝑘)))) ⇒ ⊢ (𝜑 → (𝐹 ∘f + 𝐺) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...if(𝑀 ≤ 𝑁, 𝑁, 𝑀))(((𝐴 ∘f + 𝐵)‘𝑘) · (𝑧↑𝑘)))) | ||
| Theorem | plymullem1 26144* | Derive the coefficient function for the product of two polynomials. (Contributed by Mario Carneiro, 23-Jul-2014.) |
| ⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) & ⊢ (𝜑 → 𝐺 ∈ (Poly‘𝑆)) & ⊢ (𝜑 → 𝑀 ∈ ℕ0) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) & ⊢ (𝜑 → 𝐵:ℕ0⟶ℂ) & ⊢ (𝜑 → (𝐴 “ (ℤ≥‘(𝑀 + 1))) = {0}) & ⊢ (𝜑 → (𝐵 “ (ℤ≥‘(𝑁 + 1))) = {0}) & ⊢ (𝜑 → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑀)((𝐴‘𝑘) · (𝑧↑𝑘)))) & ⊢ (𝜑 → 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐵‘𝑘) · (𝑧↑𝑘)))) ⇒ ⊢ (𝜑 → (𝐹 ∘f · 𝐺) = (𝑧 ∈ ℂ ↦ Σ𝑛 ∈ (0...(𝑀 + 𝑁))(Σ𝑘 ∈ (0...𝑛)((𝐴‘𝑘) · (𝐵‘(𝑛 − 𝑘))) · (𝑧↑𝑛)))) | ||
| Theorem | plyaddlem 26145* | Lemma for plyadd 26147. (Contributed by Mario Carneiro, 21-Jul-2014.) |
| ⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) & ⊢ (𝜑 → 𝐺 ∈ (Poly‘𝑆)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) & ⊢ (𝜑 → 𝑀 ∈ ℕ0) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝐴 ∈ ((𝑆 ∪ {0}) ↑m ℕ0)) & ⊢ (𝜑 → 𝐵 ∈ ((𝑆 ∪ {0}) ↑m ℕ0)) & ⊢ (𝜑 → (𝐴 “ (ℤ≥‘(𝑀 + 1))) = {0}) & ⊢ (𝜑 → (𝐵 “ (ℤ≥‘(𝑁 + 1))) = {0}) & ⊢ (𝜑 → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑀)((𝐴‘𝑘) · (𝑧↑𝑘)))) & ⊢ (𝜑 → 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐵‘𝑘) · (𝑧↑𝑘)))) ⇒ ⊢ (𝜑 → (𝐹 ∘f + 𝐺) ∈ (Poly‘𝑆)) | ||
| Theorem | plymullem 26146* | Lemma for plymul 26148. (Contributed by Mario Carneiro, 21-Jul-2014.) |
| ⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) & ⊢ (𝜑 → 𝐺 ∈ (Poly‘𝑆)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) & ⊢ (𝜑 → 𝑀 ∈ ℕ0) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝐴 ∈ ((𝑆 ∪ {0}) ↑m ℕ0)) & ⊢ (𝜑 → 𝐵 ∈ ((𝑆 ∪ {0}) ↑m ℕ0)) & ⊢ (𝜑 → (𝐴 “ (ℤ≥‘(𝑀 + 1))) = {0}) & ⊢ (𝜑 → (𝐵 “ (ℤ≥‘(𝑁 + 1))) = {0}) & ⊢ (𝜑 → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑀)((𝐴‘𝑘) · (𝑧↑𝑘)))) & ⊢ (𝜑 → 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐵‘𝑘) · (𝑧↑𝑘)))) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 · 𝑦) ∈ 𝑆) ⇒ ⊢ (𝜑 → (𝐹 ∘f · 𝐺) ∈ (Poly‘𝑆)) | ||
| Theorem | plyadd 26147* | The sum of two polynomials is a polynomial. (Contributed by Mario Carneiro, 21-Jul-2014.) |
| ⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) & ⊢ (𝜑 → 𝐺 ∈ (Poly‘𝑆)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) ⇒ ⊢ (𝜑 → (𝐹 ∘f + 𝐺) ∈ (Poly‘𝑆)) | ||
| Theorem | plymul 26148* | The product of two polynomials is a polynomial. (Contributed by Mario Carneiro, 21-Jul-2014.) |
| ⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) & ⊢ (𝜑 → 𝐺 ∈ (Poly‘𝑆)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 · 𝑦) ∈ 𝑆) ⇒ ⊢ (𝜑 → (𝐹 ∘f · 𝐺) ∈ (Poly‘𝑆)) | ||
| Theorem | plysub 26149* | The difference of two polynomials is a polynomial. (Contributed by Mario Carneiro, 21-Jul-2014.) |
| ⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) & ⊢ (𝜑 → 𝐺 ∈ (Poly‘𝑆)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 · 𝑦) ∈ 𝑆) & ⊢ (𝜑 → -1 ∈ 𝑆) ⇒ ⊢ (𝜑 → (𝐹 ∘f − 𝐺) ∈ (Poly‘𝑆)) | ||
| Theorem | plyaddcl 26150 | The sum of two polynomials is a polynomial. (Contributed by Mario Carneiro, 24-Jul-2014.) |
| ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (𝐹 ∘f + 𝐺) ∈ (Poly‘ℂ)) | ||
| Theorem | plymulcl 26151 | The product of two polynomials is a polynomial. (Contributed by Mario Carneiro, 24-Jul-2014.) |
| ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (𝐹 ∘f · 𝐺) ∈ (Poly‘ℂ)) | ||
| Theorem | plysubcl 26152 | The difference of two polynomials is a polynomial. (Contributed by Mario Carneiro, 24-Jul-2014.) |
| ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (𝐹 ∘f − 𝐺) ∈ (Poly‘ℂ)) | ||
| Theorem | coeval 26153* | Value of the coefficient function. (Contributed by Mario Carneiro, 22-Jul-2014.) |
| ⊢ (𝐹 ∈ (Poly‘𝑆) → (coeff‘𝐹) = (℩𝑎 ∈ (ℂ ↑m ℕ0)∃𝑛 ∈ ℕ0 ((𝑎 “ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘)))))) | ||
| Theorem | coeeulem 26154* | Lemma for coeeu 26155. (Contributed by Mario Carneiro, 22-Jul-2014.) |
| ⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) & ⊢ (𝜑 → 𝐴 ∈ (ℂ ↑m ℕ0)) & ⊢ (𝜑 → 𝐵 ∈ (ℂ ↑m ℕ0)) & ⊢ (𝜑 → 𝑀 ∈ ℕ0) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → (𝐴 “ (ℤ≥‘(𝑀 + 1))) = {0}) & ⊢ (𝜑 → (𝐵 “ (ℤ≥‘(𝑁 + 1))) = {0}) & ⊢ (𝜑 → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑀)((𝐴‘𝑘) · (𝑧↑𝑘)))) & ⊢ (𝜑 → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐵‘𝑘) · (𝑧↑𝑘)))) ⇒ ⊢ (𝜑 → 𝐴 = 𝐵) | ||
| Theorem | coeeu 26155* | Uniqueness of the coefficient function. (Contributed by Mario Carneiro, 22-Jul-2014.) (Revised by Mario Carneiro, 23-Aug-2014.) |
| ⊢ (𝐹 ∈ (Poly‘𝑆) → ∃!𝑎 ∈ (ℂ ↑m ℕ0)∃𝑛 ∈ ℕ0 ((𝑎 “ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘))))) | ||
| Theorem | coelem 26156* | Lemma for properties of the coefficient function. (Contributed by Mario Carneiro, 22-Jul-2014.) (Revised by Mario Carneiro, 23-Aug-2014.) |
| ⊢ (𝐹 ∈ (Poly‘𝑆) → ((coeff‘𝐹) ∈ (ℂ ↑m ℕ0) ∧ ∃𝑛 ∈ ℕ0 (((coeff‘𝐹) “ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)(((coeff‘𝐹)‘𝑘) · (𝑧↑𝑘)))))) | ||
| Theorem | coeeq 26157* | If 𝐴 satisfies the properties of the coefficient function, it must be equal to the coefficient function. (Contributed by Mario Carneiro, 22-Jul-2014.) (Revised by Mario Carneiro, 23-Aug-2014.) |
| ⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) & ⊢ (𝜑 → (𝐴 “ (ℤ≥‘(𝑁 + 1))) = {0}) & ⊢ (𝜑 → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴‘𝑘) · (𝑧↑𝑘)))) ⇒ ⊢ (𝜑 → (coeff‘𝐹) = 𝐴) | ||
| Theorem | dgrval 26158 | Value of the degree function. (Contributed by Mario Carneiro, 22-Jul-2014.) |
| ⊢ 𝐴 = (coeff‘𝐹) ⇒ ⊢ (𝐹 ∈ (Poly‘𝑆) → (deg‘𝐹) = sup((◡𝐴 “ (ℂ ∖ {0})), ℕ0, < )) | ||
| Theorem | dgrlem 26159* | Lemma for dgrcl 26163 and similar theorems. (Contributed by Mario Carneiro, 22-Jul-2014.) |
| ⊢ 𝐴 = (coeff‘𝐹) ⇒ ⊢ (𝐹 ∈ (Poly‘𝑆) → (𝐴:ℕ0⟶(𝑆 ∪ {0}) ∧ ∃𝑛 ∈ ℤ ∀𝑥 ∈ (◡𝐴 “ (ℂ ∖ {0}))𝑥 ≤ 𝑛)) | ||
| Theorem | coef 26160 | The domain and codomain of the coefficient function. (Contributed by Mario Carneiro, 22-Jul-2014.) |
| ⊢ 𝐴 = (coeff‘𝐹) ⇒ ⊢ (𝐹 ∈ (Poly‘𝑆) → 𝐴:ℕ0⟶(𝑆 ∪ {0})) | ||
| Theorem | coef2 26161 | The domain and codomain of the coefficient function. (Contributed by Mario Carneiro, 22-Jul-2014.) |
| ⊢ 𝐴 = (coeff‘𝐹) ⇒ ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 0 ∈ 𝑆) → 𝐴:ℕ0⟶𝑆) | ||
| Theorem | coef3 26162 | The domain and codomain of the coefficient function. (Contributed by Mario Carneiro, 22-Jul-2014.) |
| ⊢ 𝐴 = (coeff‘𝐹) ⇒ ⊢ (𝐹 ∈ (Poly‘𝑆) → 𝐴:ℕ0⟶ℂ) | ||
| Theorem | dgrcl 26163 | The degree of any polynomial is a nonnegative integer. (Contributed by Mario Carneiro, 22-Jul-2014.) |
| ⊢ (𝐹 ∈ (Poly‘𝑆) → (deg‘𝐹) ∈ ℕ0) | ||
| Theorem | dgrub 26164 | If the 𝑀-th coefficient of 𝐹 is nonzero, then the degree of 𝐹 is at least 𝑀. (Contributed by Mario Carneiro, 22-Jul-2014.) |
| ⊢ 𝐴 = (coeff‘𝐹) & ⊢ 𝑁 = (deg‘𝐹) ⇒ ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴‘𝑀) ≠ 0) → 𝑀 ≤ 𝑁) | ||
| Theorem | dgrub2 26165 | All the coefficients above the degree of 𝐹 are zero. (Contributed by Mario Carneiro, 23-Jul-2014.) |
| ⊢ 𝐴 = (coeff‘𝐹) & ⊢ 𝑁 = (deg‘𝐹) ⇒ ⊢ (𝐹 ∈ (Poly‘𝑆) → (𝐴 “ (ℤ≥‘(𝑁 + 1))) = {0}) | ||
| Theorem | dgrlb 26166 | If all the coefficients above 𝑀 are zero, then the degree of 𝐹 is at most 𝑀. (Contributed by Mario Carneiro, 22-Jul-2014.) |
| ⊢ 𝐴 = (coeff‘𝐹) & ⊢ 𝑁 = (deg‘𝐹) ⇒ ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴 “ (ℤ≥‘(𝑀 + 1))) = {0}) → 𝑁 ≤ 𝑀) | ||
| Theorem | coeidlem 26167* | Lemma for coeid 26168. (Contributed by Mario Carneiro, 22-Jul-2014.) |
| ⊢ 𝐴 = (coeff‘𝐹) & ⊢ 𝑁 = (deg‘𝐹) & ⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) & ⊢ (𝜑 → 𝑀 ∈ ℕ0) & ⊢ (𝜑 → 𝐵 ∈ ((𝑆 ∪ {0}) ↑m ℕ0)) & ⊢ (𝜑 → (𝐵 “ (ℤ≥‘(𝑀 + 1))) = {0}) & ⊢ (𝜑 → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑀)((𝐵‘𝑘) · (𝑧↑𝑘)))) ⇒ ⊢ (𝜑 → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴‘𝑘) · (𝑧↑𝑘)))) | ||
| Theorem | coeid 26168* | Reconstruct a polynomial as an explicit sum of the coefficient function up to the degree of the polynomial. (Contributed by Mario Carneiro, 22-Jul-2014.) |
| ⊢ 𝐴 = (coeff‘𝐹) & ⊢ 𝑁 = (deg‘𝐹) ⇒ ⊢ (𝐹 ∈ (Poly‘𝑆) → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴‘𝑘) · (𝑧↑𝑘)))) | ||
| Theorem | coeid2 26169* | Reconstruct a polynomial as an explicit sum of the coefficient function up to the degree of the polynomial. (Contributed by Mario Carneiro, 22-Jul-2014.) |
| ⊢ 𝐴 = (coeff‘𝐹) & ⊢ 𝑁 = (deg‘𝐹) ⇒ ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑋 ∈ ℂ) → (𝐹‘𝑋) = Σ𝑘 ∈ (0...𝑁)((𝐴‘𝑘) · (𝑋↑𝑘))) | ||
| Theorem | coeid3 26170* | Reconstruct a polynomial as an explicit sum of the coefficient function up to at least the degree of the polynomial. (Contributed by Mario Carneiro, 22-Jul-2014.) |
| ⊢ 𝐴 = (coeff‘𝐹) & ⊢ 𝑁 = (deg‘𝐹) ⇒ ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ (ℤ≥‘𝑁) ∧ 𝑋 ∈ ℂ) → (𝐹‘𝑋) = Σ𝑘 ∈ (0...𝑀)((𝐴‘𝑘) · (𝑋↑𝑘))) | ||
| Theorem | plyco 26171* | The composition of two polynomials is a polynomial. (Contributed by Mario Carneiro, 23-Jul-2014.) (Revised by Mario Carneiro, 23-Aug-2014.) |
| ⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) & ⊢ (𝜑 → 𝐺 ∈ (Poly‘𝑆)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 · 𝑦) ∈ 𝑆) ⇒ ⊢ (𝜑 → (𝐹 ∘ 𝐺) ∈ (Poly‘𝑆)) | ||
| Theorem | coeeq2 26172* | Compute the coefficient function given a sum expression for the polynomial. (Contributed by Mario Carneiro, 24-Jul-2014.) |
| ⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(𝐴 · (𝑧↑𝑘)))) ⇒ ⊢ (𝜑 → (coeff‘𝐹) = (𝑘 ∈ ℕ0 ↦ if(𝑘 ≤ 𝑁, 𝐴, 0))) | ||
| Theorem | dgrle 26173* | Given an explicit expression for a polynomial, the degree is at most the highest term in the sum. (Contributed by Mario Carneiro, 24-Jul-2014.) |
| ⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(𝐴 · (𝑧↑𝑘)))) ⇒ ⊢ (𝜑 → (deg‘𝐹) ≤ 𝑁) | ||
| Theorem | dgreq 26174* | If the highest term in a polynomial expression is nonzero, then the polynomial's degree is completely determined. (Contributed by Mario Carneiro, 24-Jul-2014.) |
| ⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) & ⊢ (𝜑 → (𝐴 “ (ℤ≥‘(𝑁 + 1))) = {0}) & ⊢ (𝜑 → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴‘𝑘) · (𝑧↑𝑘)))) & ⊢ (𝜑 → (𝐴‘𝑁) ≠ 0) ⇒ ⊢ (𝜑 → (deg‘𝐹) = 𝑁) | ||
| Theorem | 0dgr 26175 | A constant function has degree 0. (Contributed by Mario Carneiro, 24-Jul-2014.) |
| ⊢ (𝐴 ∈ ℂ → (deg‘(ℂ × {𝐴})) = 0) | ||
| Theorem | 0dgrb 26176 | A function has degree zero iff it is a constant function. (Contributed by Mario Carneiro, 23-Jul-2014.) |
| ⊢ (𝐹 ∈ (Poly‘𝑆) → ((deg‘𝐹) = 0 ↔ 𝐹 = (ℂ × {(𝐹‘0)}))) | ||
| Theorem | dgrnznn 26177 | A nonzero polynomial with a root has positive degree. (Contributed by Stefan O'Rear, 25-Nov-2014.) |
| ⊢ (((𝑃 ∈ (Poly‘𝑆) ∧ 𝑃 ≠ 0𝑝) ∧ (𝐴 ∈ ℂ ∧ (𝑃‘𝐴) = 0)) → (deg‘𝑃) ∈ ℕ) | ||
| Theorem | coefv0 26178 | The result of evaluating a polynomial at zero is the constant term. (Contributed by Mario Carneiro, 24-Jul-2014.) |
| ⊢ 𝐴 = (coeff‘𝐹) ⇒ ⊢ (𝐹 ∈ (Poly‘𝑆) → (𝐹‘0) = (𝐴‘0)) | ||
| Theorem | coeaddlem 26179 | Lemma for coeadd 26181 and dgradd 26198. (Contributed by Mario Carneiro, 24-Jul-2014.) |
| ⊢ 𝐴 = (coeff‘𝐹) & ⊢ 𝐵 = (coeff‘𝐺) & ⊢ 𝑀 = (deg‘𝐹) & ⊢ 𝑁 = (deg‘𝐺) ⇒ ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → ((coeff‘(𝐹 ∘f + 𝐺)) = (𝐴 ∘f + 𝐵) ∧ (deg‘(𝐹 ∘f + 𝐺)) ≤ if(𝑀 ≤ 𝑁, 𝑁, 𝑀))) | ||
| Theorem | coemullem 26180* | Lemma for coemul 26182 and dgrmul 26201. (Contributed by Mario Carneiro, 24-Jul-2014.) |
| ⊢ 𝐴 = (coeff‘𝐹) & ⊢ 𝐵 = (coeff‘𝐺) & ⊢ 𝑀 = (deg‘𝐹) & ⊢ 𝑁 = (deg‘𝐺) ⇒ ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → ((coeff‘(𝐹 ∘f · 𝐺)) = (𝑛 ∈ ℕ0 ↦ Σ𝑘 ∈ (0...𝑛)((𝐴‘𝑘) · (𝐵‘(𝑛 − 𝑘)))) ∧ (deg‘(𝐹 ∘f · 𝐺)) ≤ (𝑀 + 𝑁))) | ||
| Theorem | coeadd 26181 | The coefficient function of a sum is the sum of coefficients. (Contributed by Mario Carneiro, 24-Jul-2014.) |
| ⊢ 𝐴 = (coeff‘𝐹) & ⊢ 𝐵 = (coeff‘𝐺) ⇒ ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (coeff‘(𝐹 ∘f + 𝐺)) = (𝐴 ∘f + 𝐵)) | ||
| Theorem | coemul 26182* | A coefficient of a product of polynomials. (Contributed by Mario Carneiro, 24-Jul-2014.) |
| ⊢ 𝐴 = (coeff‘𝐹) & ⊢ 𝐵 = (coeff‘𝐺) ⇒ ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝑁 ∈ ℕ0) → ((coeff‘(𝐹 ∘f · 𝐺))‘𝑁) = Σ𝑘 ∈ (0...𝑁)((𝐴‘𝑘) · (𝐵‘(𝑁 − 𝑘)))) | ||
| Theorem | coe11 26183 | The coefficient function is one-to-one, so if the coefficients are equal then the functions are equal and vice-versa. (Contributed by Mario Carneiro, 24-Jul-2014.) (Revised by Mario Carneiro, 23-Aug-2014.) |
| ⊢ 𝐴 = (coeff‘𝐹) & ⊢ 𝐵 = (coeff‘𝐺) ⇒ ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (𝐹 = 𝐺 ↔ 𝐴 = 𝐵)) | ||
| Theorem | coemulhi 26184 | The leading coefficient of a product of polynomials. (Contributed by Mario Carneiro, 24-Jul-2014.) |
| ⊢ 𝐴 = (coeff‘𝐹) & ⊢ 𝐵 = (coeff‘𝐺) & ⊢ 𝑀 = (deg‘𝐹) & ⊢ 𝑁 = (deg‘𝐺) ⇒ ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → ((coeff‘(𝐹 ∘f · 𝐺))‘(𝑀 + 𝑁)) = ((𝐴‘𝑀) · (𝐵‘𝑁))) | ||
| Theorem | coemulc 26185 | The coefficient function is linear under scalar multiplication. (Contributed by Mario Carneiro, 24-Jul-2014.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) → (coeff‘((ℂ × {𝐴}) ∘f · 𝐹)) = ((ℕ0 × {𝐴}) ∘f · (coeff‘𝐹))) | ||
| Theorem | coe0 26186 | The coefficients of the zero polynomial are zero. (Contributed by Mario Carneiro, 22-Jul-2014.) |
| ⊢ (coeff‘0𝑝) = (ℕ0 × {0}) | ||
| Theorem | coesub 26187 | The coefficient function of a sum is the sum of coefficients. (Contributed by Mario Carneiro, 24-Jul-2014.) |
| ⊢ 𝐴 = (coeff‘𝐹) & ⊢ 𝐵 = (coeff‘𝐺) ⇒ ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (coeff‘(𝐹 ∘f − 𝐺)) = (𝐴 ∘f − 𝐵)) | ||
| Theorem | coe1termlem 26188* | The coefficient function of a monomial. (Contributed by Mario Carneiro, 26-Jul-2014.) (Revised by Mario Carneiro, 23-Aug-2014.) |
| ⊢ 𝐹 = (𝑧 ∈ ℂ ↦ (𝐴 · (𝑧↑𝑁))) ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ((coeff‘𝐹) = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 𝑁, 𝐴, 0)) ∧ (𝐴 ≠ 0 → (deg‘𝐹) = 𝑁))) | ||
| Theorem | coe1term 26189* | The coefficient function of a monomial. (Contributed by Mario Carneiro, 26-Jul-2014.) |
| ⊢ 𝐹 = (𝑧 ∈ ℂ ↦ (𝐴 · (𝑧↑𝑁))) ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0) → ((coeff‘𝐹)‘𝑀) = if(𝑀 = 𝑁, 𝐴, 0)) | ||
| Theorem | dgr1term 26190* | The degree of a monomial. (Contributed by Mario Carneiro, 26-Jul-2014.) |
| ⊢ 𝐹 = (𝑧 ∈ ℂ ↦ (𝐴 · (𝑧↑𝑁))) ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ ℕ0) → (deg‘𝐹) = 𝑁) | ||
| Theorem | plycn 26191 | A polynomial is a continuous function. (Contributed by Mario Carneiro, 23-Jul-2014.) Avoid ax-mulf 11083. (Revised by GG, 16-Mar-2025.) |
| ⊢ (𝐹 ∈ (Poly‘𝑆) → 𝐹 ∈ (ℂ–cn→ℂ)) | ||
| Theorem | plycnOLD 26192 | Obsolete version of plycn 26191 as of 10-Apr-2025. (Contributed by Mario Carneiro, 23-Jul-2014.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (𝐹 ∈ (Poly‘𝑆) → 𝐹 ∈ (ℂ–cn→ℂ)) | ||
| Theorem | dgr0 26193 | The degree of the zero polynomial is zero. Note: this differs from some other definitions of the degree of the zero polynomial, such as -1, -∞ or undefined. But it is convenient for us to define it this way, so that we have dgrcl 26163, dgreq0 26196 and coeid 26168 without having to special-case zero, although plydivalg 26232 is a little more complicated as a result. (Contributed by Mario Carneiro, 22-Jul-2014.) |
| ⊢ (deg‘0𝑝) = 0 | ||
| Theorem | coeidp 26194 | The coefficients of the identity function. (Contributed by Mario Carneiro, 28-Jul-2014.) |
| ⊢ (𝐴 ∈ ℕ0 → ((coeff‘Xp)‘𝐴) = if(𝐴 = 1, 1, 0)) | ||
| Theorem | dgrid 26195 | The degree of the identity function. (Contributed by Mario Carneiro, 26-Jul-2014.) |
| ⊢ (deg‘Xp) = 1 | ||
| Theorem | dgreq0 26196 | The leading coefficient of a polynomial is nonzero, unless the entire polynomial is zero. (Contributed by Mario Carneiro, 22-Jul-2014.) (Proof shortened by Fan Zheng, 21-Jun-2016.) |
| ⊢ 𝑁 = (deg‘𝐹) & ⊢ 𝐴 = (coeff‘𝐹) ⇒ ⊢ (𝐹 ∈ (Poly‘𝑆) → (𝐹 = 0𝑝 ↔ (𝐴‘𝑁) = 0)) | ||
| Theorem | dgrlt 26197 | Two ways to say that the degree of 𝐹 is strictly less than 𝑁. (Contributed by Mario Carneiro, 25-Jul-2014.) |
| ⊢ 𝑁 = (deg‘𝐹) & ⊢ 𝐴 = (coeff‘𝐹) ⇒ ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0) → ((𝐹 = 0𝑝 ∨ 𝑁 < 𝑀) ↔ (𝑁 ≤ 𝑀 ∧ (𝐴‘𝑀) = 0))) | ||
| Theorem | dgradd 26198 | The degree of a sum of polynomials is at most the maximum of the degrees. (Contributed by Mario Carneiro, 24-Jul-2014.) |
| ⊢ 𝑀 = (deg‘𝐹) & ⊢ 𝑁 = (deg‘𝐺) ⇒ ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (deg‘(𝐹 ∘f + 𝐺)) ≤ if(𝑀 ≤ 𝑁, 𝑁, 𝑀)) | ||
| Theorem | dgradd2 26199 | The degree of a sum of polynomials of unequal degrees is the degree of the larger polynomial. (Contributed by Mario Carneiro, 24-Jul-2014.) |
| ⊢ 𝑀 = (deg‘𝐹) & ⊢ 𝑁 = (deg‘𝐺) ⇒ ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝑀 < 𝑁) → (deg‘(𝐹 ∘f + 𝐺)) = 𝑁) | ||
| Theorem | dgrmul2 26200 | The degree of a product of polynomials is at most the sum of degrees. (Contributed by Mario Carneiro, 24-Jul-2014.) |
| ⊢ 𝑀 = (deg‘𝐹) & ⊢ 𝑁 = (deg‘𝐺) ⇒ ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (deg‘(𝐹 ∘f · 𝐺)) ≤ (𝑀 + 𝑁)) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |